Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

A growing number of research investigations have shown the multiple health benefits of flavonoids derived from plants, leading to interest in the field. Many recent studies have concentrated on flavonoids effects on human health. Flavonoids are effective against a wide spectrum of bacteria, viruses, and other pathogens. Numerous flavonoids have been demonstrated to possess antioxidative, free radical scavenging, hepatoprotective, antiinflammatory, anticancer, and coronary heart disease preventive properties. Some of novel flavonoids having therapeutic potential as new medication have been identified which include hesperetin-5′-O-β-rhamnoglucoside, Resveratrol, Astragalin (AST) Desmodinosides A-E: New Flavonoid C-glycosides, Apigenin, Luteolin, and Baicalein, rutin, hyperoside etc. Some recent developments including clinical trials of a few of the flavonoids discussed in the review provide a novel library of pharmacologically potential molecules which provides a paradigm for the treatment of several ailments such as SARS-CoV-2, Alzheimer's disease, diabetes, angina pectoris, Hepatitis C virus and Sickle cell disease (SCD) etc. The present review aims at updating recent flavonoid advancements for various pharmacological actions, from conventional therapeutic implications to upcoming clinical trials. We encourage researchers to focus on flavonoids for a variety of medicinal applications since the industrial acceptance of these compounds will determine the future growth of this field.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855315504240917112850
2024-09-27
2026-01-21
Loading full text...

Full text loading...

References

  1. BurakM. ImenY. Flavonoids and their antioxidant properties.Turk. Klin. Tip Bilim. Derg.199919296304
    [Google Scholar]
  2. Castañeda-OvandoA. Pacheco-HernándezM.L. Páez-HernándezM.E. RodríguezJ.A. Galán-VidalC.A. Chemical studies of anthocyanins: A review.Food Chem.2009113485987110.1016/j.foodchem.2008.09.001
    [Google Scholar]
  3. BrunetonJ. Pharmacognosy, Phytochemistry and Medicinal Plants.ParisLavoisier Publishing1995
    [Google Scholar]
  4. HollmanP.C. KatanM.B. Dietary flavonoids: Intake, health effects and bioavailability.Food Chem. Toxicol.1999379-1093794210.1016/S0278‑6915(99)00079‑4
    [Google Scholar]
  5. CushnieT.P.T. LambA.J. Antimicrobial activity of flavonoids.Int. J. Antimicrob. Agents200526534335610.1016/j.ijantimicag.2005.09.00216323269
    [Google Scholar]
  6. MurrayM. Quercetin: Nature’s antihistamine.In: Better Nutrition.Active Interest Media, Inc.199961
    [Google Scholar]
  7. KoesR. VerweijW. QuattrocchioF. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways.Trends Plant Sci.200510523624210.1016/j.tplants.2005.03.00215882656
    [Google Scholar]
  8. YaoL.H. JiangY-M. ShiJ. Flavonoids in food and their health benefits.Plant Foods Hum. Nutr.200459311312210.1007/s11130‑004‑0049‑715678717
    [Google Scholar]
  9. ArtsI.C.W. van de PutteB. HollmanP.C.H. Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods.J. Agric. Food Chem.20004851746175110.1021/jf000025h10820089
    [Google Scholar]
  10. PourmoradF. HosseinimehrS. ShahabimajdN. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants.Afr. J. Biotechnol.200651111421145
    [Google Scholar]
  11. FuhrmanB. BuchS. VayaJ. Licorice extract and its major polyphenol glabridin protect low-density lipoprotein against lipid peroxidation: In vitro and ex vivo studies in humans and in atherosclerotic apolipoprotein E-deficient mice.Am. J. Clin. Nutr.199766226727510.1093/ajcn/66.2.2679250104
    [Google Scholar]
