Skip to content
2000
image of Experimental Approaches to Prophylaxis of MRSA Biofilm Formation on 3D Scaffolds Modified with Rough Calcium Phosphate Coating

Abstract

Introduction

Microbial biofilm formation on surgical implants significantly exacerbates implant-associated infections (IAIs) and often leads to implant failure. This study aimed to investigate the ex vivo effects of elevated temperature and antibiotics, or zinc incorporation, on methicillin-resistant Staphylococcus aureus (MRSA) biofilm growth on titanium (Ti)-based 3D plates fabricated by selective laser melting (SLM) and coated with a rough calcium phosphate (CaP) layer using the micro-arc oxidation technique.

Materials and Methods

MRSA strain 43300 broth cultures were exposed to heating at 45°C for 60 min or 56°C for 30 min, with or without vancomycin (VMN). The control culture (250 microbial cells per 1 ml of isotonic sodium chloride) was maintained at 37°C. Ti-based discs (10 mm in diameter and 1 mm in thickness) with structured surfaces were coated with a CaP layer via micro-arc oxidation. The Ti-based samples were added to MRSA broth cultures for 2 hours, then transferred to fresh serum-free medium and incubated for 48 hours at 37 °C. Bacterial biofilm optical density on the CaP coating was quantified by computer morphometry after fixation and Gram staining.

Results

A single ex vivo administration of VMN at its minimum inhibitory concentration (MIC, 2 μg/ml) was ineffective against MRSA biofilm growth. The therapeutic VMN concentration (20 μg/ml) reduced the biofilm optical density by 17%. Heating of MRSA broth cultures showed no significant bacteriostatic effect, and combining hyperthermia with VMN did not enhance antimicrobial efficacy. In contrast, Zn-doped (~0.31 at.%) CaP coatings inhibited MRSA biofilm development at 37°C. The bacteriostatic effect (5%) exceeded that of VMN at MIC (0%) but was lower than that observed for the therapeutic VMN dose (17%).

Discussion

The negatively charged CaP coating on titanium implants may promote MRSA biofilm formation through electrostatic interactions with bacterial cell surfaces. Hyperthermia at 45°C or 56°C, either alone or in combination with vancomycin, showed limited efficacy, possibly due to bacterial thermotolerance and antibiotic resistance. Incorporation of zinc into CaP coatings demonstrated a modest bacteriostatic effect, suggesting potential as an adjunct strategy alongside conventional antibiotics such as vancomycin.

Conclusion

Zn-doped rough CaP coatings on Ti-based implants show promise for use in bone tissue engineering, where there is a risk of implant-associated infection, owing to the bacteriostatic activity of zinc at low concentrations.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855408793251103042650
2026-01-09
2026-02-02
Loading full text...

Full text loading...

