Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Atopic dermatitis is a chronic inflammatory skin condition that affects millions of people around the world. In the past decades, phytochemicals have gained attention for the treatment of atopic dermatitis due to their inflammatory, antioxidant, and immunomodulatory properties, which could be beneficial in alleviating the suffering associated with atopic dermatitis. Although various conventional treatments, such as immune modulators and biologicals, are available for the treatment of atopic dermatitis their effectiveness can be limited due to some adverse effects. The present review aimed to explore the various phytochemicals to be identified as a complementary and alternative treatment option for the management of atopic dermatitis. Phytochemicals offer the potential advantage of reducing both local and systemic side effects associated with long-term use of corticosteroids, as well as addressing the higher costs of biological drug therapies. A comprehensive literature review was conducted using databases such as PubMed, Scopus, and Web of Science to identify the pharmacologically proven phytochemicals for the management of atopic dermatitis by covering articles published from 2015 to 2023. Various phytochemicals, such as berberine, piperine, ferulic acid, baicalin, vasicine, neferine, kaempferol, α- Boswellic Acid, gallic acid, etc., werebe highlighted for their potential therapeutic effects in atopic dermatitis. In conclusion, phytochemicals present a promising, safe, complementary, and alternative treatment option for atopic dermatitis management.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855319521240919065131
2025-09-30
2026-02-15
Loading full text...

Full text loading...

References

  1. SidburyR. DavisD.M. CohenD.E. CordoroK.M. BergerT.G. BergmanJ.N. ChamlinS.L. CooperK.D. FeldmanS.R. HanifinJ.M. KrolA. MargolisD.J. PallerA.S. SchwarzenbergerK. SilvermanR.A. SimpsonE.L. TomW.L. WilliamsH.C. ElmetsC.A. BlockJ. HarrodC.G. BegolkaW.S. EichenfieldL.F. Guidelines of care for the management of atopic dermatitis.J. Am. Acad. Dermatol.201471232734910.1016/j.jaad.2014.03.03024813298
    [Google Scholar]
  2. LeungD.Y.M. BieberT. Atopic dermatitis.Lancet2003361935215116010.1016/S0140‑6736(03)12193‑912531593
    [Google Scholar]
  3. AkhtarN. VermaA. PathakK. Exploring preclinical and clinical effectiveness of nanoformulations in the treatment of atopic dermatitis: Safety aspects and patent reviews.Bull. Fac. Pharm. Cairo Univ.201755111010.1016/j.bfopcu.2016.12.003
    [Google Scholar]
  4. SoutoE.B. Dias-FerreiraJ. OliveiraJ. Sanchez-LopezE. Lopez-MachadoA. EspinaM. GarciaM.L. SoutoS.B. Martins-GomesC. SilvaA.M. Trends in atopic dermatitis—from standard pharmacotherapy to novel drug delivery systems.Int. J. Mol. Sci.20192022565910.3390/ijms2022565931726723
    [Google Scholar]
  5. NovakN. BieberT. LeungD.Y. Immune mechanisms leading to atopic dermatitis.J. Allergy Clin. Immunol.20031126Suppl.S128S13910.1016/j.jaci.2003.09.03214657843
    [Google Scholar]
  6. Schmid-GrendelmeierP. SimonD. SimonH.U. AkdisC.A. WüthrichB. Epidemiology, clinical features, and immunology of the “intrinsic” (non-IgE-mediated) type of atopic dermatitis (constitutional dermatitis).Allergy200156984184910.1034/j.1398‑9995.2001.00144.x11551248
