Skip to content
2000
Volume 12, Issue 4
  • ISSN: 2213-3461
  • E-ISSN: 2213-347X

Abstract

Developing sustainable biodiesel production relies on investigating local microalgal populations to detect neutral lipid accumulation high throughput screening. This study evaluates the efficacy of using various isolation strategies for maximizing microalgal strain collection from low-abundance water samples. The study resulted in the isolation of twenty-five algal strains, of which 3 oleaginous strains were identified as BB607, sp. BB601 and BG607 were selected. Isolate BB607 exhibited substantial lipid content of 456.45 ± 2.40 µg/mL, lipid productivity of 38.04 ± 0.20 µg/mL/day, biomass yield of 4.23 ± 0.06 mg/mL and maximum percentage C16-C18 fatty acid profile compared to the other two isolates. Further, the FAMEs produced from this isolate exhibited high CN (60.384), low iodine value (97.33 g I/100 g) and negative cold filter plugging point (-2.28°C). This demonstrates the potential of strain BB607 as a feedstock biodiesel production.

Loading

Article metrics loading...

/content/journals/cgc/10.2174/0122133461350777241113113727
2025-01-01
2025-10-21
Loading full text...

Full text loading...

References

  1. ArifM. LiY. El-DalatonyM.M. ZhangC. LiX. SalamaE.S. A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal.Renew. Energy20211631973198210.1016/j.renene.2020.10.066
    [Google Scholar]
  2. HuangJ. LiuT. WangK. HuangZ. WangJ. RokhumS.L. LiH. Room-temperature and carbon-negative production of biodiesel via synergy of geminal-atom and photothermal catalysis.Environ. Chem. Lett.20242241607161310.1007/s10311‑024‑01723‑5
    [Google Scholar]
  3. PandeyA. SrivastavaS. KumarS. Isolation, screening and comprehensive characterization of candidate microalgae for biofuel feedstock production and dairy effluent treatment: A sustainable approach.Bioresour. Technol.201929312199810.1016/j.biortech.2019.121998 31473377
    [Google Scholar]
  4. HuangJ. WangJ. HuangZ. LiuT. LiH. Photothermal technique-enabled ambient production of microalgae biodiesel: Mechanism and life cycle assessment.Bioresour. Technol.202336912839010.1016/j.biortech.2022.128390 36435420
    [Google Scholar]
  5. YangY. GeS. PanY. QianW. WangS. ZhangJ. ZhuangL.L. Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production.Sci. Total Environ.2023857Pt 115928110.1016/j.scitotenv.2022.159281 36216060
    [Google Scholar]
  6. MajidianP. TabatabaeiM. ZeinolabediniM. NaghshbandiM.P. ChistiY. Metabolic engineering of microorganisms for biofuel production.Renew. Sustain. Energy Rev.2018823863388510.1016/j.rser.2017.10.085
    [Google Scholar]
  7. RaheemA. PrinsenP. VuppaladadiyamA.K. ZhaoM. LuqueR. A review on sustainable microalgae based biofuel and bioenergy production: Recent developments.J. Clean. Prod.2018181425910.1016/j.jclepro.2018.01.125
    [Google Scholar]
  8. KhosraviniaS. Malekzadeh-ShafaroudiS. BagheriA. BehdadA. MoshtaghiN. Bioprospecting of ten microalgae species isolated from saline water lake for evaluation of the biodiesel production.BioEnergy Res.20231721090110310.1007/s12155‑023‑10707‑2
    [Google Scholar]
  9. El-SheekhM. AbomohraA.E.F. EladelH. BattahM. MohammedS. Screening of different species of Scenedesmus isolated from Egyptian freshwater habitats for biodiesel production.Renew. Energy201812911412010.1016/j.renene.2018.05.099
    [Google Scholar]
  10. GumbiS.T. MajekeB.M. OlaniranA.O. MutandaT. Isolation, identification and high-throughput screening of neutral lipid producing indigenous microalgae from South African aquatic habitats.Appl. Biochem. Biotechnol.2017182138239910.1007/s12010‑016‑2333‑z 27864781
    [Google Scholar]
  11. Abou-ShanabR.A.I. MatterI.A. KimS.N. OhY.K. ChoiJ. JeonB.H. Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake.Biomass Bioenergy20113573079308510.1016/j.biombioe.2011.04.021
    [Google Scholar]
  12. PriyankaP. KinsellaG.K. HenehanG.T. RyanB. Nile Red assay development for the estimation of neutral lipids in Chlorella emersonii and Pseudokirchneriella subcapitata.EuroBiotech J.20204421622210.2478/ebtj‑2020‑0025
    [Google Scholar]