References

  1. Parvizi J. Gehrke T. Definition of periprosthetic joint infection. J. Arthroplasty 2014 29 7 1331 10.1016/j.arth.2014.03.009 24768547
    [Google Scholar]
  2. Kapadia B.H. Berg R.A. Daley J.A. Fritz J. Bhave A. Mont M.A. Periprosthetic joint infection. Lancet 2016 387 10016 386 394 10.1016/S0140‑6736(14)61798‑0 26135702
    [Google Scholar]
  3. Manning L. Allen B. Davis J.S. Design characteristics and recruitment rates for randomized trials of peri- prosthetic joint infection management: a systematic review. Antibiotics (Basel) 2023 12 10 1486 10.3390/antibiotics12101486 37887189
    [Google Scholar]
  4. He S. Yu B. Jiang N. Current concepts of fracture- related infection. Int. J. Clin. Pract. 2023 2023 1 12 10.1155/2023/4839701 37153693
    [Google Scholar]
  5. Lin T. Jin Q. Mo X. Experience with periprosthetic infection after limb salvage surgery for patients with osteosarcoma. J. Orthop. Surg. Res. 2021 16 1 93 10.1186/s13018‑021‑02243‑6 33509246
    [Google Scholar]
  6. Bozhkova S.A. Tikhilov R.M. Krasnova M.V. Rukina A.N. Orthopedic implant-associated infection: the main etiological agents, local resistance and antimicrobial therapy recommendations. Traumatology and Orthopedics of Russia 2013 19 4 5 15 10.21823/2311‑2905‑2013‑‑4‑5‑15
    [Google Scholar]
  7. Bozhkova S. Tikhilov R. Labutin D. Failure of the first step of two-stage revision due to polymicrobial prosthetic joint infection of the hip. J. Orthop. Traumatol. 2016 17 4 369 376 10.1007/s10195‑016‑0417‑8 27387172
    [Google Scholar]
  8. Masters E.A. Ricciardi B.F. Bentley K.L.M. Moriarty T.F. Schwarz E.M. Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat. Rev. Microbiol. 2022 20 7 385 400 10.1038/s41579‑022‑00686‑0 35169289
    [Google Scholar]
  9. Jiao J. Zhang S. Qu X. Yue B. Recent advances in research on antibacterial metals and alloys as implant materials. Front. Cell. Infect. Microbiol. 2021 11 693939 10.3389/fcimb.2021.693939 34277473
    [Google Scholar]
  10. Tikhilov R.M. Shubnyakov I.I. Kornilov N.V. Tregubov Z.A. Bo L. Bozhkova S.A. Structure of early revisions of hip arthroplasty. Traumatol Orthop Russ 2014 2(72) 5 13
    [Google Scholar]
  11. Schmidt C. Ignatius A.A. Claes L.E. Proliferation and differentiation parameters of human osteoblasts on titanium and steel surfaces. J. Biomed. Mater. Res. 2001 54 2 209 215 10.1002/1097‑4636(200102)54:2209:AID‑JBM73.0.CO;2‑7 11093180
    [Google Scholar]
  12. Geetha M. Singh A.K. Asokamani R. Gogia A.K. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog. Mater. Sci. 2009 54 3 397 425 10.1016/j.pmatsci.2008.06.004
    [Google Scholar]
  13. Zhang Z. Jia B. Yang H. Zn0.8Li0.1Sr—A biodegradable metal with high mechanical strength comparable to pure Ti for the treatment of osteoporotic bone fractures: In vitro and in vivo studies. Biomaterials 2021 275 120905 10.1016/j.biomaterials.2021.120905 34087587
    [Google Scholar]
  14. Turnbull G. Clarke J. Picard F. 3D bioactive composite scaffolds for bone tissue engineering. Bioact. Mater. 2018 3 3 278 314 10.1016/j.bioactmat.2017.10.001 29744467
    [Google Scholar]
  15. Feng Y. Zhu S. Mei D. Application of 3D printing technology in bone tissue engineering: a review. Curr. Drug Deliv. 2021 18 7 847 861 10.2174/18755704MTExsNDcy2 33191886
    [Google Scholar]
  16. Jodati H. Evis Z. Tezcaner A. Alshemary A.Z. Motameni A. 3D porous bioceramic based boron-doped hydroxyapatite/baghdadite composite scaffolds for bone tissue engineering. J. Mech. Behav. Biomed. Mater. 2023 140 105722 10.1016/j.jmbbm.2023.105722 36796253
    [Google Scholar]