  12. LiJ.X. XueB. ChaiQ. LiuZ.X. ZhaoA.P. ChenL.B. Antihypertensive effect of total flavonoid fraction of Astragalus complanatus in hypertensive rats.Chin. J. Physiol.200548210110616201455
    [Google Scholar]
  13. KhanM.T.H. OrhanI. ŞenolF.S. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies.Chem. Biol. Interact.2009181338338910.1016/j.cbi.2009.06.02419596285
    [Google Scholar]
  14. DecroixL. SoaresD.D. MeeusenR. HeymanE. TonoliC. Cocoa flavanol supplementation and exercise: A systematic review.Sports Med.201848486789210.1007/s40279‑017‑0849‑129299877
    [Google Scholar]
  15. HuangC.S. LiiC.K. LinA.H. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes.Arch. Toxicol.201387116717810.1007/s00204‑012‑0913‑422864849
    [Google Scholar]
  16. TsujiP.A. WalleT. Cytotoxic effects of the dietary flavones chrysin and apigenin in a normal trout liver cell line.Chem. Biol. Interact.20081711374410.1016/j.cbi.2007.08.00717884029
    [Google Scholar]
  17. HäkkinenS.H. KärenlampiS.O. HeinonenI.M. MykkänenH.M. TörrönenA.R. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries.J. Agric. Food Chem.19994762274227910.1021/jf981106510794622
    [Google Scholar]
  18. SanchezJ. OchoaF.F.A. PortilloO. MonteroJ.M. Martinez-GalánJ. Systematic review of antibacterial activity of naringin and other flavanones against oral pathogens.SSRN202310.2139/ssrn.4366409
    [Google Scholar]
  19. ZengX. DuZ. DingX. JiangW. Protective effects of dietary flavonoids against pesticide-induced toxicity: A review.Trends Food Sci. Technol.202110927127910.1016/j.tifs.2021.01.046
    [Google Scholar]
  20. HertogM.G.L. HollmanP.C.H. KatanM.B. Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands.J. Agric. Food Chem.199240122379238310.1021/jf00024a011
    [Google Scholar]
  21. López-LázaroM. Distribution and biological activities of the flavonoid luteolin.Mini Rev. Med. Chem.200991315910.2174/13895570978700171219149659
    [Google Scholar]
  22. RaoP.S. SubramanayamG. SridharP.R. Quercetin 3-galactoside from Azadirachta indica.J Adv Mol Biol2019311810.22606/jamb.2019.31001
    [Google Scholar]
  23. AderogbaM.A. OgundainiA.O. EloffJ.N. Isolation of two flavonoids from Bauhinia Monandra (KURZ) leaves and their antioxidative effects.Afr. J. Tradit. Complement. Altern. Med.200634596510.4314/ajtcam.v3i4.31177
    [Google Scholar]
  24. SannomiyaM. FonsecaV.B. da SilvaM.A. Flavonoids and antiulcerogenic activity from Byrsonima crassa leaves extracts.J. Ethnopharmacol.20059711610.1016/j.jep.2004.09.05315652267
    [Google Scholar]
  25. ShilovaI.V. PisarevaS.I. KrasnovE.A. BruzhesM.A. PyakA.I. Antioxidant properties of Bergenia crassifolia extract.Pharm. Chem. J.2006401162062310.1007/s11094‑006‑0206‑4
    [Google Scholar]
  26. GhoulamiS. Il IdrissiA. Fkih-TetouaniS. Phytochemical study of Mentha longifolia of Morocco.Fitoterapia200172559659810.1016/S0367‑326X(01)00279‑911429267
    [Google Scholar]
  27. AgarwalM. KamalR. Studies on flavonoid production using in vitro cultures of Momordica charantia L.Indian J. Biotechnol.20076277279
    [Google Scholar]
  28. AroteS. YeoleP. Pongamia pinnata L: A comprehensive review.Int. J. Pharm. Tech. Res.2010222832290
    [Google Scholar]
  29. RaudonisR. RaudonėL. JanulisV. ViškelisP. Determination of phenolic and antioxidant profiles of linden (Tilia cordata Mill.) in florescences.Thesis, Vytautas the Great University2013
    [Google Scholar]
  30. SaeedN. KhanM.R. ShabbirM. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L.BMC Complement. Altern. Med.201212122110.1186/1472‑6882‑12‑22123153304
    [Google Scholar]
  31. HarborneJB GrayerRJ The anthocyanins.The Flavonoids: Advances in Research Since 1980.Springer198812010.1007/978‑1‑4899‑2913‑6_1
    [Google Scholar]
