Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Ischemic heart disease and coronary artery disease are both considered to be the causative factors for Acute Coronary Syndrome (ACS). Cardiovascular disease is the primary cause of death and illness in individuals with both type 1 and type 2 diabetes. It has been reported that long-term hyperglycemia causes chronic heart disease.

Objective

This study aimed to explore the hyperlinks between dysglycemia and acute coronary syndrome.

Materials and Methods

Databases specifically designed for medical research, such as PubMed, Medline, Embase, and Google Scholar, were utilized for the study. In addition, data from credible health groups and government authorities were also obtained.

Results

It has been reported that long-term hyperglycemia causes chronic heart disease. Individuals with type 1 diabetes mellitus tend to develop Coronary Heart Disease (CHD), especially if they have nephropathy. The correlation between dysglycemia and ACS is intricate, and individual reactions may differ. The relationship between genes and environment is now recognized to be mediated by epigenetic factors through many sorts of responses, which can help explain the link between diabetes and cardiovascular disease. HbA1c, a measure of long-term glycemic management, may independently increase CHD risk; however, this is unclear.

Conclusion

Poor glycemic management, oxidative stress, insulin resistance indicators, and low-grade inflammation may cause cardiovascular disease and diabetes. Optimal management of blood glucose levels and comprehensive cardiovascular care are essential in minimizing the impact of dysglycemia on Acute Coronary Syndrome (ACS) outcomes.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855308158240806105408
2024-08-12
2025-12-03
Loading full text...

Full text loading...

/deliver/fulltext/cdth/20/7/CDTH-20-7-08.html?itemId=/content/journals/cdth/10.2174/0115748855308158240806105408&mimeType=html&fmt=ahah