  17. Karlov A.V. Khlusov I.A. Pontak V.A. Ignatov V.P. Ivin M.A. Zinatulina S.Y. Adhesion of Staphylococcus aureus to implants with different physicochemical characteristics. Bull. Exp. Biol. Med. 2002 134 3 277 280 10.1023/A:1021567804286 12512002
    [Google Scholar]
  18. Kinnari T.J. Esteban J. Martin-de-Hijas N.Z. Influence of surface porosity and pH on bacterial adherence to hydroxyapatite and biphasic calcium phosphate bioceramics. J. Med. Microbiol. 2009 58 1 132 137 10.1099/jmm.0.002758‑0 19074665
    [Google Scholar]
  19. Lebeaux D. Chauhan A. Rendueles O. Beloin C. From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2013 2 2 288 356 10.3390/pathogens2020288 25437038
    [Google Scholar]
  20. Ribeiro M. Monteiro F.J. Ferraz M.P. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2012 2 4 176 194 10.4161/biom.22905 23507884
    [Google Scholar]
  21. Malahias M.A. Gu A. Harris E.C. The role of long-term antibiotic suppression in the management of peri-prosthetic joint infections treated with debridement, antibiotics, and implant retention: a systematic review. J. Arthroplasty 2020 35 4 1154 1160 10.1016/j.arth.2019.11.026 31955984
    [Google Scholar]
  22. Pérez C. Zúñiga T. Palavecino C.E. Photodynamic therapy for treatment of Staphylococcus aureus infections. Photodiagn. Photodyn. Ther. 2021 34 102285 10.1016/j.pdpdt.2021.102285 33836278
    [Google Scholar]
  23. Parvizi J. Gehrke T. Chen A.F. Proceedings of the international con-sensus on periprosthetic joint infection. Bone Joint J 2013 95-B 11 1450 2 10.1302/0301‑620X.95B11.33135 24151261
    [Google Scholar]
  24. Palau M. Muñoz E. Larrosa N. Hyperthermia prevents in vitro and in vivo biofilm formation on endotracheal tubes. Microbiol. Spectr. 2023 11 1 e02807 e02822 10.1128/spectrum.02807‑22 36472442
    [Google Scholar]
  25. Ringe K.I. Panzica M. von Falck C. Thermoablation of bone tumors. Rofo 2016 188 539 550 10.1055/s‑0042‑100477 26981915
    [Google Scholar]
  26. Sharkeev Y. Komarova E. Sedelnikova M. Bioactive micro-arc calcium phosphate coatings on nanostructured and ultrafine-grained bioinert metals and alloys. In: Antoniac Iulian, Ed. Bioceramics and Biocomposites: From Research to Clinical Practice. Iulian A. Hoboken, NJ John Wiley Sons for The American Ceramic Society 2019 191 231 9781119049340 10.1002/9781119372097.ch8
    [Google Scholar]
  27. Prosolov K.A. Luginin N.A. Litvinova L.S. Antibacterial and biocompatible Zn and Cu containing CaP magnetron coatings for MgCa alloy functionalization. J. Mater. Res. Technol. 2023 25 2177 2203 10.1016/j.jmrt.2023.06.065
    [Google Scholar]
  28. Hirano R. Sakamoto Y. Kitazawa J. Yamamoto S. Tachibana N. Pharmacist-managed dose adjustment feedback using therapeutic drug monitoring of vancomycin was useful for patients with methicillin-resistant Staphylococcus aureus infections: a single institution experience. Infect. Drug Resist. 2016 9 243 252 10.2147/IDR.S109485 27789965
    [Google Scholar]
  29. Shakhov VP Khlusov IA Dambaev GTs Zaitsev KV Salmina AB Shakhova SS Introduction to methods of cell culture, bioengineering of organs and tissues. 2004
    [Google Scholar]
  30. Korkmaz S. Goksuluk D. Zararsiz G. MVN: An R package for assessing multivariate normality. R J. 2014 6 2 151 162 10.32614/RJ‑2014‑031
    [Google Scholar]
  31. Pohlert T. PMCMRplus: calculate pairwise multiple comparisons of mean rank sums extended. 2024 Available from:https://cran.r-project.org/web/packages/PMCMRplus/index.html
    [Google Scholar]
  32. Brunner-Munzel test. RDocumentation. Available from:https://www.rdocumentation.org/packages/brunnermunzel/ve rsions/2.0