  32. AndersenO.M. MarkhamK.R. Flavonoids: Chemistry, Biochemistry and Applications.1st edBoca RatonCRC press200510.1201/9781420039443
    [Google Scholar]
  33. AlzandK.I. MohamedM.A. Flavonoids: Chemistry, biochemistry and antioxidant activity.J. Pharm. Res.2012537
    [Google Scholar]
  34. PiettaP.G. Flavonoids as Antioxidants.J. Nat. Prod.20006371035104210.1021/np990450910924197
    [Google Scholar]
  35. CookN. SammanS. Flavonoids - Chemistry, metabolism, cardioprotective effects, and dietary sources.J. Nutr. Biochem.199672667610.1016/0955‑2863(95)00168‑9
    [Google Scholar]
  36. MiddletonE. Effect of plant flavonoids on immune and inflammatory cell function.Flavonoids in the Living System.Boston, MASpringer199817518210.1007/978‑1‑4615‑5335‑9_13
    [Google Scholar]
  37. De la RosaL.A. Alvarez-ParrillaE. González-AguilarG.A. Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability.IndianapolisWiley-Blackwell2010
    [Google Scholar]
  38. TsaoR. Chemistry and biochemistry of dietary polyphenols.Nutrients20102121231124610.3390/nu212123122254006
    [Google Scholar]
  39. ShuklaS. GuptaS. Apigenin: A promising molecule for cancer prevention.Pharm. Res.201027696297810.1007/s11095‑010‑0089‑720306120
    [Google Scholar]
  40. IwashinaT. Flavonoid properties of five families newly incorporated into the order Caryophyllales (review).Bull Natl Mus Nat Sci20133912551
    [Google Scholar]
  41. NarayanaK.R. ReddyM.S. ChaluvadiM. KrishnaD. Bioflavonoids classification, pharmacological, biochemical effects and therapeutic potential.Indian J. Pharmacol.200133216
    [Google Scholar]
  42. Rice-EvansC.A. MillerN.J. PagangaG. Structure-antioxidant activity relationships of flavonoids and phenolic acids.Free Radic. Biol. Med.199620793395610.1016/0891‑5849(95)02227‑98743980
    [Google Scholar]
  43. HwangC.S. KwakH.S. LimH.J. Isoflavone metabolites and their in vitro dual functions: They can act as an estrogenic agonist or antagonist depending on the estrogen concentration.J. Steroid Biochem. Mol. Biol.20061014-524625310.1016/j.jsbmb.2006.06.02016965913
    [Google Scholar]
  44. WollenweberE. DietzV.H. Occurrence and distribution of free flavonoid aglycones in plants.Phytochemistry19812086993210.1016/0031‑9422(81)83001‑4
    [Google Scholar]
  45. OliveiraJ. MateusN. de FreitasV. Flavanols: Catechins and proanthocyanidins.Natural Products. RamawatK.G. MérillonJ-M. Berlin, HeidelbergSpringer20131753180110.1007/978‑3‑642‑22144‑6_58
    [Google Scholar]
  46. GiustiM.M. WrolstadR.E. Acylated anthocyanins from edible sources and their applications in food systems.Biochem. Eng. J.200314321722510.1016/S1369‑703X(02)00221‑8
    [Google Scholar]
  47. AmararathnaM. HoskinD.W. RupasingheH.V. Anthocyanin encapsulated nanoparticles as a pulmonary delivery system.Oxid. Med. Cell. Longev.20222022142292910.1155/2022/142292936124088
    [Google Scholar]
  48. MattioliR. FranciosoA. MoscaL. SilvaP. Anthocyanins: A comprehensive review of their chemical properties and health effects on cardiovascular and neurodegenerative diseases.Molecules20202517380910.3390/molecules2517380932825684
    [Google Scholar]
  49. AlappatB. AlappatJ. Anthocyanin pigments: Beyond aesthetics.Molecules20202523550010.3390/molecules2523550033255297
    [Google Scholar]
  50. WuA. ZhuY. HanB. Delphinidin induces cell cycle arrest and apoptosis in HER 2 positive breast cancer cell lines by regulating the NF κB and MAPK signaling pathways.Oncol. Lett.202122683210.3892/ol.2021.1309334712357
    [Google Scholar]
  51. OuyangY. LiJ. ChenX. FuX. SunS. WuQ. Chalcone derivatives: Role in anticancer therapy.Biomolecules202111689410.3390/biom1106089434208562
    [Google Scholar]
  52. a MondalS. S.T.Rahaman Flavonoids: A vital resource in healthcare and medicine.Pharm. Pharmacol. Int. J.8.2202091104
