Skip to content
2000
image of Accelerated Drug Discovery through In Silico Study and Multicomponent Reactions

Abstract

The current drug discovery domain increasingly relies on efficient and cost-effective synthesis methods. Conventional multi-step syntheses are often time-consuming and expensive, driving growing interest in multicomponent reactions (MCRs) as a promising alternative. MCRs enable the formation of complex, drug-like molecules in fewer steps, with higher atom economy and reduced waste. At the same time, the application of tools, whether through ligand-based or structure-based drug design (LBDD or SBDD), supports the identification of lead compounds. Therefore, the combination of MCRs and tools can significantly accelerate the drug development process.

This review aims to explore the utilization of MCRs as alternative synthetic routes toward existing drugs, the development of computational chemistry, and their potential integration for the discovery of novel drug entities. The emergence of promising new compounds synthesized through this combined approach has been demonstrated in in-vitro studies targeting various diseases. Numerous molecules have been synthesized and shown activity as potential anticancer, antiviral, and antimicrobial candidates. In the future, -aided MCR strategies could pave the way for faster, greener, and more affordable drug discovery.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855399861250908113204
2025-09-25
2025-12-14
Loading full text...

Full text loading...

/deliver/fulltext/cdth/10.2174/0115748855399861250908113204/BMS-CDTH-2025-49.html?itemId=/content/journals/cdth/10.2174/0115748855399861250908113204&mimeType=html&fmt=ahah

References

  1. Martinez M.N. Papich M.G. Drusano G.L. Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob. Agents Chemother. 2012 56 6 2795 2805 10.1128/AAC.05360‑11 22371890
    [Google Scholar]
  2. Desai N.C. Dodiya A.M. Conventional and microwave techniques for the synthesis and antimicrobial studies of novel 1-[2-(2-chloro-6-methyl(3-quinolyl))-5-(4-nitrophenyl)-(1,3,4-oxadiazolin-3-yl)]-3-(aryl)prop-2-en-1-ones. Arab. J. Chem. 2016 9 S379 S387 10.1016/j.arabjc.2011.05.004
    [Google Scholar]
  3. Atanasov A.G. Zotchev S.B. Dirsch V.M. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  4. Gimenez-Bastida J.A. Martinez Carreras L. Moya-Pérez A. Laparra Llopis J.M. Pharmacological Efficacy/Toxicity of Drugs: A Comprehensive Update About the Dynamic Interplay of Microbes. J. Pharm. Sci. 2018 107 3 778 784 10.1016/j.xphs.2017.10.031 29107046
    [Google Scholar]
  5. Knittel J.J. Zavod R.M. Drug design and relationship of functional groups to pharmacologic activity. New York Lippincott Williams and Wilkins 2008 26 53
    [Google Scholar]
  6. Bastrakov M. Starosotnikov A. Recent Progress in the Synthesis of Drugs and Bioactive Molecules Incorporating Nitro(het)arene Core. Pharmaceuticals (Basel) 2022 15 6 705 10.3390/ph15060705 35745627
    [Google Scholar]
  7. Wan L. Kong G. Liu M. Jiang M. Cheng D. Chen F. Flow chemistry in the multi-step synthesis of natural products. Green Synth Catal 2022 3 3 243 258 10.1016/j.gresc.2022.07.007
    [Google Scholar]
