Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

In the modern era, petrochemical industries' production of hydrocarbon pollution is a significant environmental problem that causes biodiversity loss. Alkanes constitute a substantial proportion of crude oil, and refined fuels are found in small amounts in various uncontaminated environments. They are prevalent in underground fossil fuel reserves and shallow subsurface habitats polluted with hydrocarbons, such as aquifers. Using microorganisms to break down alkane hydrocarbon pollutants in environmental areas has great potential. Considerable advancements have been achieved in identifying microorganisms and metabolic processes responsible for the breakdown of alkanes in both oxygen-free and oxygen-rich conditions in the last two decades. A wide range of prokaryotic and eukaryotic organisms have been identified and observed to possess the ability to utilize various carbon and energy sources as substrates. Bioremediation is essential for environmental safety and management; various methods have been established for petroleum hydrocarbon bioremediation. Numerous microbial species have been employed to investigate the bioremediation of petroleum hydrocarbons, highlighting the crucial functions of varied microbial communities. Phytoremediation is an environmentally sustainable method that may effectively rehabilitate heavy metal-contaminated soil cost-efficiently. This manuscript provides an overview of prevalent alkane hydrocarbon pollutants, microorganisms capable of degrading hydrocarbons, key pathways and enzymes involved in hydrocarbon degradation, factors influencing hydrocarbon degradation, and various strategies employed to harness the degrading capabilities of microbes for remedial purposes.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461363271250113050350
2025-01-14
2025-09-28
Loading full text...

Full text loading...

References

  1. AggarwalV.R. McBethJ. ZakrzewskaJ.M. LuntM. MacfarlaneG.J. The epidemiology of chronic syndromes that are frequently unexplained: do they have common associated factors?Int. J. Epidemiol.200635246847610.1093/ije/dyi265 16303810
    [Google Scholar]
  2. StewartW.F. LiptonR.B. CelentanoD.D. ReedM.L. Prevalence of migraine headache in the United States. Relation to age, income, race, and other sociodemographic factors.JAMA19922671646910.1001/jama.1992.03480010072027 1727198
    [Google Scholar]
  3. SpieringsE.L.H. DhadwalS. Orofacial pain after invasive dental procedures: Neuropathic pain in perspective.Neurologist2015192566010.1097/NRL.0b013e3182811968 25607335
    [Google Scholar]
  4. SpieringsE.L.H. MulderM.J.H.L. Persistent orofacial muscle pain: Its synonymous terminology and presentation.Cranio201735530430710.1080/08869634.2016.1248591 27776466
    [Google Scholar]
  5. MulderM.J. SpieringsE.L. Treatments of orofacial muscle pain: A review of current literature.J. Dent. Oral Disord.20173510.26420/jdentoraldisord.2017.1075
    [Google Scholar]
  6. AeckersbergF. BakF. WiddelF. Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium.Arch. Microbiol.1991156151410.1007/BF00418180
    [Google Scholar]
  7. KroppK.G. DavidovaI.A. SuflitaJ.M. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture.Appl. Environ. Microbiol.200066125393539810.1128/AEM.66.12.5393‑5398.2000 11097919
    [Google Scholar]
  8. GiegL.M. SuflitaJ.M. Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers.Environ. Sci. Technol.200236173755376210.1021/es0205333 12322748
    [Google Scholar]
  9. SavageK.N. KrumholzL.R. GiegL.M. ParisiV.A. SuflitaJ.M. AllenJ. PhilpR.P. ElshahedM.S. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.FEMS Microbiol. Ecol.201072348549510.1111/j.1574‑6941.2010.00866.x 20402777