    [Google Scholar]
  7. WanY.Y. Multi‐tasking of helper T cells.Immunology2010130216617110.1111/j.1365‑2567.2010.03289.x20557575
    [Google Scholar]
  8. GreweM. Bruijnzeel-KoomenC.A.F.M. SchöpfE. ThepenT. Langeveld-WildschutA.G. RuzickaT. KrutmannJ. A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis.Immunol. Today199819835936110.1016/S0167‑5699(98)01285‑79709503
    [Google Scholar]
  9. ArkwrightP.D. MotalaC. SubramanianH. SpergelJ. SchneiderL.C. WollenbergA. Management of difficult-to-treat atopic dermatitis.J. Allergy Clin. Immunol. Pract.20131214215110.1016/j.jaip.2012.09.00224565453
    [Google Scholar]
  10. VuurmanE. Van VeggelL. UiterwijkM. LeutnerD. O’HanlonJ.F. Seasonal allergic rhinitis and antihistamine effects on children’s learning.Eur. Neuropsychopharmacol.19922326326510.1016/0924‑977X(92)90101‑D
    [Google Scholar]
  11. RathiS.K. D’SouzaP. Rational and ethical use of topical corticosteroids based on safety and efficacy.Indian J. Dermatol.201257425125910.4103/0019‑5154.9765522837556
    [Google Scholar]
  12. CarrW.W. Topical calcineurin inhibitors for atopic dermatitis: review and treatment recommendations.Paediatr. Drugs201315430331010.1007/s40272‑013‑0013‑923549982
    [Google Scholar]
  13. ManG. HuL. EliasP.M. ManM. Therapeutic benefits of natural ingredients for atopic dermatitis.Chin. J. Integr. Med.201824430831410.1007/s11655‑017‑2769‑128861804
    [Google Scholar]
  14. BaranM.F. KeskinC. BaranA. HatipoğluA. YildiztekinM. KüçükaydinS. KurtK. HoşgörenH. SarkerM.M.R. SufianovA. BeylerliO. KhalilovR. EftekhariA. Green synthesis of silver nanoparticles from Allium cepa L. Peel extract, their antioxidant, antipathogenic, and anticholinesterase activity.Molecules2023285231010.3390/molecules2805231036903556
    [Google Scholar]
  15. GashimovaU. GuliyevaR. JavadovaK. IbishovaA. PanakhovaE. Histological examination of retinal function and the effects of curcuma longa on memory correction in experimental olfactory bulbectomy rat models.Adv. Biol. Earth Sci.202491216222
    [Google Scholar]
  16. MiryusifovaK. MalikovaG. AllahverdiyevaA. HuseynovaN. UmudluA. The saffron effects on the dynamics of experimental epilepsy.Adv. Biol. Earth Sci.202491196202
    [Google Scholar]
  17. BaranA. BaranM.F. KeskinC. KandemirS.I. ValiyevaM. MehraliyevaS. KhalilovR. EftekhariA. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (Cynara scolymus L.) and evaluation of their cytotoxic and antibacterial activities.J. Nanomater.20212021111010.1155/2021/2270472
    [Google Scholar]
  18. ChauhanS. GulatiN. NagaichU. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery.Int. J. Polym. Mater.201968526627710.1080/00914037.2018.1443932
    [Google Scholar]
  19. PalmerC.N.A. IrvineA.D. Terron-KwiatkowskiA. ZhaoY. LiaoH. LeeS.P. GoudieD.R. SandilandsA. CampbellL.E. SmithF.J.D. O’ReganG.M. WatsonR.M. CecilJ.E. BaleS.J. ComptonJ.G. DiGiovannaJ.J. FleckmanP. Lewis-JonesS. ArseculeratneG. SergeantA. MunroC.S. El HouateB. McElreaveyK. HalkjaerL.B. BisgaardH. MukhopadhyayS. McLeanW.H.I. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis.Nat. Genet.200638444144610.1038/ng176716550169
    [Google Scholar]