  8. Domokos A. Nagy B. Szilágyi B. Marosi G. Nagy Z.K. Integrated continuous pharmaceutical technologies—a review. Org. Process Res. Dev. 2021 25 4 721 739 10.1021/acs.oprd.0c00504
    [Google Scholar]
  9. Armstrong R.W. Combs A.P. Tempest P.A. Brown S.D. Keating T.A. Multiple-component condensation strategies for combinatorial library synthesis. Acc. Chem. Res. 1996 29 3 123 131 10.1021/ar9502083
    [Google Scholar]
  10. Strecker A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Ann. Chem. 1850 75 1 27 45 10.1002/jlac.18500750103
    [Google Scholar]
  11. Slobbe P. Ruijter E. Orru R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm 2012 3 10 1189 1218 10.1039/c2md20089a
    [Google Scholar]
  12. Hulme C Ayaz M Martinez-Ariza G Medda F Shaw A Recent advances in multicomponent reaction chemistry: applications in small molecule drug discovery. 2015 145 87 10.1002/9781118771723.ch6
    [Google Scholar]
  13. Passerini M. Sopra gli isonitrili (I). Composto del p-isontril-azobenzolo con acetone ed acido acetico. Gazz. Chim. Ital. 1921 51 126 129
    [Google Scholar]
  14. Ugi I. Steinbrückner C. Über ein neues Kondensations‐Prinzip. Angew. Chem. 1960 72 7-8 267 268 10.1002/ange.19600720709
    [Google Scholar]
  15. Van Leusen A.M. Wildeman J. Oldenziel O.H. Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. J. Org. Chem. 1977 42 7 1153 1159 10.1021/jo00427a012
    [Google Scholar]
  16. Groebke K. Weber L. Mehlin F. Synthesis of imidazo [1, 2-a] annulated pyridines, pyrazines and pyrimidines by a novel three-component condensation. Synlett 1998 1998 6 661 663 10.1055/s‑1998‑1721
    [Google Scholar]
  17. Blackburn C. Guan B. Fleming P. Shiosaki K. Tsai S. Parallel synthesis of 3-aminoimidazo[1,2-a]pyridines and pyrazines by a new three-component condensation. Tetrahedron Lett. 1998 39 22 3635 3638 10.1016/S0040‑4039(98)00653‑4
    [Google Scholar]
  18. Bienaymé H. Bouzid K. A new heterocyclic multicomponent reaction for the combinatorial synthesis of fused 3‐aminoimidazoles. Angew. Chem. Int. Ed. 1998 37 16 2234 2237 10.1002/(SICI)1521‑3773(19980904)37:16<2234:AID‑ANIE2234>3.0.CO;2‑R 29711433
    [Google Scholar]
  19. Boltjes A. Dömling A. The groebke‐blackburn‐bienaymé reaction. Eur. J. Org. Chem. 2019 2019 42 7007 7049 10.1002/ejoc.201901124 34012704
    [Google Scholar]
  20. Gewald K. Schinke E. Böttcher H. Heterocyclen aus CH‐aciden Nitrilen, VIII. 2‐Amino‐thiophene aus methylenaktiven Nitrilen, Carbonylverbindungen und Schwefel. Chem. Ber. 1966 99 1 94 100 10.1002/cber.19660990116
    [Google Scholar]
  21. Huang Y. Dömling A. The Gewald multicomponent reaction. Mol. Divers. 2011 15 1 3 33 10.1007/s11030‑010‑9229‑6 20191319
    [Google Scholar]
  22. Petasis N.A. Akritopoulou I. The boronic acid mannich reaction: A new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett. 1993 34 4 583 586 10.1016/S0040‑4039(00)61625‑8
    [Google Scholar]
  23. Wu P. Givskov M. Nielsen T.E. Reactivity and synthetic applications of multicomponent Petasis reactions. Chem. Rev. 2019 119 20 11245 11290 10.1021/acs.chemrev.9b00214 31454230
    [Google Scholar]
  24. Saeed S. Munawar S. Ahmad S. Recent trends in the Petasis reaction: a review of Novel Catalytic Synthetic approaches with applications of the Petasis reaction. Molecules 2023 28 24 8032 10.3390/molecules28248032 38138522
