Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Significant progress has been made in the field of gastroretentive drug delivery systems using natural polysaccharides. These improvements aim to improve the effectiveness and absorption of different medicinal agents. Pectin has received substantial attention in recent years due to its distinctive structural characteristics, abundant availability, biocompatibility, lack of toxicity, and wide range of applications. The global utilization of pectin in drug delivery systems has expanded significantly. Pectin is used to achieve flotation and mucoadhesive properties, which enhance gastric residence length and improve therapeutic effectiveness. The article aims to comprehensively examine the information on several pectin-based formulations for medication delivery that are designed to remain in the stomach for an extended period of time. Furthermore, this article emphasizes the diverse physicochemical and biological properties of pectin and modified pectin, as well as their prospective uses in numerous fields. This publication also presents the significant advantages, challenges, potential future developments, and patents on pectin-based gastroretentive drug delivery systems.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855310489240710114905
2024-07-19
2025-10-23
Loading full text...

Full text loading...

References

  1. ZhangN. WardwellP. BaderR. Polysaccharide based micelles for drug delivery.Pharmaceutics20135432935210.3390/pharmaceutics5020329
    [Google Scholar]
  2. LiuZ. JiaoY. WangY. ZhouC. ZhangZ. Polysaccharides-based nanoparticles as drug delivery systems.Adv. Drug Deliv. Rev.200860151650166210.1016/j.addr.2008.09.001 18848591
    [Google Scholar]
  3. SoodA. GuptaA. AgrawalG. Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications.Carbohydr. Polym. Technol. Appl.20212110006710.1016/j.carpta.2021.100067
    [Google Scholar]
  4. SaravanakumarG. JoD.G. ParkJ.H. Polysaccharide-based nanoparticles: A versatile platform for drug delivery and biomedical imaging.Curr. Med. Chem.201219193212322910.2174/092986712800784658 22612705
    [Google Scholar]
  5. RahimiM. CharmiG. MatyjaszewskiK. BanquyX. PietrasikJ. Recent developments in natural and synthetic polymeric drug delivery systems used for the treatment of osteoarthritis.Acta Biomater.20211232315010.1016/j.actbio.2021.01.003 33444800
    [Google Scholar]
  6. SharmaR. AwasthiR. MalviyaR. Formulation of Cocos nucifera husk fiber reinforced Acacia chundra gum based hydrogel composite for controlled drug release.J. Drug Deliv. Sci. Technol.20238910500510.1016/j.jddst.2023.105005
    [Google Scholar]
  7. DasS. KaurS. RaiV.K. Gastro-retentive drug delivery systems: A recent update on clinical pertinence and drug delivery.Drug Deliv. Transl. Res.20211151849187710.1007/s13346‑020‑00875‑5 33403646
    [Google Scholar]
  8. PahwaR. BhagwanS. KumarV. KohliK. Role of natural polymers in the development of floating drug delivery systems.J. Pharm. Res.20103613121318
    [Google Scholar]
  9. SinhaV.R. KumriaR. Polysaccharides in colon-specific drug delivery.Int. J. Pharm.20012241-2193810.1016/S0378‑5173(01)00720‑7 11472812
    [Google Scholar]
  10. KaushikA. TiwariA. GaurA. Role of excipients and polymeric advancements in preparation of floating drug delivery systems.Int. J. Pharm. Investig.20155111210.4103/2230‑973X.147219 25599027
    [Google Scholar]
  11. MeneguinA.B. SilvestreA.L.P. SpositoL. The role of polysaccharides from natural resources to design oral insulin micro- and nanoparticles intended for the treatment of Diabetes mellitus: A review.Carbohydr. Polym.2021256111750410.1016/j.carbpol.2020.117504 33483027
    [Google Scholar]
  12. YadavN. FrancisA.P. PriyaV.V. Polysaccharide-drug conjugates: A tool for enhanced cancer therapy.Polymers202214595010.3390/polym14050950 35267773
    [Google Scholar]
  13. MellinasC. RamosM. JiménezA. GarrigósM.C. Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications.Materials202013367310.3390/ma13030673 32028627