  20. SmithF.J.D. IrvineA.D. Terron-KwiatkowskiA. SandilandsA. CampbellL.E. ZhaoY. LiaoH. EvansA.T. GoudieD.R. Lewis-JonesS. ArseculeratneG. MunroC.S. SergeantA. O’ReganG. BaleS.J. ComptonJ.G. DiGiovannaJ.J. PreslandR.B. FleckmanP. McLeanW.H.I. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris.Nat. Genet.200638333734210.1038/ng174316444271
    [Google Scholar]
  21. IrvineA.D. McLeanW.H.I. LeungD.Y.M. Filaggrin mutations associated with skin and allergic diseases.N. Engl. J. Med.2011365141315132710.1056/NEJMra101104021991953
    [Google Scholar]
  22. ImokawaG. Ceramides as natural moisturizing factors.Skin moistur.200226267
    [Google Scholar]
  23. SuzukiY. NomuraJ. KoyamaJ. HoriiI. The role of proteases in stratum corneum: involvement in stratum corneum desquamation.Arch. Dermatol. Res.1994286524925310.1007/BF003875967520224
    [Google Scholar]
  24. ChavanasS. BodemerC. RochatA. Hamel-TeillacD. AliM. IrvineA.D. BonaféJ.L. WilkinsonJ. TaïebA. BarrandonY. HarperJ.I. de ProstY. HovnanianA. Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome.Nat. Genet.200025214114210.1038/7597710835624
    [Google Scholar]
  25. MoffattM.F. SPINK5 : A gene for atopic dermatitis and asthma.Clin. Exp. Allergy200434332532710.1111/j.1365‑2222.2004.01915.x15005722
    [Google Scholar]
  26. CorkM.J. RobinsonD.A. VasilopoulosY. FergusonA. MoustafaM. MacGowanA. DuffG.W. WardS.J. Tazi-AhniniR. New perspectives on epidermal barrier dysfunction in atopic dermatitis: Gene–environment interactions.J. Allergy Clin. Immunol.2006118132110.1016/j.jaci.2006.04.04216815133
    [Google Scholar]
  27. EgawaG. WeningerW. Pathogenesis of atopic dermatitis: A short review.Cogent Biol.201511110345910.1080/23312025.2015.1103459
    [Google Scholar]
  28. KumarP. SharmaD.K. AshawatM.S. Pathophysiology and management of atopic dermatitis: a laconic review.Curr. Drug Ther.202015432133610.2174/1574885514666190828152316
    [Google Scholar]
  29. SilverbergJ.I. HanifinJ. SimpsonE.L. Climatic factors are associated with childhood eczema prevalence in the United States.J. Invest. Dermatol.201313371752175910.1038/jid.2013.1923334343
    [Google Scholar]
  30. BakerB.S. The role of microorganisms in atopic dermatitis.Clin. Exp. Immunol.200614411910.1111/j.1365‑2249.2005.02980.x16542358
    [Google Scholar]
  31. KobayashiT. GlatzM. HoriuchiK. KawasakiH. AkiyamaH. KaplanD.H. KongH.H. AmagaiM. NagaoK. Dysbiosis and Staphylococcus aureus colonization drives inflammation in atopic dermatitis.Immunity201542475676610.1016/j.immuni.2015.03.01425902485
    [Google Scholar]
  32. CorkM.J. DanbyS. VasilopoulosY. MoustafaM. MacGowanA. VargheseJ. DuffG.W. Tazi-AhniniR. WardS.J. Epidermal barrier dysfunction in atopic dermatitis.J. Invest. Dermatol.200812984750
    [Google Scholar]
  33. WeidingerS. NovakN. Atopic dermatitis.Lancet2016387100231109112210.1016/S0140‑6736(15)00149‑X26377142
    [Google Scholar]
  34. EgawaG. KabashimaK. Multifactorial skin barrier deficiency and atopic dermatitis: Essential topics to prevent the atopic march.J. Allergy Clin. Immunol.20161382350358.e110.1016/j.jaci.2016.06.00227497277
    [Google Scholar]
  35. KogaC. KabashimaK. ShiraishiN. KobayashiM. TokuraY. Possible pathogenic role of Th17 cells for atopic dermatitis.J. Invest. Dermatol.2008128112625263010.1038/jid.2008.11118432274
    [Google Scholar]
  36. ZhuF. DuB. XuB. Anti-inflammatory effects of phytochemicals from fruits, vegetables, and food legumes: A review.Crit. Rev. Food Sci. Nutr.20185881260127010.1080/10408398.2016.125139028605204