    [Google Scholar]
  25. Roney M. Mohd Aluwi M.F.F. The importance of In Silico studies in drug discovery. Intelligent Pharmacy 2024 2 4 578 579 10.1016/j.ipha.2024.01.010
    [Google Scholar]
  26. Shaker B. Ahmad S. Lee J. Jung C. Na D. In silico methods and tools for drug discovery. Comput. Biol. Med. 2021 137 104851 10.1016/j.compbiomed.2021.104851 34520990
    [Google Scholar]
  27. DiMasi J.A. Hansen R.W. Grabowski H.G. The price of innovation: new estimates of drug development costs. J. Health Econ. 2003 22 2 151 185 10.1016/S0167‑6296(02)00126‑1 12606142
    [Google Scholar]
  28. DiMasi J.A. Grabowski H.G. Hansen R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016 47 20 33 10.1016/j.jhealeco.2016.01.012 26928437
    [Google Scholar]
  29. Chang Y. Hawkins B.A. Du J.J. Groundwater P.W. Hibbs D.E. Lai F. A Guide to In silico Drug Design. Pharmaceutics 2022 15 1 49 10.3390/pharmaceutics15010049 36678678
    [Google Scholar]
  30. Dömling A. Ugi I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. 2000 39 18 3168 3210 10.1002/1521‑3773(20000915)39:18<3168:AID‑ANIE3168>3.0.CO;2‑U 11028061
    [Google Scholar]
  31. Orru R.V. de Greef M. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 2003 2003 10 1471 1499 10.1055/s‑2003‑40507
    [Google Scholar]
  32. Dömling A. Wang W. Wang K. Chemistry and biology of multicomponent reactions. Chem. Rev. 2012 112 6 3083 3135 10.1021/cr100233r 22435608
    [Google Scholar]
  33. Neto B.A.D. Rocha R.O. Rodrigues M.O. Catalytic approaches to multicomponent reactions: A critical review and perspectives on the roles of catalysis. Molecules 2021 27 1 132 10.3390/molecules27010132 35011363
    [Google Scholar]
  34. Hayashi H. Katsuyama H. Takano H. Harabuchi Y. Maeda S. Mita T. In silico reaction screening with difluorocarbene for N-difluoroalkylative dearomatization of pyridines. Nat Synth 2022 1 10 804 814 10.1038/s44160‑022‑00128‑y
    [Google Scholar]
  35. Ugi I. Steinbrückner C. Process for preparing amino-carboxylic acid amides. US Patent 3247200A 1966
    [Google Scholar]
  36. Dömling A. Novel synthesis of Praziquantel WO Patent 2009115333A1 2009
    [Google Scholar]
  37. Organization W.H. More than 500 million praziquantel tablets needed each year to treat schistosomiasis Available from:https://www.who.int/news/item/27-02-2011-who-more-than-500-million-praziquantel-tablets-needed-each-year-to-treat-schistosomiasis
    [Google Scholar]
  38. Caldwell N. Afshar R. Baragaña B. Perspective on Schistosomiasis Drug Discovery: Highlights from a Schistosomiasis Drug Discovery Workshop at Wellcome Collection, London, September 2022. ACS Infect. Dis. 2023 9 5 1046 1055 10.1021/acsinfecdis.3c00081 37083395
    [Google Scholar]
  39. Bhattarai A.K. Acharya A. Karki P.K. Use of statins as lipid lowering agent in hypercholesterolemia in a tertiary care hospital: a descriptive cross-sectional study. JNMA J. Nepal Med. Assoc. 2020 58 232 1031 1035 10.31729/jnma.5444 34506382
    [Google Scholar]
  40. Zarganes-Tzitzikas T. Neochoritis C.G. Dömling A. Atorvastatin (Lipitor) by MCR. ACS Med. Chem. Lett. 2019 10 3 389 392 10.1021/acsmedchemlett.8b00579 30891146