  33. Royston P. Remark as R94: a remark on algorithm AS 181: the W-test for normality. Appl. Stat. 1995 44 4 547 551 10.2307/2986146
    [Google Scholar]
  34. Munzel U. Brunner E. Nonparametric tests in the unbalanced multivariate one‐way design. Biom. J. 2000 42 7 837 854 10.1002/1521‑4036(200011)42:7837:AID‑BIMJ8373.0.CO;2‑S
    [Google Scholar]
  35. Brunner E. Munzel U. The nonparametric Behrens- Fisher problem: asymptotic theory and a small-sample approximation. Biom. J. 2000 42 1 17 25 10.1002/(SICI)1521‑4036(200001)42:117:AID‑BIMJ173.0.CO;2‑U
    [Google Scholar]
  36. Karch J.D. Psychologists should use Brunner-Munzel’s instead of Mann-Whitney’s u test as the default nonparametric procedure. Adv. Methods Pract. Psychol. Sci. 2021 4 2 2515245921999602 10.1177/2515245921999602
    [Google Scholar]
  37. Noguchi K. Konietschke F. Marmolejo-Ramos F. Pauly M. Permutation tests are robust and powerful at 0.5% and 5% significance levels. Behav. Res. Methods 2021 53 6 2712 2724 10.3758/s13428‑021‑01595‑5 34050436
    [Google Scholar]
  38. Elamir E. On uses of Van der Waerden test: a graphical approach. arXiv 2022 10.48550/arXiv.2203.02148
    [Google Scholar]
  39. Macunluoglu A.C. Ocakoğlu G. Comparison of the performances of non-parametric k-sample test procedures as an alternative to one-way analysis of variance. Eur. Respir. J. 2023 9 4 687 696 10.18621/eurj.1037546
    [Google Scholar]
  40. Luepsen H. Comparison of nonparametric analysis of variance methods: A vote for van der Waerden. Commun. Stat. Simul. Comput. 2018 47 9 2547 2576 10.1080/03610918.2017.1353613
    [Google Scholar]
  41. Douglas C.E. Michael F.A. On distribution-free multiple comparisons in the one-way analysis of variance. Commun. Stat. Theory Methods 1991 20 1 127 139 10.1080/03610929108830487
    [Google Scholar]
  42. Miller R.G. Nonparametric techniques. In: Simultaneous Statistical Inference. New York, NY: Springer 1981 129 88.Springer Se-ries in Statistics 10.1007/978‑1‑4613‑8122‑8_4
    [Google Scholar]
  43. Sharkeev Y.P. Komarova E.G. Chebodaeva V.V. Amorphous-crystalline calcium phosphate coating promotes in vitro growth of tumor-derived Jurkat t cells activated by anti-CD2/CD3/CD28 antibodies. Materials (Basel) 2021 14 13 3693 10.3390/ma14133693 34279263
    [Google Scholar]
  44. Komarova E.G. Sharkeev Y.P. Sedelnikova M.B. Zn- or Cu- containing CaP-Based coatings formed by micro-arc oxidation on titanium and Ti-40Nb alloy: part ii- wettability and biological performance. Materials (Basel) 2020 13 19 4366 10.3390/ma13194366 33008055
    [Google Scholar]
  45. Saad A. Nikaido T. Abdou A. Matin K. Burrow M.F. Tagami J. Inhibitory effect of zinc-containing desensitizer on bacterial biofilm formation and root dentin demineralization. Dent. Mater. J. 2019 38 6 940 946 10.4012/dmj.2018‑352 31406097
    [Google Scholar]
  46. Motealleh A. Dorri P. Czieborowski M. Philipp B. Kehr N.S. Bifunctional nanomaterials for simultaneously improving cell adhesion and affecting bacterial biofilm formation on silicon-based surfaces. Biomed. Mater. 2021 16 2 025013 10.1088/1748‑605X/abd872 33401259
    [Google Scholar]
  47. Prosolov K.A. Mitrichenko D.V. Prosolov A.B. Zn- doped CaP-Based coatings on Ti–6Al–4V and Ti–6Al–7Nb alloys prepared by magnetron sputtering: controllable biodegradation, bacteriostatic, and osteogenic activities. Coatings 2021 11 7 809 10.3390/coatings11070809
    [Google Scholar]
  48. Rabin N. Zheng Y. Opoku-Temeng C. Du Y. Bonsu E. Sintim H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015 7 4 493 512 10.4155/fmc.15.6 25875875
    [Google Scholar]