References

  1. UllahM. WahabA. KhanS.U. Stent as a novel technology for coronary artery disease and their clinical manifestation.Curr. Probl. Cardiol.202348110141510.1016/j.cpcardiol.2022.101415 36155199
    [Google Scholar]
  2. ChoY.R. AnnS.H. WonK.B. Association between insulin resistance, hyperglycemia, and coronary artery disease according to the presence of diabetes.Sci. Rep.201991612910.1038/s41598‑019‑42700‑1 31477741
    [Google Scholar]
  3. KitazawaM. FujiharaK. OsawaT. Risk of coronary artery disease according to glucose abnormality status and prior coronary artery disease in Japanese men.Metabolism201910115399110.1016/j.metabol.2019.153991 31666194
    [Google Scholar]
  4. KhanalM.K. BhandariP. DhunganaR.R. Poor glycemic control, cardiovascular disease risk factors and their clustering among patients with type 2 diabetes mellitus: A cross-sectional study from Nepal.PLoS One2022177e027188810.1371/journal.pone.0271888 35877664
    [Google Scholar]
  5. MatheusA.S. TannusL.R. CobasR.A. PalmaC.C. NegratoC.A. GomesM.D. Impact of diabetes on cardiovascular disease: an update.Int. J. Hypertens.2013201365378910.1155/2013/653789
    [Google Scholar]
  6. SelvinE. CoreshJ. GoldenS.H. BrancatiF.L. FolsomA.R. SteffesM.W. Glycemic control and coronary heart disease risk in persons with and without diabetes: the atherosclerosis risk in communities study.Arch. Intern. Med.2005165161910191610.1001/archinte.165.16.1910 16157837
    [Google Scholar]
  7. Al-NozhaM.M. IsmailH.M. Al NozhaO.M. Coronary artery disease and diabetes mellitus.J. Taibah Univ. Med. Sci.201611433033810.1016/j.jtumed.2016.03.005
    [Google Scholar]
  8. ChenS. ShenY. LiuY.H. Impact of glycemic control on the association of endothelial dysfunction and coronary artery disease in patients with type 2 diabetes mellitus.Cardiovasc. Diabetol.20212016410.1186/s12933‑021‑01257‑y 33714276
    [Google Scholar]
  9. CuiJ. LiuY. LiY. XuF. LiuY. Type 2 diabetes and myocardial infarction: recent clinical evidence and perspective.Front. Cardiovasc. Med.2021864418910.3389/fcvm.2021.644189 33718461
    [Google Scholar]
  10. LehtoS. RönnemaaT. PyöräläK. LaaksoM. Poor glycemic control predicts coronary heart disease events in patients with type 1 diabetes without nephropathy.Arterioscler. Thromb. Vasc. Biol.19991941014101910.1161/01.ATV.19.4.1014 10195930
    [Google Scholar]
  11. LaitinenT. Lyyra-LaitinenT. HuopioH. Electrocardiographic alterations during hyperinsulinemic hypoglycemia in healthy subjects.Ann. Noninvasive Electrocardiol.20081329710510.1111/j.1542‑474X.2008.00208.x 18426434
    [Google Scholar]
  12. GillG.V. WoodwardA. CassonI.F. WestonP.J. Cardiac arrhythmia and nocturnal hypoglycaemia in type 1 diabetes—the ‘dead in bed’ syndrome revisited.Diabetologia2009521424510.1007/s00125‑008‑1177‑7 18972096
    [Google Scholar]
  13. KettererM.W. FitzgeraldF. ThayerB. Psychosocial and traditional risk factors in early ischaemic heart disease: cross-sectional correlates.Eur. J. Cardiovasc. Prev. Rehabil.20007640941310.1177/204748730000700603 11155293
    [Google Scholar]
  14. HubertH.B. EakerE.D. GarrisonR.J. CastelliW.P. Life-style correlates of risk factor change in young adults: an eight-year study of coronary heart disease risk factors in the Framingham offspring.Am. J. Epidemiol.1987125581283110.1093/oxfordjournals.aje.a114598 3565356
    [Google Scholar]
  15. RaitakariO.T. LeinoM. RäikkönenK. Clustering of risk habits in young adults. The Cardiovascular Risk in Young Finns Study.Am. J. Epidemiol.19951421364310.1093/oxfordjournals.aje.a117543 7785672
    [Google Scholar]
  16. ÅkerblomH.K. UhariM. PesonenE. Cardiovascular risk in young Finns.Ann. Med.1991231353910.3109/07853899109147928 2036203
    [Google Scholar]
  17. GarrisonR.J. GoldR.S. WilsonP.W.F. KannelW.B. Educational attainment and coronary heart disease risk: the Framingham Offspring Study.Prev. Med.1993221546410.1006/pmed.1993.1004 8475012
    [Google Scholar]
  18. LeinoM. RaitakariO.T. PorkkaK.V. TaimelaS. ViikariJ.S. Associations of education with cardiovascular risk factors in young adults: the Cardiovascular Risk in Young Finns Study.Int. J. Epidemiol.199928466767510.1093/ije/28.4.667 10480694
    [Google Scholar]
  19. MarmotM.G. KogevinasM. ElstonM.A. Social/economic status and disease.Annu. Rev. Public Health19878111113510.1146/annurev.pu.08.050187.000551 3555518
    [Google Scholar]
  20. WinklebyM.A. JatulisD.E. FrankE. FortmannS.P. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease.Am. J. Public Health199282681682010.2105/AJPH.82.6.816 1585961
    [Google Scholar]
  21. PorkkaK.V.K. RaitakariO.T. LeinoA. Trends in serum lipid levels during 1980-1992 in children and young adults. The Cardiovascular Risk in Young Finns Study.Am. J. Epidemiol.19971461647710.1093/oxfordjournals.aje.a009192 9215224
    [Google Scholar]
  22. LiberatosP. LinkB.G. KelseyJ.L. The measurement of social class in epidemiology.Epidemiol. Rev.19881018712110.1093/oxfordjournals.epirev.a036030 3066632
    [Google Scholar]
  23. BjörntorpP. Visceral fat accumulation: the missing link between psychosocial factors and cardiovascular disease?J. Intern. Med.1991230319520110.1111/j.1365‑2796.1991.tb00431.x 1895041
    [Google Scholar]
  24. StamlerJ. Established major coronary risk factors.Coronary heart disease epidemiology From aetiology to public health.New YorkOxford University Press19923566
    [Google Scholar]
  25. LantzP.M. LynchJ.W. HouseJ.S. Socioeconomic disparities in health change in a longitudinal study of US adults: the role of health-risk behaviors.Soc. Sci. Med.2001531294010.1016/S0277‑9536(00)00319‑1 11380160
    [Google Scholar]
  26. RegidorE. CalleM.E. DomínguezV. NavarroP. [Mortality by social and economic characteristics: The Mortality Study of the Autonomous Community of Madrid].Med. Clín. (Barc.)20011161972673110.1016/S0025‑7753(01)71966‑5 11412692