    [Google Scholar]
  53. b PerryE.K. TomlinsonB.E. BlessedG. BergmannK. GibsonP.H. PerryR.H. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia.BMJ1978261501457145910.1136/bmj.2.6150.1457719462
    [Google Scholar]
  54. PhamT.A.N. CheH. PhanP.T.T. LeeJ.W. KimS.S. ParkH. Oroxylin A analogs exhibited strong inhibitory activities against iNOS-mediated nitric oxide (NO) production.Bioorg. Med. Chem. Lett.20122272534253510.1016/j.bmcl.2012.01.13522366656
    [Google Scholar]
  55. ShengR. LinX. ZhangJ. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.Bioorg. Med. Chem.200917186692669810.1016/j.bmc.2009.07.07219692250
    [Google Scholar]
  56. NoreenY. SerranoG. PereraP. BohlinL. Flavan-3-ols isolated from some medicinal plants inhibiting COX-1 and COX-2 catalysed prostaglandin biosynthesis.Planta Med.199864652052410.1055/s‑2006‑9575069741297
    [Google Scholar]
  57. WadsworthT.L. McDonaldT.L. KoopD.R. Effects of Ginkgo biloba extract (EGb 761) and quercetin on lipopolysaccharide-induced signaling pathways involved in the release of tumor necrosis factor-α.Biochem. Pharmacol.200162796397410.1016/S0006‑2952(01)00734‑111543732
    [Google Scholar]
  58. NijveldtR. van NoodE. HoornD.E.C. Flavonoids: A review of probable mechanisms of action and potential applications.Am. J. Clin. Nutr.20017441842510.1093/ajcn/74.4.41811566638
    [Google Scholar]
  59. OshitariT. OkuyamaY. MiyataY. KosanoH. TakahashiH. NatsugariH. B-Ring-modified and/or 5-demethylated nobiletin congeners: Inhibitory activity against pro-MMP-9 production.Bioorg. Med. Chem.201119237085709210.1016/j.bmc.2011.10.00122047798
    [Google Scholar]
  60. FrieseneckerB. TsaiA.G. AllegraC. IntagliettaM. Oral administration of purified micronized flavonoid fraction suppresses leukocyte adhesion in ischemia-reperfusion injury: In vivo observations in the hamster skin fold.Int. J. Microcirc. Clin. Exp.1994141-2505510.1159/0001782067960444
    [Google Scholar]
  61. AzizaS.A.H. AzabM.E. El-ShallS.K. Ameliorating role of rutin on oxidative stress induced by iron overload in hepatic tissue of rats.Pak. J. Biol. Sci.201417896497710.3923/pjbs.2014.964.97726031015
    [Google Scholar]
  62. MishraA. KumarS. PandeyA.K. Scientific validation of the medicinal efficacy of Tinospora cordifolia.Sci World J20132013129293410.1155/2013/29293424453828
    [Google Scholar]
  63. PandeyA.K. MishraA.K. MishraA. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala.Cell. Mol. Biol.201258114214723273204
    [Google Scholar]
  64. HeimK.E. TagliaferroA.R. BobilyaD.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships.J. Nutr. Biochem.2002131057258410.1016/S0955‑2863(02)00208‑512550068
    [Google Scholar]
  65. SonnenbichlerJ ZetlI Biochemical effects of the flavonolignane silibinin on RNA, protein and DNA synthesis in rat livers.19862133193312424029
    [Google Scholar]
  66. WuY. WangF. ZhengQ. Hepatoprotective effect of total flavonoids from Laggera alata against carbon tetrachloride-induced injury in primary cultured neonatal rat hepatocytes and in rats with hepatic damage.J. Biomed. Sci.200613456957810.1007/s11373‑006‑9081‑y16547767
    [Google Scholar]
  67. Kokanova-NedialkovaZ. NedialkovP. Kondeva-BurdinaM. SimeonovaR. TzankovaV. AluaniD. Chenopodium bonus-henricus L. – A source of hepatoprotective flavonoids.Fitoterapia2017118132010.1016/j.fitote.2017.02.00128229939
    [Google Scholar]
  68. KimS.M. KangK. JhoE.H. Hepatoprotective effect of flavonoid glycosides from Lespedeza cuneata against oxidative stress induced by tert-butyl hyperoxide.Phytother. Res.20112571011101710.1002/ptr.338721226126
    [Google Scholar]