    [Google Scholar]
  14. Arévalo-PérezR. MaderueloC. LanaoJ.M. Recent advances in colon drug delivery systems.J. Control. Release2020327770372410.1016/j.jconrel.2020.09.026 32941930
    [Google Scholar]
  15. ChandelV. BiswasD. RoyS. VaidyaD. VermaA. GuptaA. Current advancements in pectin: extraction, properties and multifunctional applications.Foods202211172683271010.3390/foods11172683 36076865
    [Google Scholar]
  16. VoragenA.G.J. CoenenG.J. VerhoefR.P. ScholsH.A. Pectin, a versatile polysaccharide present in plant cell walls.Struct. Chem.200920226327510.1007/s11224‑009‑9442‑z
    [Google Scholar]
  17. LiD. DuG. JingW. LiJ. YanJ. LiuZ. Combined effects of independent variables on yield and protein content of pectin extracted from sugar beet pulp by citric acid.Carbohydr. Polym.2015129110811410.1016/j.carbpol.2015.04.058 26050895
    [Google Scholar]
  18. CardosoS.M. CoimbraM.A. Lopes da SilvaJ.A. Calcium-mediated gelation of an olive pomace pectic extract.Carbohydr. Polym.200352212513310.1016/S0144‑8617(02)00299‑0
    [Google Scholar]
  19. FarooqA. PatoaryM.K. ZhangM. Cellulose from sources to nanocellulose and an overview of synthesis and properties of nanocellulose/zinc oxide nanocomposite materials.Int. J. Biol. Macromol.20201541050107310.1016/j.ijbiomac.2020.03.163
    [Google Scholar]
  20. RobertB. ChenthamaraD. SubramaniamS. Fabrication and biomedical applications of Arabinoxylan, Pectin, Chitosan, soy protein, and silk fibroin hydrogels via laccase - Ferulic acid redox chemistry.Int. J. Biol. Macromol.2022201153955610.1016/j.ijbiomac.2021.12.103 34973987
    [Google Scholar]
  21. RehmanA. AhmadT. AadilR.M. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds.Trends Food Sci. Technol.2019901354610.1016/j.tifs.2019.05.015
    [Google Scholar]
  22. Lara-EspinozaC. Carvajal-MillánE. Balandrán-QuintanaR. López-FrancoY. Rascón-ChuA. Pectin and pectin-based composite materials: Beyond food texture.Molecules201823494210.3390/molecules23040942 29670040
    [Google Scholar]
  23. SriamornsakP. Application of pectin in oral drug delivery.Expert Opin. Drug Deliv.2011881009102310.1517/17425247.2011.584867 21564000
    [Google Scholar]
  24. HassanE.A. Abou ElseoudW.S. Abo-ElfadlM.T. HassanM.L. New pectin derivatives with antimicrobial and emulsification properties via complexation with metal-terpyridines.Carbohydr. Polym.2021268111823010.1016/j.carbpol.2021.118230 34127217
    [Google Scholar]
  25. NaqashF. MasoodiF.A. RatherS.A. WaniS.M. GaniA. Emerging concepts in the nutraceutical and functional properties of pectin—A Review.Carbohydr. Polym.2017168122723910.1016/j.carbpol.2017.03.058 28457445
    [Google Scholar]
  26. ChenJ. LiuW. LiuC.M. LiT. LiangR.H. LuoS.J. Pectin modifications: A review.Crit. Rev. Food Sci. Nutr.201555121684169810.1080/10408398.2012.718722
    [Google Scholar]
  27. BangS.J. KimG. LimM.Y. The influence of in vitro pectin fermentation on the human fecal microbiome.AMB Express2018819810.1186/s13568‑018‑0629‑9 29909506
    [Google Scholar]
  28. FreitasC.M.P. CoimbraJ.S.R. SouzaV.G.L. SousaR.C.S. Structure and applications of pectin in food, biomedical and pharmaceutical industry: A review.Coatings202111892210.3390/coatings11080922
    [Google Scholar]
  29. KhotimchenkoM. Pectin polymers for colon-targeted antitumor drug delivery.Int. J. Biol. Macromol.20201581581110112410.1016/j.ijbiomac.2020.05.002 32387365
    [Google Scholar]
  30. LiD. LiJ. DongH. Pectin in biomedical and drug delivery applications: A review.Int. J. Biol. Macromol.20211853496510.1016/j.ijbiomac.2021.06.088 34146559
    [Google Scholar]
  31. WuX. SunH. QinZ. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application.Int. J. Biol. Macromol.2020149170771610.1016/j.ijbiomac.2020.01.297 32014477
    [Google Scholar]
  32. NoreenA. NazliZ.H. AkramJ. Pectins functionalized biomaterials; A new viable approach for biomedical applications: A review.Int. J. Biol. Macromol.2017101125427210.1016/j.ijbiomac.2017.03.029 28300586
    [Google Scholar]