    [Google Scholar]
  10. BregnardT.P. HanerA. HohenerP. ZeyerJ. Anaerobic degradation of pristane in nitrate-reducing microcosms and enrichment cultures.Appl. Environ. Microbiol.19976352077208110.1128/aem.63.5.2077‑2081.1997 16535616
    [Google Scholar]
  11. CallaghanA.V. TierneyM. PhelpsC.D. YoungL.Y. Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium.Appl. Environ. Microbiol.20097551339134410.1128/AEM.02491‑08 19114507
    [Google Scholar]
  12. ZenglerK. RichnowH.H. Rosselló-MoraR. MichaelisW. WiddelF. Methane formation from long-chain alkanes by anaerobic microorganisms.Nature1999401675026626910.1038/45777 10499582
    [Google Scholar]
  13. AndersonR.T. LovleyD.R. Hexadecane decay by methanogenesis.Nature2000404677972272310.1038/35008145 10783875
    [Google Scholar]
  14. GiegL.M. DuncanK.E. SuflitaJ.M. Bioenergy production via microbial conversion of residual oil to natural gas.Appl. Environ. Microbiol.200874103022302910.1128/AEM.00119‑08 18378655
    [Google Scholar]
  15. JonesD.M. HeadI.M. GrayN.D. AdamsJ.J. RowanA.K. AitkenC.M. BennettB. HuangH. BrownA. BowlerB.F.J. OldenburgT. ErdmannM. LarterS.R. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs.Nature2008451717517618010.1038/nature06484 18075503
    [Google Scholar]
  16. AeckersbergF. RaineyF.A. WiddelF. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.Arch. Microbiol.1998170536136910.1007/s002030050654 9818355
    [Google Scholar]
  17. EhrenreichP. BehrendsA. HarderJ. WiddelF. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria.Arch. Microbiol.20001731586410.1007/s002030050008 10648105
    [Google Scholar]
  18. AragawT.A. BogaleF.M. GessesseA. Adaptive response of thermophiles to redox stress and their role in the process of dye degradation from textile industry wastewater.Front. Physiol.20221390837010.3389/fphys.2022.908370 35795652
    [Google Scholar]
  19. SayaraT. SánchezA. Bioremediation of PAH-contaminated soils: Process enhancement through composting/compost.Appl. Sci.20201011368410.3390/app10113684
    [Google Scholar]
  20. RoyA. DuttaA. PalS. GuptaA. SarkarJ. ChatterjeeA. SahaA. SarkarP. SarP. KazyS.K. Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge.Bioresour. Technol.2018253223210.1016/j.biortech.2018.01.004 29328931
    [Google Scholar]
  21. MacaulayB.M. ReesD. Bioremediation of oil spills: A review of challenges for research advancement.Ann. Environ. Sci. (Boston Mass.)20148937
    [Google Scholar]
  22. DasN. ChandranP. Microbial degradation of petroleum hydrocarbon contaminants: An overview.Biotechnol. Res. Int.20112011111310.4061/2011/941810 21350672
    [Google Scholar]
  23. KebedeG. TafeseT. AbdaE.M. KamarajM. AssefaF. Factors influencing the bacterial bioremediation of hydrocarbon contaminants in the soil: Mechanisms and impacts.J. Chem.20212021111710.1155/2021/9823362
    [Google Scholar]
  24. VarjaniS.J. Hydrocarbon Degrading and Biosurfactants (Bioemulsifiers) Producing Bacteria from Petroleum Oil Wells.Gandhinagar, IndiaKadi Sarva Vishwavidyalaya2014
    [Google Scholar]
  25. PeixotoRS VermelhoAB RosadoAS Petroleum-degrading enzymes: Bioremediation and new prospects.Enzyme Research,2011201147519310.4061/2011/475193
    [Google Scholar]
  26. GopinathV. MuraliA. DharK.S. NampoothiriK.M. Corynebacterium glutamicum as a potent biocatalyst for the bioconversion of pentose sugars to value-added products.Appl. Microbiol. Biotechnol.20129319510610.1007/s00253‑011‑3686‑4 22094976
    [Google Scholar]
  27. LathaR. KalaivaniR. Bacterial degradation of crude oil by gravimetric analysis.Adv. Appl. Sci. Res.20123527892795
    [Google Scholar]