    [Google Scholar]
  37. IslamM.A. AlamF. SolaymanM. KhalilM.I. KamalM.A. GanS.H. Dietary phytochemicals: Natural swords combating inflammation and oxidation-mediated degenerative diseases.Oxid Med Cell Longev.20162016513743110.1155/2016/5137431
    [Google Scholar]
  38. SharmaS. NauraA.S. Potential of phytochemicals as immune-regulatory compounds in atopic diseases: A review.Biochem. Pharmacol.202017311379010.1016/j.bcp.2019.11379031911090
    [Google Scholar]
  39. WuS. PangY. HeY. ZhangX. PengL. GuoJ. ZengJ. A comprehensive review of natural products against atopic dermatitis: Flavonoids, alkaloids, terpenes, glycosides and other compounds.Biomed. Pharmacother.202114011174110.1016/j.biopha.2021.11174134087696
    [Google Scholar]
  40. AndohT. YoshihisaY. RehmanM.U. TabuchiY. ShimizuT. Berberine induces anti-atopic dermatitis effects through the downregulation of cutaneous EIF3F and MALT1 in NC/Nga mice with atopy-like dermatitis.Biochem. Pharmacol.202118511443910.1016/j.bcp.2021.11443933539814
    [Google Scholar]
  41. ZhouZ. ShiT. HouJ. LiM. Ferulic acid alleviates atopic dermatitis-like symptoms in mice via its potent anti-inflammatory effect.Immunopharmacol. Immunotoxicol.202042215616410.1080/08923973.2020.173301232122212
    [Google Scholar]
  42. JeongH.W. HsuK.C. LeeJ.W. HamM. HuhJ.Y. ShinH.J. KimW.S. KimJ.B. Berberine suppresses proinflammatory responses through AMPK activation in macrophages.Am. J. Physiol. Endocrinol. Metab.20092964E955E96410.1152/ajpendo.90599.200819208854
    [Google Scholar]
  43. KuoC.L. ChiC.W. LiuT.Y. The anti-inflammatory potential of berberine in vitro and in vivo.Cancer Lett.2004203212713710.1016/j.canlet.2003.09.00214732220
    [Google Scholar]
  44. ZhangB.J. XuD. GuoY. PingJ. ChenL. WangH. Protection by and anti-oxidant mechanism of berberine against rat liver fibrosis induced by multiple hepatotoxic factors.Clin. Exp. Pharmacol. Physiol.200835330330910.1111/j.1440‑1681.2007.04819.x17973934
    [Google Scholar]
  45. LiW. LiuF. WangJ. LongM. WangZ. MicroRNA-21-mediated inhibition of mast cell degranulation involved in the protective effect of berberine on 2, 4-dinitrofluorobenzene-induced allergic contact dermatitis in rats via p38 pathway.Inflammation201841268969910.1007/s10753‑017‑0723‑129282578
    [Google Scholar]
  46. KimS. KimY. KimJ.E. ChoK.H. ChungJ.H. Berberine inhibits TPA-induced MMP-9 and IL-6 expression in normal human keratinocytes.Phytomedicine200815534034710.1016/j.phymed.2007.09.01117951041
    [Google Scholar]
  47. TsangM. JiaoD. ChanB. HonK.L. LeungP. LauC. WongE. ChengL. ChanC. LamC. WongC. Anti-inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis-like skin inflammation.Molecules201621451910.3390/molecules2104051927104513
    [Google Scholar]
  48. GorganiL. MohammadiM. NajafpourG.D. NikzadM. Piperine—the bioactive compound of black pepper: from isolation to medicinal formulations.Compr. Rev. Food Sci. Food Saf.201716112414010.1111/1541‑4337.1224633371546
    [Google Scholar]
  49. ZaraiZ. BoujelbeneE. Ben SalemN. GargouriY. SayariA. Antioxidant and antimicrobial activities of various solvent extracts, piperine and piperic acid from Piper nigrum.Lebensm. Wiss. Technol.201350263464110.1016/j.lwt.2012.07.036
    [Google Scholar]