  69. MishraA. SharmaA.K. KumarS. SaxenaA.K. PandeyA.K. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities.BioMed Res. Int.2013201311010.1155/2013/91543624093108
    [Google Scholar]
  70. MishraA. KumarS. BhargavaA. SharmaB. PandeyA.K. Studies on in vitro antioxidant and antistaphylococcal activities of some important medicinal plants.Cell. Mol. Biol.2011571162521366958
    [Google Scholar]
  71. SanchesN.R. Garcia CortezD.A. SchiaviniM.S. NakamuraC.V. Dias FilhoB.P. An evaluation of antibacterial activities of Psidium guajava (L.).Braz. Arch. Biol. Technol.200548342943610.1590/S1516‑89132005000300014
    [Google Scholar]
  72. SahuP. MatlamM. DubeyR.D. Natural plant products with potential antimicrobial activity.Res J Pharmacogn Phytochem2011319
    [Google Scholar]
  73. RahmanM.M. RahamanM.S. IslamM.R. Multifunctional therapeutic potential of phytocomplexes and natural extracts for antimicrobial properties.Antibiotics (Basel)2021109107610.3390/antibiotics1009107634572660
    [Google Scholar]
  74. TsuchiyaH. IinumaM. Reduction of membrane fluidity by antibacterial sophoraflavanone G isolated from Sophora exigua.Phytomedicine20007216116510.1016/S0944‑7113(00)80089‑610839220
    [Google Scholar]
  75. HaraguchiH. TanimotoK. TamuraY. MizutaniK. KinoshitaT. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata.Phytochemistry199848112512910.1016/S0031‑9422(97)01105‑99621457
    [Google Scholar]
  76. ShamsudinN.F. AhmedQ.U. MahmoodS. Flavonoids as antidiabetic and anti-inflammatory agents: A review on structural activity relationship-based studies and meta-analysis.Int. J. Mol. Sci.202223201260510.3390/ijms23201260536293459
    [Google Scholar]
  77. BrusselmansK. VrolixR. VerhoevenG. SwinnenJ.V. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity.J. Biol. Chem.200528075636564510.1074/jbc.M40817720015533929
    [Google Scholar]
  78. LamsonD.W. BrignallM.S. Antioxidants and cancer, part 3: Quercetin.Altern. Med. Rev.20005319620810869101
    [Google Scholar]
  79. AnandP. KunnumakaraA.B. SundaramC. Cancer is a preventable disease that requires major lifestyle changes.Pharm. Res.20082592097211610.1007/s11095‑008‑9661‑918626751
    [Google Scholar]
  80. GuptaD. GulianiE. Flavonoids: Molecular mechanism behind natural chemoprotective behavior - A mini review.Biointerface Res. Appl. Chem.20221259835995
    [Google Scholar]
  81. CritchfieldJ.W. ButeraS.T. FolksT.M. Inhibition of HIV activation in latently infected cells by flavonoid compounds.AIDS Res. Hum. Retroviruses1996121394610.1089/aid.1996.12.398825617
    [Google Scholar]
  82. FesenM.R. PommierY. LeteurtreF. HiroguchiS. YungJ. KohnK.W. Inhibition of HIV-1 integrase by flavones, caffeic acid phenethyl ester (CAPE) and related compounds.Biochem. Pharmacol.199448359560810.1016/0006‑2952(94)90291‑77520698
    [Google Scholar]
  83. SchonhoferC. YiJ. SciorilloA. Flavonoid-based inhibition of cyclin-dependent kinase 9 without concomitant inhibition of histone deacetylases durably reinforces HIV latency.Biochem. Pharmacol.202118611446210.1016/j.bcp.2021.11446233577894
    [Google Scholar]
  84. ZandiK. TeohB.T. SamS.S. WongP.F. MustafaM.R. AbuBakarS. Antiviral activity of four types of bioflavonoid against dengue virus type-2.Virol. J.20118156010.1186/1743‑422X‑8‑56022201648
    [Google Scholar]
  85. PandeyK.B. RizviS.I. Plant polyphenols as dietary antioxidants in human health and disease.Oxid. Med. Cell. Longev.20092527027810.4161/oxim.2.5.949820716914
    [Google Scholar]
  86. LiA.N. LiS. ZhangY.J. XuX.R. ChenY.M. LiH.B. Resources and biological activities of natural polyphenols.Nutrients20146126020604710.3390/nu612602025533011
    [Google Scholar]
  87. CiesekS. von HahnT. ColpittsC.C. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry.Hepatology20115461947195510.1002/hep.2461021837753