  28. RahmanK.S.M. RahmanT.J. KourkoutasY. PetsasI. MarchantR. BanatI.M. Enhanced bioremediation of n-alkane in petroleum sludge using Bacterial consortium amended with rhamnolipid and micronutrients.Bioresour. Technol.200390215916810.1016/S0960‑8524(03)00114‑7 12895559
    [Google Scholar]
  29. HadibarataT. TachibanaS. ItohK. Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium.J. Hazard. Mater.20091642-391191710.1016/j.jhazmat.2008.08.081 18835091
    [Google Scholar]
  30. ZhaoD. LiuC. LiuL. ZhangY. LiuQ. WuW.M. Selection of functional consortium for crude oil-contaminated soil remediation.Int. Biodeterior. Biodegradation20116581244124810.1016/j.ibiod.2011.07.008
    [Google Scholar]
  31. LalB. KhannaS. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans.J. Appl. Bacteriol.199681435536210.1111/j.1365‑2672.1996.tb03519.x 8896350
    [Google Scholar]
  32. BrusseauM.L. The impact of physical, chemical and biological factors on biodegradation.In:Proceedings of the International Conference on Biotechnology for Soil Remediation: Scientific Bases and Practical ApplicationMilan, Italy19988198
    [Google Scholar]
  33. FoghtJ.M. WestlakeD.W.S. JohnsonW.M. RidgwayH.F. Environmental gasoline-utilizing isolates and clinical isolates of Pseudomonas aeruginosa are taxonomically indistinguishable by chemotaxonomic and molecular techniques.Microbiology (Reading)199614292333234010.1099/00221287‑142‑9‑2333 8828201
    [Google Scholar]
  34. BarthaR. BossertI. The treatment and disposal of petroleum wastes.Petroleum Microbiology1984553578
    [Google Scholar]
  35. CooneyJ.J. The fate of petroleum pollutants in fresh water ecosystems.Petroleum Microbiology.New YorkMacmillan1984399434
    [Google Scholar]
  36. VenosaA.D. ZhuX. Biodegradation of crude oil contaminating marine shorelines and freshwater wetlands.Spill Sci. Technol. Bull.20038216317810.1016/S1353‑2561(03)00019‑7
    [Google Scholar]
  37. PelletierE. DelilleD. DelilleB. Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues.Mar. Environ. Res.200457431132710.1016/j.marenvres.2003.07.001 14749062
    [Google Scholar]
  38. DelilleD. CoulonF. PelletierE. Effects of temperature warming during a bioremediation study of natural and nutrient-amended hydrocarbon-contaminated sub-Antarctic soils.Cold Reg. Sci. Technol.2004401-2617010.1016/j.coldregions.2004.05.005
    [Google Scholar]
  39. AtlasR.M. Effects of hydrocarbons on microorganisms and petroleum biodegradation in arctic ecosystems.198563100Available from: https://www.govinfo.gov/app/details/GOVPUB-I-5a74f311cc140ccd9c3609161c8dabd6
    [Google Scholar]
  40. FloodgateG. The fate of petroleum in marine ecosystems.Petroleum microbiology1984355397
    [Google Scholar]
  41. MitschW.J. GosselinkJ.G. ZhangL. AndersonC.J. Wetland ecosystems.John Wiley & Sons2009
    [Google Scholar]
  42. ChoiS.C. KwonK.K. SohnJ.H. KimS.I. Evaluation of fertilizer additions to stimulate oil biodegradation in sand seashore mesocosms.J. Microbiol. Biotechnol.2002123431436
    [Google Scholar]
  43. KimS.J. ChoiD.H. SimD.S. OhY.S. Evaluation of bioremediation effectiveness on crude oil-contaminated sand.Chemosphere200559684585210.1016/j.chemosphere.2004.10.058 15811413
    [Google Scholar]
  44. ChaillanF. ChaîneauC.H. PointV. SaliotA. OudotJ. Factors inhibiting bioremediation of soil contaminated with weathered oils and drill cuttings.Environ. Pollut.2006144125526510.1016/j.envpol.2005.12.016 16487636
    [Google Scholar]
  45. OudotJ. MerlinF.X. PinvidicP. Weathering rates of oil components in a bioremediation experiment in estuarine sediments.Mar. Environ. Res.199845211312510.1016/S0141‑1136(97)00024‑X
    [Google Scholar]
  46. ChaîneauC.H. RougeuxG. YéprémianC. OudotJ. Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil.Soil Biol. Biochem.20053781490149710.1016/j.soilbio.2005.01.012