  50. LeeS.A. HongS.S. HanX.H. HwangJ.S. OhG.J. LeeK.S. LeeM.K. HwangB.Y. RoJ.S. Piperine from the fruits of Piper longum with inhibitory effect on monoamine oxidase and antidepressant-like activity.Chem. Pharm. Bull. (Tokyo)200553783283510.1248/cpb.53.83215997146
    [Google Scholar]
  51. GhoshalS. PrasadB.N.K. LakshmiV. Antiamoebic activity of Piper longum fruits against Entamoeba histolytica in vitro and in vivo.J. Ethnopharmacol.199650316717010.1016/0378‑8741(96)01382‑78691851
    [Google Scholar]
  52. MehmoodM.H. GilaniA.H. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders.J. Med. Food20101351086109610.1089/jmf.2010.106520828313
    [Google Scholar]
  53. AswarU. ShintreS. ChepurwarS. AswarM. Antiallergic effect of piperine on ovalbumin-induced allergic rhinitis in mice.Pharm. Biol.20155391358136610.3109/13880209.2014.98229925868617
    [Google Scholar]
  54. ChoiD.W. JungS.Y. ShonD.H. ShinH.S. Piperine ameliorates trimellitic anhydride-induced atopic dermatitis-like symptoms by suppressing Th2-mediated immune responses via inhibition of STAT6 phosphorylation.Molecules2020259218610.3390/molecules2509218632392825
    [Google Scholar]
  55. Marthandam AsokanS. MariappanR. MuthusamyS. VelmuruganB.K. Pharmacological benefits of neferine - A comprehensive review.Life Sci.2018199607010.1016/j.lfs.2018.02.03229499283
    [Google Scholar]
  56. KadiogluO. LawB.Y.K. MokS.W.F. XuS.W. EfferthT. WongV.K.W. Mode of action analyses of neferine, a bisbenzylisoquinoline alkaloid of lotus (Nelumbo nucifera) against multidrug-resistant tumor cells.Front. Pharmacol.2017823810.3389/fphar.2017.0023828529482
    [Google Scholar]
  57. NiuC.H. WangY. LiuJ.D. WangJ.L. XiaoJ.H. Protective effects of neferine on amiodarone-induced pulmonary fibrosis in mice.Eur. J. Pharmacol.20137141-311211910.1016/j.ejphar.2013.06.00423792144
    [Google Scholar]
  58. ZhaoL. WangX. ChangQ. XuJ. HuangY. GuoQ. ZhangS. WangW. ChenX. WangJ. Neferine, a bisbenzylisoquinline alkaloid attenuates bleomycin-induced pulmonary fibrosis.Eur. J. Pharmacol.20106271-330431210.1016/j.ejphar.2009.11.00719909737
    [Google Scholar]
  59. YangC.C. HungY.L. KoW.C. TsaiY.J. ChangJ.F. LiangC.W. ChangD.C. HungC.F. Effect of neferine on DNCB-induced atopic dermatitis in HaCaT cells and BALB/c mice.Int. J. Mol. Sci.20212215823710.3390/ijms2215823734361003
    [Google Scholar]
  60. XuT. KuangT. DuH. LiQ. FengT. ZhangY. FanG. Magnoflorine: A review of its pharmacology, pharmacokinetics and toxicity.Pharmacol. Res.202015210463210.1016/j.phrs.2020.10463231911246
    [Google Scholar]
  61. SunD. HanY. WangW. WangZ. MaX. HouY. BaiG. Screening and identification of Caulis Sinomenii bioactive ingredients with dual‐target NF‐ κ B inhibition and β 2‐ AR agonizing activities.Biomed. Chromatogr.201630111843185310.1002/bmc.376127187693
    [Google Scholar]
  62. GuoS. JiangK. WuH. YangC. YangY. YangJ. ZhaoG. DengG. Magnoflorine ameliorates lipopolysaccharide-induced acute lung injury via suppressing NF-κB and MAPK activation.Front. Pharmacol.2018998210.3389/fphar.2018.0098230214410
    [Google Scholar]
  63. WuS. YuD. LiuW. ZhangJ. LiuX. WangJ. YuM. LiZ. ChenQ. LiX. YeX. Magnoflorine from Coptis chinese has the potential to treat DNCB-induced Atopic dermatits by inhibiting apoptosis of keratinocyte.Bioorg. Med. Chem.202028211509310.1016/j.bmc.2019.11509331859028