  33. BeukemaM. JermendiÉ. van den BergM.A. FaasM.M. ScholsH.A. de VosP. The impact of the level and distribution of methyl-esters of pectins on TLR2-1 dependent anti-inflammatory responses.Carbohydr. Polym.2021251111709310.1016/j.carbpol.2020.117093 33152851
    [Google Scholar]
  34. KatavT. LiuL. TraitelT. GoldbartR. WolfsonM. KostJ. Modified pectin-based carrier for gene delivery: Cellular barriers in gene delivery course.J. Control. Release2008130218319110.1016/j.jconrel.2008.06.002 18585414
    [Google Scholar]
  35. NiuW. ChenX. XuR. Polysaccharides from natural resources exhibit great potential in the treatment of ulcerative colitis: A review.Carbohydr. Polym.2021254111718910.1016/j.carbpol.2020.117189 33357839
    [Google Scholar]
  36. ElshahedM.S. MironA. AprotosoaieA.C. FaragM.A. Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions.Carbohydr. Polym.2021255111738810.1016/j.carbpol.2020.117388 33436217
    [Google Scholar]
  37. LiJ. YangZ. DingT. The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes.Carbohydr. Polym.2022276111878910.1016/j.carbpol.2021.118789 34823799
    [Google Scholar]
  38. PahwaR. BishtS. KumarV. KohliK. Recent advances in gastric floating drug delivery technology: A review.Curr. Drug Deliv.201310328629810.2174/1567201811310030005 23808593
    [Google Scholar]
  39. PahwaR. ChhabraL. LambaA. JindalS. RathourA. Formulation and in-vitro evaluation of effervescent floating tablets of an antiulcer agent.J. Chem. Pharm. Res.20124210661073
    [Google Scholar]
  40. JindalS. JindalK. GuptaG.D. GargR. AwasthiR. Gastroretentive floating tablets: An investigation of excipients effect on tablet properties.Marmara Pharm. J.201620210011010.12991/mpj.20162018166
    [Google Scholar]
  41. PahwaR. KumarS. SainiN. KumarV. Gelucire mediated gastric floating drug delivery system.Pharm. Lett.20124410381043
    [Google Scholar]
  42. KhatriS. GirdhaniD. PahwaR. Recent advances in floating drug delivery system.Indian Pharmacist20076631720
    [Google Scholar]
  43. KumarM. KaushikD. An overview on various approaches and recent patents on gastroretentive drug delivery systems.Recent Pat. Drug Deliv. Formul.2018122849210.2174/1872211312666180308150218 29521255
    [Google Scholar]
  44. SainiS. BhardwajB.Y. ChhabraJ. KumarM. PahwaR. In vivo monitoring strategies for evaluation of floating drug delivery systems.Int J App Pharm2022146283310.22159/ijap.2022v14i6.45906
    [Google Scholar]
  45. KhatriS. AwasthiR. Piperine containing floating microspheres: An approach for drug targeting to the upper gastrointestinal tract.Drug Deliv. Transl. Res.20166329930710.1007/s13346‑016‑0285‑z 26902907
    [Google Scholar]
  46. AwasthiR. PawarV. KulkarniG.T. Floating microparticulate systems: An approach to increase gastric retention.Indian J. Pharm.2010111726
    [Google Scholar]
  47. PahwaR. SainiN. KumarV. KohliK. Chitosan-based gastroretentive floating drug delivery technology: An updated review.Expert Opin. Drug Deliv.20129552553910.1517/17425247.2012.673581 22444200
    [Google Scholar]
  48. VarshosazJ. TavakoliN. RoozbahaniF. Formulation and in vitro characterization of ciprofloxacin floating and bioadhesive extended-release tablets.Drug Deliv.200613427728510.1080/10717540500395106 16766469
    [Google Scholar]
  49. NegiP. GautamS. SharmaA. Gastric ulcer healing by chebulinic acid solid dispersion-loaded gastroretentive raft systems: preclinical evidence.Ther. Deliv.2022132819310.4155/tde‑2021‑0062 35075915
    [Google Scholar]
  50. InverardiN. ScaletG. MelocchiA. Experimental and computational analysis of a pharmaceutical-grade shape memory polymer applied to the development of gastroretentive drug delivery systems.J. Mech. Behav. Biomed. Mater.2021124110481410.1016/j.jmbbm.2021.104814 34534845
    [Google Scholar]
  51. AnothraP. PradhanD. HalderJ. GhoshG. RathG. Gastroretentive drug delivery system in cancer chemotherapy.Curr. Drug Deliv.202220548349610.2174/1567201819666220608141124
    [Google Scholar]