    [Google Scholar]
  47. CarmichaelL.M. PfaenderF.K. The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils.Biodegradation19978111310.1023/A:1008258720649 9290252
    [Google Scholar]
  48. OkoloJ.C. AmadiE.N. OduC.T. Effects of soil treatments containing poultry manure on crude oil degradation in a sandy loam soil.Appl. Ecol. Environ. Res.200531475310.15666/aeer/0301_047053
    [Google Scholar]
  49. MakiH. SasakiT. HarayamaS. Photo-oxidation of biodegraded crude oil and toxicity of the photo-oxidized products.Chemosphere20014451145115110.1016/S0045‑6535(00)00292‑7 11513402
    [Google Scholar]
  50. van BeilenJ.B. FunhoffE.G. Alkane hydroxylases involved in microbial alkane degradation.Appl. Microbiol. Biotechnol.2007741132110.1007/s00253‑006‑0748‑0 17216462
    [Google Scholar]
  51. ZimmerT. OhkumaM. OhtaA. TakagiM. SchunckW.H. The CYP52 multigene family of Candida maltosa encodes functionally diverse n-alkane-inducible cytochromes P450.Biochem. Biophys. Res. Commun.1996224378478910.1006/bbrc.1996.1100 8713123
    [Google Scholar]
  52. SchellerU. ZimmerT. BecherD. SchauerF. SchunckW.H. Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3.J. Biol. Chem.199827349325283253410.1074/jbc.273.49.32528 9829987
    [Google Scholar]
  53. BeilenJ.B. FunhoffE.G. Expanding the alkane oxygenase toolbox: New enzymes and applications.Curr. Opin. Biotechnol.200516330831410.1016/j.copbio.2005.04.005 15961032
    [Google Scholar]
  54. van BeilenJ.B. FunhoffE.G. van LoonA. JustA. KaysserL. BouzaM. HoltackersR. RöthlisbergerM. LiZ. WitholtB. Cytochrome P450 alkane hydroxylases of the CYP153 family are common in alkane-degrading eubacteria lacking integral membrane alkane hydroxylases.Appl. Environ. Microbiol.2006721596510.1128/AEM.72.1.59‑65.2006 16391025
    [Google Scholar]
  55. IidaT. SumitaT. OhtaA. TakagiM. The cytochrome P450ALK multigene family of ann-alkane-assimilating yeast, Yarrowia lipolytica: Cloning and characterization of genes coding for new CYP52 family members.Yeast200016121077108710.1002/1097‑0061(20000915)16:12<1077::AID‑YEA601>3.0.CO;2‑K 10953079
    [Google Scholar]
  56. McDonaldI.R. MiguezC.B. RoggeG. BourqueD. WendlandtK.D. GroleauD. MurrellJ.C. Diversity of soluble methane monooxygenase-containing methanotrophs isolated from polluted environments.FEMS Microbiol. Lett.2006255222523210.1111/j.1574‑6968.2005.00090.x 16448499
    [Google Scholar]
  57. MaengJ.H. SakaiY. TaniY. KatoN. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1.J. Bacteriol.1996178133695370010.1128/jb.178.13.3695‑3700.1996 8682768
    [Google Scholar]
  58. MuthusamyK. GopalakrishnanS. RaviT.K. SivachidambaramP. Biosurfactants: Properties, commercial production and application.Curr. Sci.2008736747
    [Google Scholar]
  59. MahmoundA. AzizaY. AbdeltifA. RachidaM. Biosurfactant production by Bacillus strain injected in the petroleum reservoirs.J. Ind. Microbiol. Biotechnol.200835213031306
    [Google Scholar]
  60. YoussefN. SimpsonD.R. DuncanK.E. McInerneyM.J. FolmsbeeM. FincherT. KnappR.M. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir.Appl. Environ. Microbiol.20077341239124710.1128/AEM.02264‑06 17172458
    [Google Scholar]
  61. IloriM.O. AmobiC.J. OdochaA.C. Factors affecting biosurfactant production by oil degrading Aeromonas spp. isolated from a tropical environment.Chemosphere200561798599210.1016/j.chemosphere.2005.03.066 15878609
    [Google Scholar]
  62. TabatabaeeA. AssadiM.M. NoohiA.A. SajadianV.A. Isolation of biosurfactant producing bacteria from oil reservoirs.J. Environ. Health Sci. Eng.200521612
    [Google Scholar]
  63. MitschW.J. Wu, X Wetlands and Global Change.CRC Press201810.1201/9780203739310‑18
    [Google Scholar]