    [Google Scholar]
  64. DuraipandiyanV. Al-DhabiN.A. BalachandranC. IgnacimuthuS. SankarC. BalakrishnaK. Antimicrobial, antioxidant, and cytotoxic properties of vasicine acetate synthesized from vasicine isolated from Adhatoda vasica L.Biomed. Res. Int.2015201572730410.1155/2015/727304
    [Google Scholar]
  65. LiuW. WangY. HeD. LiS. ZhuY. JiangB. ChengX. WangZ. WangC. Antitussive, expectorant, and bronchodilating effects of quinazoline alkaloids (±)-vasicine, deoxyvasicine, and (±)-vasicinone from aerial parts of Peganum harmala L.Phytomedicine201522121088109510.1016/j.phymed.2015.08.00526547531
    [Google Scholar]
  66. AhmadS. GargM. SanjraniM. SinghM. AtharT. A phyto-pharmacological overview on Adhatoda zeylanica medic. Syn. A. vasica (Linn.) Nees.Nat. Product Radiance200985549554
    [Google Scholar]
  67. GaoH. HuangY.N. GaoB. LiP. InagakiC. KawabataJ. Inhibitory effect on α-glucosidase by Adhatoda vasica Nees.Food Chem.2008108396597210.1016/j.foodchem.2007.12.00226065759
    [Google Scholar]
  68. ZhangY. DuW. ZhuD. LiM. QuL. RaoG. LinY. TongX. SunY. HuangF. Vasicine alleviates 2,4-dinitrochlorobenzene-induced atopic dermatitis and passive cutaneous anaphylaxis in BALB/c mice.Clin. Immunol.202224410910210.1016/j.clim.2022.10910236049600
    [Google Scholar]
  69. YinJ. LiangY. WangD. YanZ. YinH. WuD. SuQ. Naringenin induces laxative effects by upregulating the expression levels of c-Kit and SCF, as well as those of aquaporin 3 in mice with loperamide-induced constipation.Int. J. Mol. Med.201841264965829207043
    [Google Scholar]
  70. KarimN. JiaZ. ZhengX. CuiS. ChenW. A recent review of citrus flavanone naringenin on metabolic diseases and its potential sources for high yield-production.Trends Food Sci. Technol.201879355410.1016/j.tifs.2018.06.012
    [Google Scholar]
  71. KeJ.Y. BanhT. HsiaoY.H. ColeR.M. StrakaS.R. YeeL.D. BeluryM.A. Citrus flavonoid naringenin reduces mammary tumor cell viability, adipose mass, and adipose inflammation in obese ovariectomized mice.Mol. Nutr. Food Res.2017619160093410.1002/mnfr.20160093428370954
    [Google Scholar]
  72. Pinho-RibeiroF.A. ZarpelonA.C. FattoriV. ManchopeM.F. MizokamiS.S. CasagrandeR. VerriW.A.Jr Naringenin reduces inflammatory pain in mice.Neuropharmacology201610550851910.1016/j.neuropharm.2016.02.01926907804
    [Google Scholar]
  73. MoonP.D. ChoiI.H. KimH.M. Naringenin suppresses the production of thymic stromal lymphopoietin through the blockade of RIP2 and caspase-1 signal cascade in mast cells.Eur. J. Pharmacol.20116711-312813210.1016/j.ejphar.2011.09.16321963452
    [Google Scholar]
  74. KimT.H. KimG.D. AhnH.J. ChoJ.J. ParkY.S. ParkC.S. The inhibitory effect of naringenin on atopic dermatitis induced by DNFB in NC/Nga mice.Life Sci.2013931551652410.1016/j.lfs.2013.07.02723933131
    [Google Scholar]
  75. TianL. WangM. WangY. LiW. YangY. Naringenin ameliorates atopic dermatitis by inhibiting inflammation and enhancing immunity through the JAK2/STAT3 pathway.Genes Genomics20231837837514
    [Google Scholar]
  76. LeeH.S. KimE.N. JeongG.S. Oral administration of liquiritigenin confers protection from atopic dermatitis through the inhibition of T cell activation.Biomolecules202010578610.3390/biom1005078632438694
    [Google Scholar]