  52. MudrićJ. ŠavikinK. ĐekićL. Development of lipid-based gastroretentive delivery system for gentian extract by double emulsion-melt dispersion technique.Pharmaceutics20211312209510.3390/pharmaceutics13122095 34959376
    [Google Scholar]
  53. Raghu KiranC.V.S. GopinathC. Development and evaluation of interpenetrating polymer network based superporous hydrogel gastroretentive drug delivery systems (SPH IPN-GRDDS).Mater. Today Proc.20214683056306110.1016/j.matpr.2021.02.381
    [Google Scholar]
  54. LopesC.M. BettencourtC. RossiA. ButtiniF. BarataP. Overview on gastroretentive drug delivery systems for improving drug bioavailability.Int. J. Pharm.2016510114415810.1016/j.ijpharm.2016.05.016 27173823
    [Google Scholar]
  55. AwasthiR. KulkarniG.T. Decades of research in drug targeting to the upper gastrointestinal tract using gastroretention technologies: Where do we stand?Drug Deliv.201623237839410.3109/10717544.2014.936535 25026414
    [Google Scholar]
  56. PawarV.K. KansalS. GargG. AwasthiR. SingodiaD. KulkarniG.T. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems.Drug Deliv.20111829711010.3109/10717544.2010.520354 20958237
    [Google Scholar]
  57. PrinderreP. SauzetC. FuxenC. Advances in gastro retentive drug-delivery systems.Expert Opin. Drug Deliv.2011891189120310.1517/17425247.2011.592828 21671821
    [Google Scholar]
  58. MajumderK.K. KumarM. PahwaR. Rishabh. Formulation and characterization of floating tablet dosage form of dual delivery of drug curcumin and berberine hydrochloride using simultaneous estimation by UV spectroscopy.Int J App Pharm2021135306310T10.22159/ijap.2021v13i5.42098
    [Google Scholar]
  59. VrettosN.N. RobertsC.J. ZhuZ. Gastroretentive technologies in tandem with controlled-release strategies: A potent answer to oral drug bioavailability and patient compliance implications.Pharmaceutics202113101591T10.3390/pharmaceutics13101591 34683884
    [Google Scholar]
  60. MalikR. GargT. GoyalA.K. RathG. Polymeric nanofibers: Targeted gastro-retentive drug delivery systems.J. Drug Target.2015232109124T10.3109/1061186X.2014.965715 25268275
    [Google Scholar]
  61. MathewA.A. MohapathraS. PanonnummalR. Pectin-based drug delivery systems for biomedical applications. JayakumarR. MuraliV.P. Natural Biopolymers in Drug Delivery and Tissue Engineering.New Delhi: Woodhead Publishing202330134610.1016/B978‑0‑323‑98827‑8.00018‑7
    [Google Scholar]
  62. SouzaM.P.C. De SabioR.M. RibeiroT. Highlighting the impact of chitosan on the development of gastroretentive drug delivery systems.Int. J. Biol. Macromol.202015980482210.1016/j.ijbiomac.2020.05.104
    [Google Scholar]
  63. JoshiV. AwasthiR. Floating in-situ raft forming liquid gastroretentive drug delivery system containing poorly water-soluble drug.Bull. Pharm. Sci.202144230131210.21608/bfsa.2021.207147
    [Google Scholar]
  64. ThirawongN. NunthanidJ. PuttipipatkhachornS. SriamornsakP. Mucoadhesive properties of various pectins on gastrointestinal mucosa: An in vitro evaluation using texture analyzer.Eur. J. Pharm. Biopharm.200767113214010.1016/j.ejpb.2007.01.010 17321731
    [Google Scholar]
  65. MartăuG.A. MihaiM. VodnarD.C. The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability.Polymers20191111183710.3390/polym11111837 31717269
    [Google Scholar]
  66. (a AwasthiR. KulkarniG.T. Development of novel gastroretentive drug delivery system of gliclazide: hollow beads.Drug Dev. Ind. Pharm.201440339840810.3109/03639045.2013.763817 23418961
    [Google Scholar]
  67. (b SriamornsakP ThirawongN PuttipipatkhachornS Emulsion gel beads of calcium pectinate capable of floating on the gastric fluid: effect of some additives, hardening agent or coating on release behavior of metronidazole.Eur J Pharm Sci.20052443637310.1016/j.ejps.2004.12.004 15734303
    [Google Scholar]
  68. PahwaR. BhagwanS. KumarV. KohliK. Floating microspheres: An innovative approach for gastric retention.Pharm. Lett.201024461475
    [Google Scholar]