  64. LeeI.G. HanS.K. GoY.S. AhnT.Y. Phylogenetic analysis of Mycobacterium sp. C2-3 degrading polycyclic aromatic hydrocarbons.J. Microbiol.2001394326330
    [Google Scholar]
  65. VilaJ. LópezZ. SabatéJ. MinguillónC. SolanasA.M. GrifollM. Identification of a novel metabolite in the degradation of pyrene by Mycobacterium sp. strain AP1: Actions of the isolate on two- and three-ring polycyclic aromatic hydrocarbons.Appl. Environ. Microbiol.200167125497550510.1128/AEM.67.12.5497‑5505.2001 11722898
    [Google Scholar]
  66. KimY.H. EngesserK.H. CernigliaC.E. Numerical and genetic analysis of polycyclic aromatic hydrocarbon-degrading mycobacteria.Microb. Ecol.200550111011910.1007/s00248‑004‑0126‑3 16132428
    [Google Scholar]
  67. BurbackB.L. PerryJ.J. Biodegradation and biotransformation of groundwater pollutant mixtures by Mycobacterium vaccae.Appl. Environ. Microbiol.19935941025102910.1128/aem.59.4.1025‑1029.1993 8476280
    [Google Scholar]
  68. ColemanN.V. YauS. WilsonN.L. NolanL.M. MigockiM.D. LyM. CrossettB. HolmesA.J. Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader.Environ. Microbiol. Rep.20113329730710.1111/j.1758‑2229.2010.00225.x 23761275
    [Google Scholar]
  69. Solano-SerenaF. MarchalR. CasarégolaS. VasnierC. LebeaultJ.M. VandecasteeleJ.P. A Mycobacterium strain with extended capacities for degradation of gasoline hydrocarbons.Appl. Environ. Microbiol.20006662392239910.1128/AEM.66.6.2392‑2399.2000 10831416
    [Google Scholar]
  70. KołwzanB. Bioremediation of soils contaminated with petroleum products and their ecotoxicological assessment. Oficyna Wydawnicza Politechniki Wroclawskiej, seria: Monografie.2005Available from: https://www.researchgate.net/publication/298587238_Bioremediation_of_the_soils_contaminated_with_petroleum_products_and_their_ecotoxicological_assessment/citation/download
    [Google Scholar]
  71. MartínkováL. UhnákováB. PátekM. NešveraJ. KřenV. Biodegradation potential of the genus Rhodococcus.Environ. Int.200935116217710.1016/j.envint.2008.07.018 18789530
    [Google Scholar]
  72. MargesinR. MoertelmaierC. MairJ. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains.Int. Biodeterior. Biodegradation20138418519110.1016/j.ibiod.2012.05.004
    [Google Scholar]
  73. SteligaT. JakubowiczP. KapustaP. Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons.Bioresour. Technol.201212511010.1016/j.biortech.2012.08.092 23018157
    [Google Scholar]
  74. AndreoniV. BernasconiS. ColomboM. Van BeilenJ.B. CavalcaL. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN.Environ. Microbiol.20002557257710.1046/j.1462‑2920.2000.00134.x 11233165
    [Google Scholar]
  75. SongX. XuY. LiG. ZhangY. HuangT. HuZ. Isolation, characterization of Rhodococcus sp. P14 capable of degrading high-molecular-weight polycyclic aromatic hydrocarbons and aliphatic hydrocarbons.Mar. Pollut. Bull.201162102122212810.1016/j.marpolbul.2011.07.013 21871639
    [Google Scholar]
  76. BrzeszczJ. Environmental microorganisms capable of concomitant degradation of aliphatic and aromatic hydrocarbons-perspective for the application in bioremediation practice of petroleum contaminated soils. Doctoral dissertation, PhD Dissertation, Jagiellonian University, Krakow, Poland2017
    [Google Scholar]
  77. CarvalhoC.C.C.R. FonsecaM.M.R. Degradation of hydrocarbons and alcohols at different temperatures and salinities by Rhodococcus erythropolis DCL14.FEMS Microbiol. Ecol.200551338939910.1016/j.femsec.2004.09.010 16329886
    [Google Scholar]
  78. LeeE.H. KimJ. ChoK.S. AhnY.G. HwangG.S. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831.Environ. Sci. Pollut. Res. Int.2010171647710.1007/s11356‑009‑0238‑x 19756804
    [Google Scholar]