    [Google Scholar]
  88. CallandN. AlbeckaA. BelouzardS. (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry.Hepatology201255372072910.1002/hep.2480322105803
    [Google Scholar]
  89. HuangH.C. TaoM.H. HungT.M. ChenJ.C. LinZ.J. HuangC. (−)-Epigallocatechin-3-gallate inhibits entry of hepatitis B virus into hepatocytes.Antiviral Res.201411110011110.1016/j.antiviral.2014.09.00925260897
    [Google Scholar]
  90. WeberC. SlivaK. von RheinC. KümmererB.M. SchnierleB.S. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection.Antiviral Res.20151131310.1016/j.antiviral.2014.11.00125446334
    [Google Scholar]
  91. CarneiroB.M. BatistaM.N. BragaA.C.S. NogueiraM.L. RahalP. The green tea molecule EGCG inhibits Zika virus entry.Virology201649621521810.1016/j.virol.2016.06.01227344138
    [Google Scholar]
  92. FangC.Y. ChenS.J. WuH.N. Honokiol, a lignan biphenol derived from the magnolia tree, inhibits dengue virus type 2 infection.Viruses2015794894491010.3390/v709285226378567
    [Google Scholar]
  93. KhanM.S.A. HussainS.A. JaisA.M.M. ZakariaZ.A. KhanM. Anti-ulcer activity of Ficus religiosa stem bark ethanolic extract in rats.J. Med. Plants Res.20115354359
    [Google Scholar]
  94. GregoryM. DivyaB. MaryR.A. VijiM.M.H. KalaichelvanV.K. PalanivelV. Anti–ulcer activity of Ficus religiosa leaf ethanolic extract.Asian Pac. J. Trop. Biomed.20133755455610.1016/S2221‑1691(13)60112‑423836366
    [Google Scholar]
  95. ZahranE.M. AbdelmohsenU.R. HusseinA.S. Antiulcer potential and molecular docking of flavonoids from Ocimum forskolei Benth., family Lamiaceae.Nat. Prod. Res.202135111933193710.1080/14786419.2019.164566231359776
    [Google Scholar]
  96. Gülçinİ. KüfrevioǧluÖ.İ. OktayM. BüyükokuroǧluM.E. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.).J. Ethnopharmacol.2004902-320521510.1016/j.jep.2003.09.02815013182
    [Google Scholar]
  97. KyogokuK. HatayamaK. YokomoriS. Anti-ulcer effect of isoprenyl flavonoids. II. Synthesis and anti-ulcer activity of new chalcones related to sophoradin.Chem. Pharm. Bull. (Tokyo)197927122943295310.1248/cpb.27.2943
    [Google Scholar]
  98. SasajimaM. NakaneS. SazikiR. Studies on the anti-ulcer effects of isoprenyl flavonoids (1). The anti-ulcer effects of isoprenyl chalcone extracted from Sophora subprostrata.Nihon Yakurigaku Zasshi197874889790510.1254/fpj.74.897750329
    [Google Scholar]
  99. HosseinzadehH. KarimiG.R. AmeriM. Effects of Anethum graveolens L. seed extracts on experimental gastric irritation models in mice.BMC Pharmacol.2002212110.1186/1471‑2210‑2‑2112493079
    [Google Scholar]
  100. Hiruma-LimaC.A. CalvoT.R. RodriguesC.M. AndradeF.D.P. VilegasW. BritoA.R.M.S. Antiulcerogenic activity of Alchornea castaneaefolia: Effects on somatostatin, gastrin and prostaglandin.J. Ethnopharmacol.20061041-221522410.1016/j.jep.2005.09.00716253451
    [Google Scholar]
  101. KumarS. KalraP. SharmaS. Suman. Antiulcer effect of the methanolic extract of Tamarindus indica seeds in different experimental models.J. Pharm. Bioallied Sci.20113223624110.4103/0975‑7406.8077821687352
    [Google Scholar]
  102. MartínM.J. MarhuendaE. Pérez-GuerreroC. FrancoJ.M. Antiulcer effect of naringin on gastric lesions induced by ethanol in rats.Pharmacology199449314415010.1159/0001392287972328
    [Google Scholar]
  103. OnasanwoS.A. SinghN. OlaleyeS.B. PalitG. Anti-ulcerogenic and proton pump (H+, K+ ATPase) inhibitory activity of Kolaviron from Garcinia kola Heckel in rodents.Indian J. Exp. Biol.2011496616821702226
    [Google Scholar]
  104. KarpagamT. Sohna Chandra PackiavathyA. PrabhaP. VaralakshmiB. Indigenous anti-ulcer activity of Musa sapientum on peptic ulcer.Pharmacognosy Res.20113423223810.4103/0974‑8490.8974222224045