  13. KholssiR. LougraimziH. Moreno-GarridoI. Effects of global environmental change on microalgal photosynthesis, growth and their distribution.Mar. Environ. Res.202318410587710.1016/j.marenvres.2023.105877 36640723
    [Google Scholar]
  14. LortouU. PanterisE. GkelisS. Uncovering new diversity of photosynthetic microorganisms from the mediterranean region.Microorganisms2022108157110.3390/microorganisms10081571 36013989
    [Google Scholar]
  15. NowickaB. Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response.Environ. Sci. Pollut. Res. Int.20222912168601691110.1007/s11356‑021‑18419‑w 35006558
    [Google Scholar]
  16. LiS. LiZ. WuM. ZhouY. TangW. ZhongH. Mercury transformations in algae, plants, and animals: The occurrence, mechanisms, and gaps.Sci. Total Environ.202491116869010.1016/j.scitotenv.2023.168690 38000748
    [Google Scholar]
  17. SinghN. BatghareA.H. ChoudhuryB.J. GoyalA. MoholkarV.S. Microalgae based biorefinery: Assessment of wild fresh water microalgal isolate for simultaneous biodiesel and β-carotene production.Bioresour. Technol. Rep.20201110044010.1016/j.biteb.2020.100440
    [Google Scholar]
  18. HarisN. MananH. JusohM. KhatoonH. KatayamaT. KasanN.A. Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species.Aquacult. Rep.20222210092510.1016/j.aqrep.2021.100925
    [Google Scholar]
  19. FattahI.M.R. NorainiM.Y. MofijurM. SilitongaA.S. BadruddinI.A. KhanT.M.Y. OngH.C. MahliaT.M.I. Lipid extraction maximization and enzymatic synthesis of biodiesel from microalgae.Appl. Sci. (Basel)20201017610310.3390/app10176103
    [Google Scholar]
  20. ZhengS. GuoJ. ChengF. GaoZ. DuL. MengC. LiS. ZhangX. Cytochrome P450s in algae: Bioactive natural product biosynthesis and light-driven bioproduction.Acta Pharm. Sin. B20221262832284410.1016/j.apsb.2022.01.013 35755277
    [Google Scholar]
  21. SureshkumarP. ThomasJ. Exploring the distinctiveness of biomass and biomolecules from limnic microalgae of unexplored waters of Noyyal River, Western Ghats, for exploitation.Environ. Sci. Pollut. Res. Int.20202718233092332210.1007/s11356‑020‑08921‑y 32337670
    [Google Scholar]
  22. SudhakarK. PremalathaM. Characterization of micro algal biomass through FTIR/TGA/CHN analysis: Application to Scenedesmus sp. Energy Sources, Part A.Recovery Util. Environ. Effects201537212330233710.1080/15567036.2013.825661
    [Google Scholar]
  23. ZhangY. LiY. ZhangX. TanT. Biodiesel production by direct transesterification of microalgal biomass with co-solvent.Bioresour. Technol.201519671271510.1016/j.biortech.2015.07.052 26232317
    [Google Scholar]
  24. TalebiA.F. MohtashamiS.K. TabatabaeiM. TohidfarM. BagheriA. ZeinalabediniM. Hadavand MirzaeiH. MirzajanzadehM. Malekzadeh ShafaroudiS. BakhtiariS. Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production.Algal Res.20132325826710.1016/j.algal.2013.04.003
    [Google Scholar]
  25. SelvarajanR. FelföldiT. TauberT. SanniyasiE. SibandaT. TekereM. Screening and evaluation of some green algal strains (Chlorophyceae) isolated from freshwater and soda lakes for biofuel production.Energies2015877502752110.3390/en8077502
    [Google Scholar]
  26. BlighE.G. DyerW.J. A rapid method of total lipid extraction and purification.Can. J. Biochem. Physiol.195937891191710.1139/o59‑099 13671378
    [Google Scholar]
  27. TongY. XiaL. LiuJ. ZhaoS. SunY. WuT. XiaZ. LiS. CaoJ. ZhangJ. Distribution and identification of Ulva aragoensis (Ulvaceae, Chlorophyta), a constituent species of green tides in the Southern Yellow Sea, based on molecular data.J. Mar. Sci. Eng.20221011176710.3390/jmse10111767
    [Google Scholar]
  28. GonçalvesA.L. PiresJ.C.M. SimõesM. Lipid production of Chlorella vulgaris and Pseudokirchneriella subcapitata.Int. J. Energy Environ. Eng.2013411410.1186/2251‑6832‑4‑14
    [Google Scholar]
  29. HammerØ. HarperD.A. Past: paleontological statistics software package for education and data analysis.Palaeontol. Electronica20014119
    [Google Scholar]
/content/journals/cgc/10.2174/0122133461350777241113113727
Loading
/content/journals/cgc/10.2174/0122133461350777241113113727
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test