  69. GrossoR. de-PazM.V. Scope and limitations of current antibiotic therapies against Helicobacter pylori: Reviewing amoxicillin gastroretentive formulations.Pharmaceutics2022147134010.3390/pharmaceutics14071340 35890236
    [Google Scholar]
  70. MengS. WangS. PiaoM.G. Prescription optimization of gastroretentive furosemide hollow-bioadhesive microspheres via Box-Behnken design: In vitro characterization and in vivo evaluation.J. Drug Deliv. Sci. Technol.202270110323510.1016/j.jddst.2022.103235
    [Google Scholar]
  71. JosephN.J. LakshmiS. JayakrishnanA. A floating-type oral dosage form for piroxicam based on hollow polycarbonate microspheres: In vitro and in vivo evaluation in rabbit.J. Control. Release2022791-37179
    [Google Scholar]
  72. BairagiP.D. GondkarS.B. SaudagarR.B. Formulation development and evaluation of floating wax microspheres of Tizanidine hydrochloride.Asian J. Pharm. Pharmacol.20184567367910.31024/ajpp.2018.4.5.19
    [Google Scholar]
  73. JainP. JainD.K. Development of clarithromycin gastro retentive microspheres.J. Drug Deliv. Ther.2017778183
    [Google Scholar]
  74. VinchurkarK. SainyJ. KhanM.A. ManeS. MishraD.K. DixitP. Features and facts of a gastroretentive drug delivery system-a review.Turk. J. Pharm. Sci.202219447648710.4274/tjps.galenos.2021.44959 36047602
    [Google Scholar]
  75. HendrikaY. RevenyJ. SumaiyahS. Formulation and in vitro evaluation of gastroretentive floating beads of amoxicillin using pectin from banana peel (Musa Balbisiana ABB).Asian J. Pharm. Clin. Res.2018114727710.22159/ajpcr.2018.v11i4.23511
    [Google Scholar]
  76. VaghasiyaP. ChavdaD.A. ChotaliyaM.B. SanganiA.P. KoratR.G. SinharM.J. Evaluation of effervescent floating bed of Lafutidine in treatment of hyperacidity condition: Statistical design and in-vitro studies.Asian J. Pharm. Pharmacol.20217181510.31024/ajpp.2021.7.1.2
    [Google Scholar]
  77. KambleD. DileshS. TapadiaS. KhanS. Investigation of pectin-hydroxypropyl methylcellulose-coated floating beads for pulsatile release of piroxicam.Turk. J. Pharm. Sci.202017554254810.4274/tjps.galenos.2019.99896
    [Google Scholar]
  78. AwasthiR. KulkarniG.T. Development of novel gastroretentive floating particulate drug delivery system of gliclazide.Curr. Drug Deliv.20129543745110.2174/156720112802650716
    [Google Scholar]
  79. ÖzakarR.S. Development and in vitro characterization of gastroretentive formulations as calcium pectinate hydrogel pellets of pregabalin by ionotropic gelation method.Indian J Pharm Educ Res2022561ss9s2010.5530/ijper.56.1s.38
    [Google Scholar]
  80. SriamornsakP. ThirawongN. CheewatanakornkoolK. BurapapadhK. Sae-NgowW. Cryo-scanning electron microscopy (cryo-SEM) as a tool for studying the ultrastructure during bead formation by ionotropic gelation of calcium pectinate.Int. J. Pharm.20083521-211512210.1016/j.ijpharm.2007.10.038 18054453
    [Google Scholar]
  81. TalukderR. FassihiR. Gastroretentive delivery systems: Hollow beads.Drug Dev. Ind. Pharm.200430440541210.1081/DDC‑120030935
    [Google Scholar]
  82. Siva Gangi ReddyN. Madhusudana RaoK. ParkS.Y. KimT. ChungI. Fabrication of aminosilanized halloysite based floating biopolymer composites for sustained gastro retentive release of curcumin.Macromol. Res.201927549049610.1007/s13233‑019‑7062‑z
    [Google Scholar]
  83. BeheraS. GhatuaryC.K. NayakA.K. HasnainM.S. Losartan potassium-loaded linseed polysaccharide-alginate-calcium silicate biomucoadhesive-floating beads for gastroretentive delivery.Polymer-Plastics Technology and Materials202463897598910.1080/25740881.2024.2310541
    [Google Scholar]
  84. EnasM.E. GehanneA.S. SamarM. Abd El HamidA. ShamyE.L. Ionotropically emulsion gelled polysaccharides beads: preparation, in vitro and in vivo evaluation.Carbohydr. Polym.200975113514210.1016/j.carbpol.2008.07.019
    [Google Scholar]
  85. MishraS. PathakK. Formulation and evaluation of oil entrapped gastroretentive floating gel beads of loratadine.Acta Pharm.200858218719710.2478/v10007‑008‑0001‑8 18515228
    [Google Scholar]