  49. Arciola C.R. Campoccia D. Montanaro L. Implant infections: adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018 16 7 397 409 10.1038/s41579‑018‑0019‑y 29720707
    [Google Scholar]
  50. Gómez Casanova N. Siller Ruiz M. Muñoz Bellido J.L. Mechanisms of resistance to daptomycin in Staphylococcus aureus. Rev. Esp. Quimioter. 2017 30 6 391 396 29082727
    [Google Scholar]
  51. Barbosa J.C. Gonçalves S. Makowski M. Insights into the mode of action of the two-peptide lantibiotic lichenicidin. Colloids Surf. B Biointerfaces 2022 211 112308 10.1016/j.colsurfb.2021.112308 34973602
    [Google Scholar]
  52. Balikci E. Yilmaz B. Tahmasebifar A. Baran E.T. Kara E. Surface modification strategies for hemodialysis catheters to prevent catheter-related infections: A review. J. Biomed. Mater. Res. B Appl. Biomater. 2021 109 3 314 327 10.1002/jbm.b.34701 32864803
    [Google Scholar]
  53. Ge X. Li T. Yu M. A review: strategies to reduce infection in tantalum and its derivative applied to implants. Biomed. Tech. (Berl.) 2023 68 3 225 240 10.1515/bmt‑2022‑0211 36587948
    [Google Scholar]
  54. Barnana H.D. Tofail S.A.M. Roy K. Biodielectrics: old wine in a new bottle? Front. Bioeng. Biotechnol. 2024 12 1458668 10.3389/fbioe.2024.1458668 39420968
    [Google Scholar]
  55. Shimizu K. Masumi S. Yano H. Fukunaga T. Ikebe S. Shin S. Revascularization and new bone formation in heat-treated bone grafts. Arch. Orthop. Trauma Surg. 1999 119 1-2 57 61 10.1007/s004020050355 10076946
    [Google Scholar]
  56. Pakhmurin D. Pakhmurina V. Kashin A. Compressive strength characteristics of long tubular bones after hyperthermal ablation. Symmetry (Basel) 2022 14 2 303 10.3390/sym14020303
    [Google Scholar]
  57. Sturtevant R.A. Sharma P. Pavlovsky L. Stewart E.J. Solomon M.J. Younger J.G. Thermal augmentation of vancomycin against Staphylococcal biofilms. Shock 2015 44 2 121 127 10.1097/SHK.0000000000000369 25784524
    [Google Scholar]
  58. Richardson I.P. Sturtevant R. Heung M. Solomon M.J. Younger J.G. VanEpps J.S. Hemodialysis catheter heat transfer for biofilm prevention and treatment. ASAIO J. 2016 62 1 92 99 10.1097/MAT.0000000000000300 26501916
    [Google Scholar]
  59. Stewart E.J. Payne D.E. Ma T.M. Effect of antimicrobial and physical treatments on growth of multispecies Staphylococcal biofilms. Appl. Environ. Microbiol. 2017 83 12 e03483 e16 10.1128/AEM.03483‑16 28411222
    [Google Scholar]
  60. Lehtinen S. Blanquart F. Croucher N.J. Turner P. Lipsitch M. Fraser C. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. Proc. Natl. Acad. Sci. USA 2017 114 5 1075 1080 10.1073/pnas.1617849114 28096340
    [Google Scholar]
  61. Zhao Y. Peng X. Xu X. Chitosan based photothermal scaffold fighting against bone tumor-related complications: Recurrence, infection, and defects. Carbohydr. Polym. 2023 300 120264 10.1016/j.carbpol.2022.120264 36372515
    [Google Scholar]
  62. Bradley C.R. Fraise A.P. Heat and chemical resistance of enterococci. J. Hosp. Infect. 1996 34 3 191 196 10.1016/S0195‑6701(96)90065‑1 8923273
    [Google Scholar]
  63. Pakhmurin D. Pakhmurina V. Kashin A. Mechanical and histological characteristics of human tubular bones after hyperthermal treatment. Symmetry (Basel) 2023 15 1 156 10.3390/sym15010156
    [Google Scholar]
  64. Hal S Tong S Davis J Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. Semin Respir Crit Care Med 2015 36 1 003 16 10.1055/s‑0034‑1396906 25643267
    [Google Scholar]
  65. Rybak M.J. Lomaestro B.M. Rotschafer J.C. Therapeutic monitoring of Vancomycin in adults. Pharmacotherapy 2009 29 11 1275 1279 10.1592/phco.29.11.1275 19873687
    [Google Scholar]