    [Google Scholar]
  41. Pandey P.S. Srinivasa Rao T. An efficient synthesis of N3,4-diphenyl-5-(4-fluorophenyl)-2-isopropyl-1H-3-pyrrolecarboxamide, a key intermediate for atorvastatin synthesis. Bioorg. Med. Chem. Lett. 2004 14 1 129 131 10.1016/j.bmcl.2003.10.019 14684313
    [Google Scholar]
  42. Dömling A S S Zarganes-Tzitzikas T New process for the prepara-tion of Amenamevir. WO Patent 2020038812A1 2020
    [Google Scholar]
  43. Li X. Zarganes-Tzitzikas T. Kurpiewska K. Dömling A. Amenamevir by Ugi-4CR. Green Chem. 2023 25 4 1322 1325 10.1039/D2GC04869H
    [Google Scholar]
  44. Bossert F. Vater W. 4-aryl-1, 4-dihydropyridines. US Patent 3485847A 1969
    [Google Scholar]
  45. Thomas K. Saadabadi A. Olanzapine.StatPearls. Treasure Island, FL: StatPearls Publishing 2023. Internet 2023
    [Google Scholar]
  46. Aubert D. Ferrand C. Maffrand J. Thieno [3,2-c] pyridine derivatives and their therapeutic application. US Patent 4529596A 1985
    [Google Scholar]
  47. Madivada L.R. Anumala R.R. Gilla G. Kagga M. Bandichhor R. An efficient and large scale synthesis of Clopidogrel: Antiplatelet drug. Pharma Chem 2012 4 1 479 488
    [Google Scholar]
  48. Metil D.S. Sampath A. Reddy C.V.R. Bandichhor R. Synthesis and characterization of potential related substances of the antiplatelet agent clopidogrel bisulfate. ChemistrySelect 2018 3 1 100 104 10.1002/slct.201702605
    [Google Scholar]
  49. Kalinski C. Lemoine H. Schmidt J. Multicomponent reactions as a powerful tool for generic drug synthesis. Synthesis 2008 2008 24 4007 4011 10.1055/s‑0028‑1083239
    [Google Scholar]
  50. Znabet A. Polak M.M. Janssen E. A highly efficient synthesis of telaprevir by strategic use of biocatalysis and multicomponent reactions. Chem. Commun. (Camb.) 2010 46 42 7918 7920 10.1039/c0cc02823a 20856952
    [Google Scholar]
  51. Zarganes-Tzitzikas T. Dömling A. Modern multicomponent reactions for better drug syntheses. Org. Chem. Front. 2014 1 7 834 837 10.1039/C4QO00088A 25147729
    [Google Scholar]
  52. Wei H McCammon J A Structure and dynamics in drug discovery npj Drug Discov 2024 1 1 10.1038/s44386‑024‑00001‑2
    [Google Scholar]
  53. Bakare O.S. Oluwabukola O. Julius O.O. Advances in Computational Methods for Drug Design: A Revolution in Pharmaceutical Development. Journal of Angiotherapy 2024 8 7 1 10
    [Google Scholar]
  54. Hansch C. Fujita T. p -σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964 86 8 1616 1626 10.1021/ja01062a035
    [Google Scholar]
  55. Free S.M. Wilson J.W. A Mathematical Contribution to Structure-Activity Studies. J. Med. Chem. 1964 7 4 395 399 10.1021/jm00334a001 14221113
    [Google Scholar]
  56. Rocha V. Sant’Anna C. From Origin to Current Methods: An Overview of Molecular Modeling Applied to Medicinal Chemistry in the Last 30 Years. J. Braz. Chem. Soc. 2024 35 10 1 16 10.21577/0103‑5053.20240103
    [Google Scholar]
  57. Hopfinger A.J. A general QSAR for dihydrofolate reductase inhibition by 2,4-diaminotriazines based upon molecular shape analysis. Arch. Biochem. Biophys. 1981 206 1 153 163 10.1016/0003‑9861(81)90076‑X 7212714
    [Google Scholar]