  79. YangH.Y. JiaR.B. ChenB. LiL. Degradation of recalcitrant aliphatic and aromatic hydrocarbons by a dioxin-degrader Rhodococcus sp. strain p52.Environ. Sci. Pollut. Res. Int.20142118110861109310.1007/s11356‑014‑3027‑0 24859700
    [Google Scholar]
  80. LeeE.H. ChoK.S. Characterization of cyclohexane and hexane degradation by Rhodococcus sp. EC1.Chemosphere20087191738174410.1016/j.chemosphere.2007.12.009 18289631
    [Google Scholar]
  81. ZhangY. QinF. QiaoJ. LiG. ShenC. HuangT. HuZ. Draft genome sequence of Rhodococcus sp. strain P14, a biodegrader of high-molecular-weight polycyclic aromatic hydrocarbons.J. Bacteriol.2012194133546
    [Google Scholar]
  82. AjonaM. VasanthiP. Bioremediation of petroleum contaminated soils – A review.Mater. Today Proc.2021457117712210.1016/j.matpr.2021.01.949
    [Google Scholar]
  83. ChebbiA. HentatiD. ZaghdenH. BaccarN. RezguiF. ChalbiM. SayadiS. ChamkhaM. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil.Int. Biodeterior. Biodegradation201712212814010.1016/j.ibiod.2017.05.006
    [Google Scholar]
  84. FuentesS. BarraB. CaporasoJ.G. SeegerM. From rare to dominant: A fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation.Appl. Environ. Microbiol.201682388889610.1128/AEM.02625‑15 26590285
    [Google Scholar]
  85. XiaW. DuZ. CuiQ. DongH. WangF. HeP. TangY. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.J. Hazard. Mater.201427648949810.1016/j.jhazmat.2014.05.062 24929788
    [Google Scholar]
  86. Lo GiudiceA. CasellaP. CarusoC. ManganoS. BruniV. De DomenicoM. MichaudL. Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica).Polar Biol.201033792994310.1007/s00300‑010‑0770‑7
    [Google Scholar]
  87. SmithC.A. O’ReillyK.T. HymanM.R. Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8 n-alkanes.Appl. Environ. Microbiol.200369127385739410.1128/AEM.69.12.7385‑7394.2003 14660389
    [Google Scholar]
  88. KimJ.M. LeN.T. ChungB.S. ParkJ.H. BaeJ.W. MadsenE.L. JeonC.O. Influence of soil components on the biodegradation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylenes by the newly isolated bacterium Pseudoxanthomonas spadix BD-a59.Appl. Environ. Microbiol.200874237313732010.1128/AEM.01695‑08 18835999
    [Google Scholar]
  89. KlankeoP. NopcharoenkulW. PinyakongO. Two novel pyrene-degrading Diaphorobacter sp. and Pseudoxanthomonas sp. isolated from soil.J. Biosci. Bioeng.2009108648849510.1016/j.jbiosc.2009.05.016 19914581
    [Google Scholar]
  90. PatelV. CheturvedulaS. MadamwarD. Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India.J. Hazard. Mater.2012201-202435110.1016/j.jhazmat.2011.11.002 22169141
    [Google Scholar]
  91. NopcharoenkulW. NetsakulneeP. PinyakongO. Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402.Biodegradation201324338739710.1007/s10532‑012‑9596‑z 23054183
    [Google Scholar]
  92. DarweshO.M. MatterI.A. EidaM.F. Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye.J. Environ. Chem. Eng.20197110280510.1016/j.jece.2018.11.049
    [Google Scholar]
  93. BilalM. IqbalH.M.N. Hussain ShahS.Z. HuH. WangW. ZhangX. Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor.J. Environ. Manage.2016183Pt 383684210.1016/j.jenvman.2016.09.040 27663907
    [Google Scholar]
  94. BilalM. AsgherM. HuH. ZhangX. Kinetic characterization, thermo-stability and Reactive Red 195A dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel.Water Sci. Technol.20167481809182010.2166/wst.2016.363 27789882
    [Google Scholar]
  95. VasudevanM. KumarG.S. NambiI.M. Numerical studies on kinetics of sorption and dissolution and their interactions for estimating mass removal of toluene from entrapped soil pores.Arab. J. Geosci.2015896895691010.1007/s12517‑014‑1681‑7
    [Google Scholar]