  86. DaihomB.A. BendasE.R. MohamedM.I. BadawiA.A. Development and in vitro evaluation of domperidone/dowex resinate embedded gastro-floatable emulgel and effervescent alginate beads.J. Drug Deliv. Sci. Technol.202059119
    [Google Scholar]
  87. BaviskarP. PatilP. SaudagarR.B. Formulation development and evaluation of floating wax beads of olopatadine hydrochloride.J. Drug Deliv. Ther.201994-s56957610.22270/jddt.v9i4‑s.3384
    [Google Scholar]
  88. KhanS. MisraS.K. SharmaN. Formulation and evaluation of multiparticulate gel beads containing tinidazole for stomach-specific delivery.Int. J. Pharm. Tech. Res.201588196205
    [Google Scholar]
  89. MalviyaS. PandeyJ. DwivediS. Formulation and evaluation of floating microbeads of ciprofloxacin HCl by emulsion gelation method.Int J Pharm Life Sci20134828762884
    [Google Scholar]
  90. KabburN. RajendraA. SridharB.K. Design and evaluation of intragastric floating drug delivery system for ofloxacin.Int. J. Pharm. Pharm. Sci.2011359398
    [Google Scholar]
  91. JaiswalD. BhattacharyaA. YadavI.K. SinghH.P. ChandraD. JainD.A. Formulation and evaluation of oil entrapped floating alginate beads of ranitidine hydrochloride.Int. J. Pharm. Pharm. Sci.200913128140
    [Google Scholar]
  92. AuriemmaG CercielloA SansoneF PintoA MorelloS AquinoRP Polysaccharides based gastroretentive system to sustain piroxicam release: Development and in vivo prolonged anti-inflammatory effect.Int J Biol Macromol2018120Pt B23031210.1016/j.ijbiomac.2018.08.140 30171948
    [Google Scholar]
  93. DeviP. RathorS. SharmaP. SenJ. KaurH. SinghJ. Development of novel gastroretentive salbutamol sulfate-loaded sodium alginate-pectin bubble beads prepared by co-axial needle air-injection method and in vivo clinical evaluation by ultrasound studies.Eur. J. Pharm. Sci.2018122135937310.1016/j.ejps.2018.07.019 30017846
    [Google Scholar]
  94. PawarH.A. DhavaleR. Development and evaluation of gastroretentive floating tablets of an antidepressant drug by thermoplastic granulation technique.Beni. Suef Univ. J. Basic Appl. Sci.20143212213210.1016/j.bjbas.2014.05.005
    [Google Scholar]
  95. JyotirmoyD. Formulation and evaluation of metformin HCl floating tablet using pectin as a natural polymer.Int Res J Pharm Sci2010112226
    [Google Scholar]
  96. WehF.H. MahboubehR. ChinH.E. Formulation and in vitro evaluation of hydrodynamically balanced matrix tablets of famotidine using pectin as controlled release polymer.Lat. Am. J. Pharm.201433420431
    [Google Scholar]
  97. UdayakumarT. ChordiaM.A. UdhumanshaU. Design and development of bioadhesive gastro retentive drug delivery system of metoprolol succinate.Int J Res Dev Pharm Life Sci201322355362
    [Google Scholar]
  98. HanifM. ShahS. RasulA. Enhancement of oral bioavailability of ibandronate through gastro retentive raft forming drug delivery system: In vitro and in vivo evaluation.Int. J. Nanomedicine20201524847485810.2147/IJN.S255278 32764922
    [Google Scholar]
  99. El-ZahabyS.A. KassemA.A. El-KamelA.H. Formulation and in vitro evaluation of size expanding gastro-retentive systems of levofloxacin hemihydrate.Int. J. Pharm.20144641-2101810.1016/j.ijpharm.2014.01.024 24472642
    [Google Scholar]
  100. ParthibanK.G. RagunathanM. DilnaD. Formulation and evaluation of super porous hydrogel tablets of rabeprazole sodium as a gastroretentive system.Eur. J. Pharm. Med. Res.2018512271278
    [Google Scholar]
  101. PatiN.B. VelivelaS. MayasaV. GuptaV.R.M. Gastroretentive super porous hydrogel tablets of dexlansoprazole.Int. J. Pharm. Sci. Res.20167114677468410.13040/IJPSR.0975‑8232
    [Google Scholar]
  102. AmitK.N. RumaM. BiswarupD. Gastroretentive drug delivery systems: A review.Asian J. Pharm. Clin. Res.201031110
    [Google Scholar]
  103. MdS. AbdullahS.T. AlhakamyN.A. Ambroxol hydrochloride loaded gastroretentive nanosuspension gels potentiate anticancer activity in lung cancer (A549) cells.Gels20217424326710.3390/gels7040243 34940303
    [Google Scholar]