  58. Gordeeva E.V. Molchanova M.S. Zefirov N.S. General methodology and computer program for the exhaustive restoring of chemical structures by molecular connectivity indexes. Solution of the inverse problem in QSAR/QSPR. Tetrahedron Computer Methodology 1990 3 6 389 415 10.1016/0898‑5529(90)90066‑H
    [Google Scholar]
  59. Ye J. Yang X. Ma C. Ligand-Based Drug Design of Novel Antimicrobials against Staphylococcus aureus by Targeting Bacterial Transcription. Int. J. Mol. Sci. 2022 24 1 339 10.3390/ijms24010339 36613782
    [Google Scholar]
  60. Lin J.H. Accommodating protein flexibility for structure-based drug design. Curr. Top. Med. Chem. 2011 11 2 171 178 10.2174/156802611794863580 20939792
    [Google Scholar]
  61. Palczewski K. Kumasaka T. Hori T. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000 289 5480 739 745 10.1126/science.289.5480.739 10926528
    [Google Scholar]
  62. Costanzi S. Siegel J. Tikhonova I. Jacobson K. Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors. Curr. Pharm. Des. 2009 15 35 3994 4002 10.2174/138161209789824795 20028316
    [Google Scholar]
  63. Laeremans T. Sands Z.A. Claes P. Accelerating GPCR Drug Discovery With Conformation-Stabilizing VHHs. Front. Mol. Biosci. 2022 9 863099 10.3389/fmolb.2022.863099 35677880
    [Google Scholar]
  64. Zhang M. Chen T. Lu X. Lan X. Chen Z. Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery. Signal Transduct. Target. Ther. 2024 9 1 88 10.1038/s41392‑024‑01803‑6 38594257
    [Google Scholar]
  65. Batool M. Ahmad B. Choi S. A Structure-Based Drug Discovery Paradigm. Int. J. Mol. Sci. 2019 20 11 2783 10.3390/ijms20112783 31174387
    [Google Scholar]
  66. Tojo S. Kohno T. Tanaka T. Crystal Structures and Structure–Activity Relationships of Imidazothiazole Derivatives as IDO1 Inhibitors. ACS Med. Chem. Lett. 2014 5 10 1119 1123 10.1021/ml500247w 25313323
    [Google Scholar]
  67. Peng P. Chen H. Zhu Y. Structure-Based Design of 1-Heteroaryl-1,3-propanediamine Derivatives as a Novel Series of CC-Chemokine Receptor 5 Antagonists. J. Med. Chem. 2018 61 21 9621 9636 10.1021/acs.jmedchem.8b01077 30234300
    [Google Scholar]
  68. Singh P. Kumar V. Lee G. Pharmacophore-Oriented Identification of Potential Leads as CCR5 Inhibitors to Block HIV Cellular Entry. Int. J. Mol. Sci. 2022 23 24 16122 10.3390/ijms232416122 36555761
    [Google Scholar]
  69. Ajmal A. Danial M. Zulfat M. In silico Prediction of New Inhibitors for Kirsten Rat Sarcoma G12D Cancer Drug Target Using Machine Learning-Based Virtual Screening, Molecular Docking, and Molecular Dynamic Simulation Approaches. Pharmaceuticals (Basel) 2024 17 5 551 10.3390/ph17050551 38794122
    [Google Scholar]
  70. Griglio A. Torre E. Serafini M. A multicomponent approach in the discovery of indoleamine 2,3-dioxygenase 1 inhibitors: Synthesis, biological investigation and docking studies. Bioorg. Med. Chem. Lett. 2018 28 4 651 657 10.1016/j.bmcl.2018.01.032 29398544
    [Google Scholar]
  71. Graziano G. Stefanachi A. Contino M. Multicomponent Reaction-Assisted Drug Discovery: A Time- and Cost-Effective Green Approach Speeding Up Identification and Optimization of Anticancer Drugs. Int. J. Mol. Sci. 2023 24 7 6581 10.3390/ijms24076581 37047554
    [Google Scholar]