    [Google Scholar]
  105. LeeB.I. NugrohoA. BachriM.S. Anti-ulcerogenic effect and HPLC analysis of the caffeoylquinic acid-rich extract from Ligularia stenocephala.Biol. Pharm. Bull.201033349349710.1248/bpb.33.49320190415
    [Google Scholar]
  106. YamaharaJ. MochizukiM. FujimuraH. Antiulcer action of Sophora flavescens root and an active constituent. I.J. Ethnopharmacol.199029217317710.1016/0378‑8741(90)90053‑V2374430
    [Google Scholar]
  107. Vázquez-CalvoÁ. Jiménez de OyaN. Martín-AcebesM.A. Garcia-MorunoE. SaizJ.C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the flaviviruses West Nile virus, Zika virus, and dengue virus.Front. Microbiol.20178131410.3389/fmicb.2017.0131428744282
    [Google Scholar]
  108. JoshiS. HowellA.B. D’SouzaD.H. Blueberry proanthocyanidins against human norovirus surrogates in model foods and under simulated gastric conditions.Food Microbiol.20176326326710.1016/j.fm.2016.11.02428040178
    [Google Scholar]
  109. OnoK. NakaneH. FukushimaM. ChermannJ.C. Barré-SinoussiF. Inhibition of reverse transcriptase activity by a flavonoid compound, 5,6,7-trihydroxyflavone.Biochem. Biophys. Res. Commun.1989160398298710.1016/S0006‑291X(89)80097‑X2471525
    [Google Scholar]
  110. GhazalS. AbuzarquaM. MahansnehA. Effect of plant flavonoids on immune and inflammatory cell function.Phytother. Res.1992626527110.1002/ptr.2650060509
    [Google Scholar]
  111. RobakJ. GryglewskiR.J. Bioactivity of flavonoids.Pol. J. Pharmacol.19964865555649112694
    [Google Scholar]
  112. VesaghhamedaniS. KiapeyS.S.M. ShabgahA.G. Scutellarin, a promising flavonoid in cancer treatment.Prog. Biophys. Mol. Biol.2023
    [Google Scholar]
  113. HakobyanA. ArabyanE. AvetisyanA. AbroyanL. HakobyanL. ZakaryanH. Apigenin inhibits African swine fever virus infection in vitro.Arch. Virol.2016161123445345310.1007/s00705‑016‑3061‑y27638776
    [Google Scholar]
  114. LeeH.H. JungJ. MoonA. KangH. ChoH. Antitumor and anti-invasive effect of apigenin on human breast carcinoma through suppression of IL-6 expression.Int. J. Mol. Sci.20192013314310.3390/ijms2013314331252615
    [Google Scholar]
  115. PowersC.N. SetzerW.N. An in-silico investigation of phytochemicals as antiviral agents against dengue fever.Comb. Chem. High Throughput Screen.201619751653610.2174/138620731966616050612371527151482
    [Google Scholar]
  116. PohjalaL. UttA. VarjakM. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays.PLoS One2011612e2892310.1371/journal.pone.002892322205980
    [Google Scholar]
  117. WangW. XuH. ChenH. TaiK. LiuF. GaoY. In vitro antioxidant, anti-diabetic and antilipemic potentials of quercetagetin extracted from marigold (Tagetes erecta L.) inflorescence residues.J. Food Sci. Technol.20165362614262410.1007/s13197‑016‑2228‑627478217
    [Google Scholar]
  118. WächterG.A. HoffmannJ.J. FurbacherT. BlakeM.E. TimmermannB.N. Antibacterial and antifungal flavanones from Eysenhardtia texana.Phytochemistry19995281469147110.1016/S0031‑9422(99)00221‑610647219
    [Google Scholar]
  119. ZhangM. WuQ. ChenY. Inhibition of proanthocyanidin A2 on porcine reproductive and respiratory syndrome virus replication in vitro.PLoS One2018132e019330910.1371/journal.pone.019330929489892
    [Google Scholar]
  120. KinsolvingC.R. WatkinsB.E. BorrelliA.R. KaiserF.C. WuE.S.C. Flavodilol.J. Cardiovasc. Pharmacol.198914112714110.1097/00005344‑198907000‑000222475704
    [Google Scholar]
  121. GopinathanA. MoiduM. MukundanM. Ellickal NarayananS. NarayananH. AdhikariN. Design, synthesis and biological evaluation of several aromatic substituted chalcones as antimalarial agents.Drug Dev. Res.20208181048105610.1002/ddr.2172732767369
    [Google Scholar]