  104. BoninoD. CiaramellaA. CornoF. Review of the state-of-the-art in patent information and forthcoming evolutions in intelligent patent informatics.World Pat. Inf.2010321303810.1016/j.wpi.2009.05.008
    [Google Scholar]
  105. PahwaR. SinghM. KumarV. KohliK. Recent advances and patent perspectives in gastroretentive technology.Recent Pat. Drug Deliv. Formul.20126327829010.2174/187221112802652660 22563754
    [Google Scholar]
  106. VonMaltzahnGAV RubensJR Glycan compositions and methods of use.E. P. Patent 3484483B12023
  107. GeremiaJ.M. LiuC.M. LioubomirovA.V. Methods of producing glycan polymers.U.S. Patent 11697692B22023
  108. JainP.R. ChaudhariS.V. Modified release drug powder publication classification composition comprising gastro-retentive raft forming systems having trigger pulse drug release.U.S. Patent 2022/0241189A12022
  109. SaikiJ.P. DavidsonM. AndreassonJ.O.L. FaveroM.D. GreeneM.B. Compositions comprising indigo and/or an indigo derivative and methods of use thereof.U.S. Patent 2022/0249382A12022
  110. JainP.R. ChaudhariS.V. Pharmaceutical composition comprising GHB gastro- retentive raft forming systems having trigger pulse drug release.U.S. Patent 2022/0241190A12022
  111. BariM.M. ChhettryA. CurrieM.G. Delayed release compositions of linaclotide.U.S. Patent AU2022201891A12022
  112. VetterD. Method of inducing satiety U.S.Patent 2022/0202850A12022
  113. NannajiS. Gastroretentive structured dosage form.W.O. Patent 20222/072735AI2022
  114. MaltzahnV. Glycan therapeutics and methods of treatment.E.P. Patent 3964234A12022
  115. BariMM ChhettryA CurrieMG Delayed release compositions of linaclotide.A.U. Patent 2020202319B22022
  116. SchoelkopfJ Hilty-vancuraFM KiryukhinM Surface-reacted calcium carbonate in a process for the production of a loaded microcapsule.W.O. Patent 2021/259777A12021
  117. MaltzahnG.A.V. YamanakaY.J. SilvermanJ. MilwidJ.M. RubensJ.R. GeremiaJ.M. Glycan therapeutic compositions and related methods thereof.U.S. Patent 2021/0401861A12021
  118. De MiguelL CamargoJ QuijanoCD Granules comprising surfacereacted calcium carbonate as excipient.W.O. Patent 2021/219458A12021
  119. RiouxPP Cysteamine precursor compound for the treatment of beta coronavirus infections.W.O. Patent 2021202650A12021
  120. CoulterI. McDonaldB.F. AversaV. RosaM.T. LavelleE.C. Immunomodulatory compositions comprising a polymer matrix and an oil phase.U.S. Patent 9878036B22018
  121. CoulterI. AversaV. Method for treating intestinal fibrosis.U.S. Patent 2018/0243210A12018
  122. VetterD. Formulation comprising particles.A.u. Patent 2015303210B22018
  123. CoulterI McdonaldBF AversaV A composition comprising oil drops.E.P. Patent 2432455B12014
  124. NajibB. Methods of preventing the serotonin syndrome and compositions for use thereof.U.S. Patent 8,329,744B22012
  125. RichardsonCJ DettmarPW GaserodO HelgerudT Gelling compositions and methods.E.P. Patent 1931222B12012
  126. Bar-shalomD SlotL FischerG HemmingsenP Swellable dosage form comprising gellan gum.E.P. Patent 1758557B12011
  127. AbuhelwaA.Y. WilliamsD.B. UptonR.N. FosterD.J.R. Food, gastrointestinal pH, and models of oral drug absorption.Eur. J. Pharm. Biopharm.2017112223424810.1016/j.ejpb.2016.11.034 27914234
    [Google Scholar]
  128. MazerN. AbischE. GfellerJ.C. Intragastric behavior and absorption kinetics of a normal and “floating” modified-release capsule of isradipine under fasted and fed conditions.J. Pharm. Sci.198877864765710.1002/jps.2600770802 2974884
    [Google Scholar]
  129. WashingtonN. WilsonC.G. GreavesJ.L. Danneskiold-samsøeP. An investigation into the floating behaviour of a pectin-containing anti-reflux formulation (FF5005) by means of gamma scintigraphy.Scand. J. Gastroenterol.198823892092410.3109/00365528809090147 3201128
    [Google Scholar]
  130. KlausnerE.A. LavyE. FriedmanM. HoffmanA. Expandable gastroretentive dosage forms.J. Control. Release2003902143162a10.1016/S0168‑3659(03)00203‑7 12810298
    [Google Scholar]
  131. KlausnerE.A. LavyE. BartaM. CserepesE. FriedmanM. HoffmanA. Novel gastroretentive dosage forms: Evaluation of gastroretentivity and its effect on levodopa absorption in humans.Pharm. Res.200320914661473b10.1023/A:1025770530084 14567643