  96. Ostrem LossE.M. LeeM.K. WuM.Y. MartienJ. ChenW. Amador-NoguezD. JefcoateC. RemucalC. JungS. KimS.C. YuJ.H. Cytochrome P450 monooxygenase-mediated metabolic utilization of benzo[a]pyrene by Aspergillus species.MBio2019103e00558e1910.1128/mBio.00558‑19 31138742
    [Google Scholar]
  97. KuntzeK. ShinodaY. MoutakkiH. McInerneyM.J. VogtC. RichnowH.H. BollM. 6‐Oxocyclohex‐1‐ene‐1‐carbonyl‐coenzyme A hydrolases from obligately anaerobic bacteria: Characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes.Environ. Microbiol.20081061547155610.1111/j.1462‑2920.2008.01570.x 18312395
    [Google Scholar]
  98. SrivastavR. SharmaR. TandonS. TandonC. Role of DHH superfamily proteins in nucleic acids metabolism and stress tolerance in prokaryotes and eukaryotes.Int. J. Biol. Macromol.2019127667510.1016/j.ijbiomac.2018.12.123 30578903
    [Google Scholar]
  99. JuhaszA.L. NaiduR. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene.Int. Biodeterior. Biodegradation2000451-2578810.1016/S0964‑8305(00)00052‑4
    [Google Scholar]
  100. Ostrem LossE.M. YuJ.H. Bioremediation and microbial metabolism of benzo[a]pyrene.Mol. Microbiol.2018109443344410.1111/mmi.14062 29995976
    [Google Scholar]
  101. CapodaglioA.G. MolognoniD. DallagoE. LiberaleA. CellaR. LongoniP. PantaleoniL. Microbial fuel cells for direct electrical energy recovery from urban wastewaters.Sci. World J.20132013163473810.1155/2013/634738 24453885
    [Google Scholar]
  102. MillerA. SinghL. WangL. LiuH. Linking internal resistance with design and operation decisions in microbial electrolysis cells.Environ. Int.201912661161810.1016/j.envint.2019.02.056 30856448
    [Google Scholar]
  103. BrastadK.S. HeZ. Water softening using microbial desalination cell technology.Desalination2013309323710.1016/j.desal.2012.09.015
    [Google Scholar]
  104. WangH. RenZ.J. A comprehensive review of microbial electrochemical systems as a platform technology.Biotechnol. Adv.20133181796180710.1016/j.biotechadv.2013.10.001 24113213
    [Google Scholar]
  105. XiaoL. YoungE.B. BergesJ.A. HeZ. Integrated photo-bioelectrochemical system for contaminants removal and bioenergy production.Environ. Sci. Technol.20124620114591146610.1021/es303144n 22998430
    [Google Scholar]
  106. YuanL. YangX. LiangP. WangL. HuangZ.H. WeiJ. HuangX. Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water.Bioresour. Technol.201211073573810.1016/j.biortech.2012.01.137 22364771
    [Google Scholar]
  107. ModinO. AulentaF. Three promising applications of microbial electrochemistry for the water sector.Environ. Sci. Water Res. Technol.20173339140210.1039/C6EW00325G
    [Google Scholar]
  108. WangX. AulentaF. PuigS. Esteve-NúñezA. HeY. MuY. RabaeyK. Microbial electrochemistry for bioremediation.Environ. Sci. Ecotechnol.2020110001310.1016/j.ese.2020.100013 36160374
    [Google Scholar]
  109. TyagiM. da FonsecaM.M.R. de CarvalhoC.C.C.R. Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes.Biodegradation201122223124110.1007/s10532‑010‑9394‑4 20680666
    [Google Scholar]
  110. LeahyJ.G. ColwellR.R. Microbial degradation of hydrocarbons in the environment.Microbiol. Rev.199054330531510.1128/mr.54.3.305‑315.1990 2215423
    [Google Scholar]
  111. Omokhagbor AdamsG. Tawari FufeyinP. Eruke OkoroS. EhinomenI. Bioremediation, biostimulation and bioaugmention: A review.Int. J. Environ. Bioremediat. Biodegrad.202031283910.12691/ijebb‑3‑1‑5
    [Google Scholar]
  112. DejongheW. BoonN. SeghersD. TopE.M. VerstraeteW. Bioaugmentation of soils by increasing microbial richness: Missing links.Environ. Microbiol.200131064965710.1046/j.1462‑2920.2001.00236.x 11722545
    [Google Scholar]
  113. ShuklaK.P. SinghN.K. SharmaS. Bioremediation: Developments, current practices and perspectives.Genet. Eng. Biotechnol. J.20103120