  77. MengF.C. LinJ.K. Liquiritigenin inhibits colorectal cancer proliferation, invasion, and epithelial-to-mesenchymal transition by decreasing expression of runt-related transcription factor 2.Oncol. Res.201927213914610.3727/096504018X1518574791170129471888
    [Google Scholar]
  78. ShiC. WuH. XuK. CaiT. QinK. WuL. CaiB. Liquiritigenin-loaded submicron emulsion protects against doxorubicin-induced cardiotoxicity via antioxidant, anti-inflammatory, and anti-apoptotic activity.Int. J. Nanomedicine2020151101111510.2147/IJN.S23583232110010
    [Google Scholar]
  79. LeeJ.Y. LeeJ.H. ParkJ.H. KimS.Y. ChoiJ.Y. LeeS.H. KimY.S. KangS.S. JangE.C. HanY. Liquiritigenin, a licorice flavonoid, helps mice resist disseminated candidiasis due to Candida albicans by Th1 immune response, whereas liquiritin, its glycoside form, does not.Int. Immunopharmacol.20099563263810.1016/j.intimp.2009.02.00719264152
    [Google Scholar]
  80. (a) Lee HS, Kim EN, Jeong GS. Oral administration of liquiritigenin confers protection from atopic dermatitis through the inhibition of T cell activation. Biomolecules 2020; 10(5): 786. http://dx.doi.org/10.1016/j.phyplu.2021.100179 (b) Garg M, Chaudhary SK, Goyal A, et al. Comprehensive review on therapeutic and phytochemical exploration of diosmetin: A promising moiety. Phytomed Plus 2022; 2(1): 100179. http://dx.doi.org/10.1016/j.phyplu.2021.100179
  81. LeeD. ParkJ. ChoiJ. JangH. SeolJ. Anti-inflammatory effects of natural flavonoid diosmetin in IL-4 and LPS-induced macrophage activation and atopic dermatitis model.Int. Immunopharmacol.202089Pt A10704610.1016/j.intimp.2020.10704633045572
    [Google Scholar]
  82. ParkS. BongS.K. LeeJ.W. ParkN.J. ChoiY. KimS.M. YangM.H. KimY.K. KimS.N. Diosmetin and its glycoside, diosmin, improve atopic dermatitis-like lesions in 2, 4-dinitrochlorobenzene-induced murine models.Biomol. Ther. (Seoul)202028654254810.4062/biomolther.2020.13532938818
    [Google Scholar]
  83. LeeW. KuS.K. BaeJ.S. Anti-inflammatory effects of Baicalin, Baicalein, and Wogonin in vitro and in vivo.Inflammation201538111012510.1007/s10753‑014‑0013‑025249339
    [Google Scholar]
  84. TsaiC. LinM. WangJ. LiaoJ. HuangW. The antipyretic effects of baicalin in lipopolysaccharide-evoked fever in rabbits.Neuropharmacology200651470971710.1016/j.neuropharm.2006.05.01016844151
    [Google Scholar]
  85. ZhuJ. WangJ. ShengY. ZouY. BoL. WangF. LouJ. FanX. BaoR. WuY. ChenF. DengX. LiJ. Baicalin improves survival in a murine model of polymicrobial sepsis via suppressing inflammatory response and lymphocyte apoptosis.PLoS One201275e3552310.1371/journal.pone.003552322590504
    [Google Scholar]
  86. YanX. YanJ. HuangK. PanT. XuZ. LuH. Protective effect of baicalin on the small intestine in rats with food allergy.Life Sci.201719111111410.1016/j.lfs.2017.09.03628962865
    [Google Scholar]
  87. WangL. XianY.F. LooS.K.F. IpS.P. YangW. ChanW.Y. LinZ.X. WuJ.C.Y. Baicalin ameliorates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice through modulating skin barrier function, gut microbiota and JAK/STAT pathway.Bioorg. Chem.202211910553810.1016/j.bioorg.2021.10553834929516
    [Google Scholar]
  88. YangE.J. KimG.S. JunM. SongK.S. Kaempferol attenuates the glutamate-induced oxidative stress in mouse-derived hippocampal neuronal HT22 cells.Food Funct.2014571395140210.1039/c4fo00068d24770605
    [Google Scholar]