    [Google Scholar]
  132. GuslerG. GorslineJ. LevyG. Pharmacokinetics of metformin gastric-retentive tablets in healthy volunteers.J. Clin. Pharmacol.200141665566110.1177/00912700122010546 11402634
    [Google Scholar]
  133. ElkheshenS.A. YassinA.E.B. AlsuwayehS. In vitro and in vivo evaluation of floating controlled release dosage forms of verapamil hydrochloride.Pharm. Ind.2004661113641372
    [Google Scholar]
  134. BennettC.E. HardyJ.G. WilsonC.G. The influence of posture on the gastric emptying of antacids.Int. J. Pharm.198421334134710.1016/0378‑5173(84)90192‑3
    [Google Scholar]
  135. HimawanA. DjideN.J.N. MardikasariS.A. A novel in vitro approach to investigate the effect of food intake on release profile of valsartan in solid dispersion-floating gel in-situ delivery system.Eur. J. Pharm. Sci.2022168210605710.1016/j.ejps.2021.106057 34743031
    [Google Scholar]
  136. SugiharaH. YamamotoH. KawashimaY. TakeuchiH. Effects of food intake on the mucoadhesive and gastroretentive properties of submicron-sized chitosan-coated liposomes.Chem. Pharm. Bull.201260101320132310.1248/cpb.c12‑00469 23036972
    [Google Scholar]
  137. Abou YoussefN.A.H. KassemA.A. EL-Massik MAE, Boraie NA. Development of gastroretentive metronidazole floating raft system for targeting Helicobacter pylori.Int. J. Pharm.20154861-229730510.1016/j.ijpharm.2015.04.004 25843757
    [Google Scholar]
  138. SangekarS. VadinoW.A. ChaudryI. ParrA. BeihnR. DigenisG. Evaluation of the effect of food and specific gravity of tablets on gastric retention time.Int. J. Pharm.198735318719110.1016/0378‑5173(87)90129‑3
    [Google Scholar]
  139. BabuV.B. KharR.K. In vitro and in vivo studies of sustained-release floating dosage forms containing salbutamol sulfate.Pharmazie1990454268270 2381979
    [Google Scholar]
  140. KamL.Y. WongJ.W. YuenK.H. In vivo evaluation of thiamine hydrochloride with gastro-retentive drug delivery in healthy human volunteers using gamma scintigraphy.Pharmaceutics202315269110.3390/pharmaceutics15020691 36840013
    [Google Scholar]
  141. Treatment of complex regional pain syndrome with once daily gastric-retentive gabapentin (gralise).2020Available from: https://clinicaltrials.gov/study/NCT01623271 Accessed on November 23, 2023.
  142. Study determining gastric-retentive and modified release properties of prototype capsules in healthy subjects.2019Available from: https://clinicaltrials.gov/study/NCT03468543 Accessed on February 11, 2024.
  143. A study to assess the safety and efficacy of the of the gastric-retentive AP-CD/LD in advanced Parkinson's patients (accordance).2019Available from: https://clinicaltrials.gov/study/NCT02605434 Accessed on February 11, 2024.
  144. Healthy volunteer study using 3 different formulations of firategrast.2017Available from: https://clinicaltrials.gov/study/NCT01416363 Accessed on February 11, 2024.
  145. Gastric retentive carbidopa/ levodopa in parkinson's patients; a one year, open label, safety extension study.2015Available from: https://clinicaltrials.gov/study/NCT00947037 Accessed on February 11, 2024.
  146. A polysomnographic study to compare the efficacy of gastric retentive zaleplon accordion pill to placebo in subjects with insomnia2014Available from: https://clinicaltrials.gov/study/NCT01277107 Accessed on February 11, 2024.
  147. Magnetic marker monitoring of furosemide-containing gastroretentive formulation in healthy male subjects (fasting and fed conditions).2013Available from: https://clinicaltrials.gov/study/NCT01887379 Accessed on February 11, 2024.
  148. Trial of novel oral zinc cysteine preparation in Alzheimer's disease.2011Available from: https://clinicaltrials.gov/study/NCT01099332 Accessed on February 11, 2024.
/content/journals/cdth/10.2174/0115748855310489240710114905
Loading
/content/journals/cdth/10.2174/0115748855310489240710114905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test