  122. AwasthiM. SinghS. PandeyV.P. DwivediU.N. Molecular docking and 3D-QSAR-based virtual screening of flavonoids as potential aromatase inhibitors against estrogen-dependent breast cancer.J. Biomol. Struct. Dyn.201533480481910.1080/07391102.2014.91215224702656
    [Google Scholar]
  123. LiF. AwaleS. TezukaY. KadotaS. Cytotoxic constituents from Brazilian red propolis and their structure–activity relationship.Bioorg. Med. Chem.200816105434544010.1016/j.bmc.2008.04.01618440233
    [Google Scholar]
  124. WangR. LiW. FangC. ZhengX. LiuC. HuangQ. Extraction and identification of new flavonoid compounds in dandelion Taraxacum mongolicum Hand.-Mazz. with evaluation of antioxidant activities.Sci. Rep.2023131216610.1038/s41598‑023‑28775‑x36750602
    [Google Scholar]
  125. MorimotoY. AibaY. MiyanagaK. CID12261165, a flavonoid compound as antibacterial agents against quinolone-resistant Staphylococcus aureus.Sci. Rep.2023131172510.1038/s41598‑023‑28859‑836720958
    [Google Scholar]
  126. FamM.S. SedkyC.A. TurkyN.O. BreitingerH.G. BreitingerU. Channel activity of SARS-CoV-2 viroporin ORF3a inhibited by adamantanes and phenolic plant metabolites.Sci. Rep.2023131532810.1038/s41598‑023‑31764‑937005439
    [Google Scholar]
  127. El-ZeftawyM. GhareebD. Pharmacological bioactivity of Ceratonia siliqua pulp extract: In vitro screening and molecular docking analysis, implication of Keap-1/Nrf2/NF-ĸB pathway.Sci. Rep.20231311220910.1038/s41598‑023‑39034‑437500735
    [Google Scholar]
  128. YangC.Z. WangS.H. ZhangR.H. Neuroprotective effect of astragalin via activating PI3K/Akt-mTOR-mediated autophagy on APP/PS1 mice.Cell Death Discov.2023911510.1038/s41420‑023‑01324‑136681681
    [Google Scholar]
  129. MiaoL. ZhangH. CheongM.S. Anti-diabetic potential of apigenin, luteolin, and baicalein via partially activating PI3K/Akt/Glut-4 signaling pathways in insulin-resistant HepG2 cells.Food Sci. Hum. Wellness20231261991200010.1016/j.fshw.2023.03.021
    [Google Scholar]
  130. Le DangQ. VuH.D. NguyenV.M. Desmodinosides A-E: New Flavonoid C-glycosides from Desmodium heterocarpon var. stigosum with hepatoprotective and antifungal activity.Fitoterapia202316910560910.1016/j.fitote.2023.10560937453701
    [Google Scholar]
  131. GaoL. TangZ. LiT. WangJ. Myricetin exerts anti-biofilm activity and attenuates osteomyelitis by inhibiting the TLR2/MAPK pathway in experimental mice.Microb. Pathog.202318210616510.1016/j.micpath.2023.10616537224983
    [Google Scholar]
  132. TangJ. ZhouL. YuanG. Therapeutic effects on H1N1-induced pneumonia in mice and intestinal bacteria biotransformation of four main flavonoids from Houttuynia cordata Thunb.J. Pharm. Biomed. Anal.202323311546910.1016/j.jpba.2023.11546937244222
    [Google Scholar]
  133. Efficacy and safety of flos gossypii flavonoids tablet in the treatment of Alzheimer's disease.2023NCT05269173
    [Google Scholar]
  134. Efficacy and safety study of total flavonoids of propolis dropping pill to treat angina pectoris.2018NCT01453582
    [Google Scholar]
  135. A pilot study of the grapefruit flavonoid naringenin for HCV infection.2015NCT01091077
    [Google Scholar]
  136. Fixed dose flavonoid isoquercetin on thrombo-inflammatory biomarkers in subjects with stable sickle cell disease.NCT045145102024
    [Google Scholar]
  137. Beneficial effects of quercetin in chronic obstructive pulmonary disease (COPD) (quercetin).2016NCT01708278
    [Google Scholar]
  138. Dietary bioflavonoid supplementation for the prevention of neoplasia recurrence.2012NCT00609310.
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855315504240917112850
Loading
/content/journals/cdth/10.2174/0115748855315504240917112850
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test