    [Google Scholar]
  114. KiranG.S. HemaT.A. GandhimathiR. SelvinJ. ThomasT.A. Rajeetha RavjiT. NatarajaseenivasanK. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3.Colloids Surf. B Biointerfaces200973225025610.1016/j.colsurfb.2009.05.025 19570659
    [Google Scholar]
  115. CameotraS.S. SinghP. Bioremediation of oil sludge using crude biosurfactants.Int. Biodeterior. Biodegradation200862327428010.1016/j.ibiod.2007.11.009
    [Google Scholar]
  116. PornsunthorntaweeO. WongpanitP. ChavadejS. AbeM. RujiravanitR. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil.Bioresour. Technol.20089961589159510.1016/j.biortech.2007.04.020 17540558
    [Google Scholar]
  117. NikolopoulouM. KalogerakisN. Biostimulation strategies for fresh and chronically polluted marine environments with petroleum hydrocarbons.J. Chem. Technol. Biotechnol.2009846802807
    [Google Scholar]
  118. Abdel-ShafyH.I. MansourM.S. Microbial degradation of hydrocarbons in the environment: An overview. Microbial action on hydrocarbons,201935338610.1007/978‑981‑13‑1840‑5_15
    [Google Scholar]
  119. SchnoorJ.L. LichtL.A. McCUTCHEON, S.C.; Wolfe, N.L.; Carreira, L.H. Phytoremediation of organic and nutrient contaminants.Environ. Sci. Technol.1995297318A323A10.1021/es00007a747 22667744
    [Google Scholar]
  120. GiraldoJ.P. WuH. NewkirkG.M. KrussS. Nanobiotechnology approaches for engineering smart plant sensors.Nat. Nanotechnol.201914654155310.1038/s41565‑019‑0470‑6 31168083
    [Google Scholar]
  121. ZaytsevaO. NeumannG. Carbon nanomaterials: Production, impact on plant development, agricultural and environmental applications.Chem. Biol. Technol. Agric.2016311710.1186/s40538‑016‑0070‑8
    [Google Scholar]
  122. PrasadR. BhattacharyyaA. NguyenQ.D. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives.Front. Microbiol.20178101410.3389/fmicb.2017.01014 28676790
    [Google Scholar]
  123. SolankiP. BhargavaA. ChhipaH. JainN. PanwarJ. Nano-fertilizers and Their Smart Delivery System. Nanotechnologies in Food and Agriculture.ChamSpringer International Publishing201581101
    [Google Scholar]
  124. NuruzzamanM. RahmanM.M. LiuY. NaiduR. Nanoencapsulation, nano-guard for pesticides: A new window for safe application.J. Agric. Food Chem.20166471447148310.1021/acs.jafc.5b05214 26730488
    [Google Scholar]
  125. ShojaeiT.R. SallehM.A.M. TabatabaeiM. MobliH. AghbashloM. RashidS.A. TanT. Applications of nanotechnology and carbon nanoparticles in agriculture.Synthesis, Technology and Applications of Carbon Nanomaterials.Elsevier201924727710.1016/B978‑0‑12‑815757‑2.00011‑5
    [Google Scholar]
  126. LiW. ZhengY. ZhangH. LiuZ. SuW. ChenS. LiuY. ZhuangJ. LeiB. Phytotoxicity, uptake, and translocation of fluorescent carbon dots in mung bean plants.ACS Appl. Mater. Interfaces2016831199391994510.1021/acsami.6b07268 27425200
    [Google Scholar]
  127. LiY. XuX. WuY. ZhuangJ. ZhangX. ZhangH. LeiB. HuC. LiuY. A review on the effects of carbon dots in plant systems.Mater. Chem. Front.20204243744810.1039/C9QM00614A
    [Google Scholar]
  128. GenganS. Ananda MurthyH.C. SillanpääM. NhatT. Carbon dots and their application as photocatalyst in dye degradation studies- Mini review.Results Chem.2022410067410.1016/j.rechem.2022.100674
    [Google Scholar]
  129. Cruz-CruzA. Gallareta-OlivaresG. Rivas-SanchezA. González-GonzálezR.B. AhmedI. Parra-SaldívarR. IqbalH.M.N. Recent advances in carbon dots based biocatalysts for degrading organic pollutants.Curr. Pollut. Rep.20228438439410.1007/s40726‑022‑00228‑5
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461363271250113050350
Loading
/content/journals/cgc/10.2174/0122133461363271250113050350
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test