  66. Mohanty S. Behera B. Sahu S. Praharaj A.K. Recent pattern of antibiotic resistance in Staphylococcus aureus clinical isolates in Eastern India and the emergence of reduced susceptibility to vancomycin. J. Lab. Physicians 2019 11 4 340 345 10.4103/JLP.JLP_39_19 31929701
    [Google Scholar]
  67. Bue M. Hanberg P. Koch J. Single‐dose bone pharmacokinetics of vancomycin in a porcine implant‐associated osteomyelitis model. J. Orthop. Res. 2018 36 4 1093 1098 10.1002/jor.23776 29058823
    [Google Scholar]
  68. Rossato A.M. Primon-Barros M. Dias C.A.G. d’Azevedo P.A. Vancomycin MIC and agr dysfunction in invasive MRSA infections in southern Brazil. Braz. J. Microbiol. 2020 51 4 1819 1823 10.1007/s42770‑020‑00384‑0 33074551
    [Google Scholar]
  69. Nikolic P. Mudgil P. The cell wall, cell membrane and virulence factors of Staphylococcus aureus and their role in antibiotiresistance. Microorganisms 2023 11 2 259 10.3390/microorganisms11020259 36838224
    [Google Scholar]
  70. Bonnici P.J. Damen M. Waterval J.C.M. Heck A.J.R. Formation and efficacy of vancomycin group glycopeptide antibiotic stereoisomers studied by capillary electrophoresis and bioaffinity mass spectrometry. Anal. Biochem. 2001 290 2 292 301 10.1006/abio.2000.4970 11237332
    [Google Scholar]
  71. Bruniera F.R. Ferreira F.M. Saviolli L.R.M. The use of vancomycin with its therapeutic and adverse effects: a review. Eur. Rev. Med. Pharmacol. Sci. 2015 19 4 694 700 25753888
    [Google Scholar]
  72. Ovchinnikova E.A. Ovchinnikova L.K. Safety spectrum of vancomycin. Qual Clin Pract 2018 2 36 48
    [Google Scholar]
  73. Vancomycin Available from:https://pubchem.ncbi.nlm.nih.gov/compound/Vancomycin
  74. Khlusov I.A. Porokhova E.D. Komarova E.G. Scaffolds as carriers of drugs and biological molecules for bone-tissue bioengineering. Cell Tissue Biol. 2022 16 5 412 433 10.1134/S1990519X22050042
    [Google Scholar]
  75. Prosolov K.A. Komarova E.G. Kazantseva E.A. UMAOH calcium phosphate coatings designed for drug delivery: vancomycin, 5-fluorouracil, interferon α-2b case. Materials (Basel) 2022 15 13 4643 10.3390/ma15134643 35806777
    [Google Scholar]
  76. Culos K.A. Cannon J.P. Grim S.A. Alternative agents to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Am. J. Ther. 2013 20 2 200 212 10.1097/MJT.0b013e31821109ec 21642833
    [Google Scholar]
  77. van Hal S.J. Fowler V.G. Is it time to replace vancomycin in the treatment of methicillin-resistant Staphylococcus aureus infections? Clin. Infect. Dis. 2013 56 12 1779 1788 10.1093/cid/cit178 23511300
    [Google Scholar]
  78. Li X. Li G. Zhang K. Pei Z. Zhao S. Li J. Cu-loaded brushite bone cements with good antibacterial activity and operability. J. Biomed. Mater. Res. B Appl. Biomater. 2021 109 6 877 889 10.1002/jbm.b.34752 33112029
    [Google Scholar]
  79. Fadeeva I.V. Goldberg M.A. Preobrazhensky I.I. Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate. J. Mater. Sci. Mater. Med. 2021 32 9 99 10.1007/s10856‑021‑06575‑x 34406523
    [Google Scholar]
  80. Yao R. Han S. Sun Y. Fabrication and characterization of biodegradable Zn scaffold by vacuum heating-press sintering for bone repair. Biomater. Adv. 2022 138 212968 10.1016/j.bioadv.2022.212968 35913245
    [Google Scholar]
  81. Mammari N. Duval R.E. Photothermal/photoacoustic therapy combined with metal- based nanomaterials for the treatment of microbial infections. Microorganisms 2023 11 8 2084 10.3390/microorganisms11082084 37630644
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855408793251103042650
Loading
/content/journals/cdth/10.2174/0115748855408793251103042650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test