  72. Çağlar Yavuz S. Akkoç S. Türkmenoğlu B. Sarıpınar E. Synthesis of novel heterocyclic compounds containing pyrimidine nucleus using the Biginelli reaction: Antiproliferative activity and docking studies. J. Heterocycl. Chem. 2020 57 6 2615 2627 10.1002/jhet.3978
    [Google Scholar]
  73. Fallarini S. Massarotti A. Gesù A. In silico -driven multicomponent synthesis of 4,5- and 1,5-disubstituted imidazoles as indoleamine 2,3-dioxygenase inhibitors. MedChemComm 2016 7 3 409 419 10.1039/C5MD00317B
    [Google Scholar]
  74. Konstantinidou M. Magari F. Sutanto F. Rapid Discovery of Aspartyl Protease Inhibitors Using an Anchoring Approach. ChemMedChem 2020 15 8 680 684 10.1002/cmdc.202000024 32187447
    [Google Scholar]
  75. Madhav H. Abdel-Rahman S.A. Hashmi M.A. Multicomponent Petasis reaction for the identification of pyrazine based multi-target directed anti-Alzheimer’s agents: In Silico design, synthesis, and characterization. Eur. J. Med. Chem. 2023 254 115354 10.1016/j.ejmech.2023.115354 37043996
    [Google Scholar]
  76. Garcia-Castro M. Zimmermann S. Sankar M.G. Kumar K. Scaffold diversity synthesis and its application in probe and drug discovery. Angew. Chem. Int. Ed. 2016 55 27 7586 7605 10.1002/anie.201508818 27187638
    [Google Scholar]
  77. Lyu J. Irwin J.J. Shoichet B.K. Modeling the expansion of virtual screening libraries. Nat. Chem. Biol. 2023 19 6 712 718 10.1038/s41589‑022‑01234‑w 36646956
    [Google Scholar]
  78. Sadybekov A.A. Sadybekov A.V. Liu Y. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds. Nature 2022 601 7893 452 459 10.1038/s41586‑021‑04220‑9 34912117
    [Google Scholar]
  79. Richter H.G.F. Benson G.M. Blum D. Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia & diabetes. Bioorg. Med. Chem. Lett. 2011 21 1 191 194 10.1016/j.bmcl.2010.11.039 21134747
    [Google Scholar]
  80. Richter H.G.F. Benson G.M. Bleicher K.H. Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties. Bioorg. Med. Chem. Lett. 2011 21 4 1134 1140 10.1016/j.bmcl.2010.12.123 21269824
    [Google Scholar]
  81. Alshahrani S. Al-Majid A.M. Ali M. Rational Design, Synthesis, Separation, and Characterization of New Spiroxindoles Combined with Benzimidazole Scaffold as an MDM2 Inhibitor. Separations 2023 10 4 225 10.3390/separations10040225
    [Google Scholar]
  82. Sutanto F. Shaabani S. Oerlemans R. Combining High‐Throughput Synthesis and High‐Throughput Protein Crystallography for Accelerated Hit Identification. Angew. Chem. Int. Ed. 2021 60 33 18231 18239 10.1002/anie.202105584 34097796
    [Google Scholar]
  83. Du X. Sonawane V. Zhang B. Inhibitors of Aspartate Transcarbamoylase Inhibit Mycobacterium tuberculosis Growth. ChemMedChem 2023 18 17 202300279 10.1002/cmdc.202300279 37294060
    [Google Scholar]
  84. Wang C. Zhang B. Krüger A. Discovery of Small-Molecule Allosteric Inhibitors of Pf ATC as Antimalarials. J. Am. Chem. Soc. 2022 144 41 19070 19077 10.1021/jacs.2c08128 36195578
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855399861250908113204
Loading
/content/journals/cdth/10.2174/0115748855399861250908113204
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ligand-based ; antimicrobial ; driving ; candidates ; numerous ; Domain
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test