  89. CrespoI. García-MediavillaM.V. GutiérrezB. Sánchez-CamposS. TuñónM.J. González-GallegoJ. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells.Br. J. Nutr.2008100596897610.1017/S000711450896608318394220
    [Google Scholar]
  90. NasanbatB. UchiyamaA. AmaliaS.N. InoueY. YokoyamaY. OginoS. ToriiR. HosoiM. MotegiS. Kaempferol therapy improved MC903 induced-atopic dermatitis in a mouse by suppressing TSLP, oxidative stress, and type 2 inflammation.J. Dermatol. Sci.202311139310010.1016/j.jdermsci.2023.06.00837393173
    [Google Scholar]
  91. GhoshS. ChowdhuryS. SarkarP. SilP.C. Ameliorative role of ferulic acid against diabetes associated oxidative stress induced spleen damage.Food Chem. Toxicol.201811827228610.1016/j.fct.2018.05.02929758315
    [Google Scholar]
  92. ShuklaD. NandiN.K. SinghB. SinghA. KumarB. NarangR.K. SinghC. Ferulic acid-loaded drug delivery systems for biomedical applications.J. Drug Deliv. Sci. Technol.20227510362110.1016/j.jddst.2022.103621
    [Google Scholar]
  93. LampiasiN. MontanaG. The molecular events behind ferulic acid mediated modulation of IL-6 expression in LPS-activated Raw 264.7 cells.Immunobiology2016221348649310.1016/j.imbio.2015.11.00126612455
    [Google Scholar]
  94. WangH.M. LeeY.C. ChenC.Y. ChangJ.J. HungH.C. TsaiP.C. Ferulic acid alleviates inflammatory manifestations in atopic dermatitis through modulation of the TRPV1/HMGB1 signaling pathway.2023
    [Google Scholar]
  95. HuG. ZhouX. Gallic acid ameliorates atopic dermatitis-like skin inflammation through immune regulation in a mouse model.Clin. Cosmet. Investig. Dermatol.2021141675168310.2147/CCID.S32782534815684
    [Google Scholar]
  96. LongR. LiT. TongC. WuL. ShiS. Molecularly imprinted polymers coated CdTe quantum dots with controllable particle size for fluorescent determination of p-coumaric acid.Talanta201919657958410.1016/j.talanta.2019.01.00730683408
    [Google Scholar]
  97. MoonP.D. HanN.R. LeeJ.S. KimH.M. JeongH.J. p-coumaric acid, an active ingredient of Panax ginseng, ameliolates atopic dermatitis-like skin lesions through inhibition of thymic stromal lymphopoietin in mice.J. Ginseng Res.202145117618210.1016/j.jgr.2020.06.00433437169
    [Google Scholar]
  98. IramF. KhanS.A. HusainA. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review.Asian Pac. J. Trop. Biomed.20177651352310.1016/j.apjtb.2017.05.001
    [Google Scholar]
  99. TsaiY.C. ChangH.H. ChouS.C. ChuT.W. HsuY.J. HsiaoC.Y. LoY.H. WuN.L. ChangD.C. HungC.F. Evaluation of the anti-atopic dermatitis effects of α-boswellic acid on Tnf-α/Ifn-γ-Stimulated HaCat Cells and DNCB-Induced BALB/c Mice.Int. J. Mol. Sci.20222317986310.3390/ijms2317986336077254
    [Google Scholar]
  100. LeeK.M. ShinJ.M. ChunJ. SongK. NhoC.W. KimY.S. Igalan induces detoxifying enzymes mediated by the Nrf2 pathway in HepG2 cells.J. Biochem. Mol. Toxicol.2019335e2229710.1002/jbt.2229730672058
    [Google Scholar]
  101. DaoT.T.P. SongK. KimJ.Y. KimY.S. Igalan from Inula helenium (L.) suppresses the atopic dermatitis-like response in stimulated HaCaT keratinocytes via JAK/STAT3 signaling.Inflamm. Res.202069330931910.1007/s00011‑020‑01322‑432002586
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855319521240919065131
Loading
/content/journals/cdth/10.2174/0115748855319521240919065131
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test