    [Google Scholar]
  27. JohnsonN.J. SorlieP.D. BacklundE. The impact of specific occupation on mortality in the U.S. National Longitudinal Mortality Study.Demography199936335536710.2307/2648058 10472499
    [Google Scholar]
  28. RaoM XavierD DeviP Prevalence, treatments and outcomes of coronary artery disease in Indians: a systematic review. indian heart j201567430210
    [Google Scholar]
  29. RothmanK-J. GreenlandS. Modern epidemiology.LondonLippincott,Williams and Wilkins199994115
    [Google Scholar]
  30. MacMahonB. TrichopoulosD. Epidemiology.BostonLittle, Brown and Company1995301302
    [Google Scholar]
  31. SternM.P. Impaired glucose tolerance: risk factor or diagnostic category.Diabetes mellitus: a fundamental and clinical text.PhiladelphiaLippincott-Raven Publishers1996467474
    [Google Scholar]
  32. American Academy of Pediatrics. National Cholesterol Education Program: Report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents.Pediatrics1991893 Pt 2525584
    [Google Scholar]
  33. PateR.R. PrattM. BlairS.N. Physical activity and public health.JAMA1995273540240710.1001/jama.1995.03520290054029 7823386
    [Google Scholar]
  34. DyerAR StamlerJ PaulO Alcohol, cardiovascular risk factors and mortality: the Chicago experience.Circulation1981643 Pt 2 III20277261297
    [Google Scholar]
  35. KlatskyAL FriedmanGD SiegelaubAB Alcohol use and cardiovascular disease: the Kaiser-Permanente experience.Circulation1981643 Pt 2 III32417020982
    [Google Scholar]
  36. de LorgerilM. SalenP. MartinJ.L. MonjaudI. DelayeJ. MamelleN. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study.Circulation199999677978510.1161/01.CIR.99.6.779 9989963
    [Google Scholar]
  37. TrichopoulouA. Kouris-BlazosA. WahlqvistM.L. Diet and overall survival in elderly people.BMJ199531170181457146010.1136/bmj.311.7018.1457 8520331
    [Google Scholar]
  38. HosmerD. LemeshowS. Applied logistic regression.New YorkJohn Wiley and Sons1989106118
    [Google Scholar]
  39. KaplanG.A. KeilJ.E. Socioeconomic factors and cardiovascular disease: a review of the literature.Circulation19938841973199810.1161/01.CIR.88.4.1973 8403348
    [Google Scholar]
  40. KoskenvuoM. KaprioJ. KesäniemiA. SarnaS. Differences in mortality from Ischemic Heart Disease by marital status and social class.J. Chronic Dis.19803329510610.1016/0021‑9681(80)90033‑8 7354102
    [Google Scholar]
  41. JanlertU. AsplundK. WeinehallL. Unemployment and cardiovascular risk indicators. Data from the MONICA survey in northern Sweden.Scand. J. Soc. Med.1992201141810.1177/140349489202000104 1585136
    [Google Scholar]
  42. DesouzaC.V. BolliG.B. FonsecaV. Hypoglycemia, diabetes, and cardiovascular events.Diabetes Care20103361389139410.2337/dc09‑2082 20508232
    [Google Scholar]
  43. OliverJ.M. JoubertD.P. CaldwellA. MartinS.E. CrouseS.F. A longitudinal study examining the effects of a season of American football on lipids and lipoproteins.Lipids Health Dis.20151413510.1186/s12944‑015‑0021‑6 25903081
    [Google Scholar]
  44. SaraJ.D. TaherR. KolluriN. VellaA. LermanL.O. LermanA. Coronary microvascular dysfunction is associated with poor glycemic control amongst female diabetics with chest pain and non-obstructive coronary artery disease.Cardiovasc. Diabetol.20191812210.1186/s12933‑019‑0833‑1 30819191
    [Google Scholar]
  45. OkrainecK. BanerjeeD.K. EisenbergM.J. Coronary artery disease in the developing world.Am. Heart J.2004148171510.1016/j.ahj.2003.11.027 15215786
    [Google Scholar]
  46. KumarA.S. SinhaN. Cardiovascular disease in India: a 360 degree overview.Med. J. Armed Forces India202076113
    [Google Scholar]
  47. HajarR. Risk factors for coronary artery disease: historical perspectives.Heart views off j Gulf Heart Assoc201718310910.4103/HEARTVIEWS.HEARTVIEWS_106_17
    [Google Scholar]
  48. SohnM. ChunE.J. LimS. Cilostazol treatment for preventing adverse cardiovascular events in patients with type 2 diabetes and coronary atherosclerosis: Long‐term follow‐up of the ESCAPE study.J. Diabetes202214852453110.1111/1753‑0407.13300 35932165
    [Google Scholar]
  49. OlesenK.K.W. Heide-JørgensenU. ThimT. Statin but not aspirin treatment is associated with reduced cardiovascular risk in patients with diabetes without obstructive coronary artery disease: a cohort study from the Western Denmark Heart Registry.Eur. Heart J. Cardiovasc. Pharmacother.20228543444110.1093/ehjcvp/pvab040 33989394
    [Google Scholar]
  50. EngineerA. LimY.J. LuX. KimM.Y. NoroziK. FengQ. Sapropterin reduces coronary artery malformation in offspring of pregestational diabetes mice.Nitric Oxide20209491810.1016/j.niox.2019.10.002 31600600
    [Google Scholar]
  51. LundqvistM.H. AlmbyK. WiklundU. Altered hormonal and autonomic nerve responses to hypo- and hyperglycaemia are found in overweight and insulin-resistant individuals and may contribute to the development of type 2 diabetes.Diabetologia202164364165510.1007/s00125‑020‑05332‑z 33241460
    [Google Scholar]
  52. FishmanS.L. SonmezH. BasmanC. SinghV. PoretskyL. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review.Mol. Med.20182415910.1186/s10020‑018‑0060‑3 30470170
    [Google Scholar]
  53. HanY. XieH. LiuY. GaoP. YangX. ShenZ. Effect of metformin on all-cause and cardiovascular mortality in patients with coronary artery diseases: a systematic review and an updated meta-analysis.Cardiovasc. Diabetol.20191819610.1186/s12933‑019‑0900‑7 31362743
    [Google Scholar]
  54. TriggleC.R. DingH. Cardiovascular impact of drugs used in the treatment of diabetes.Ther. Adv. Chronic Dis.20145624526810.1177/2040622314546125 25364492
    [Google Scholar]
  55. VoorsA.A. AngermannC.E. TeerlinkJ.R. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial.Nat. Med.202228356857410.1038/s41591‑021‑01659‑1 35228754
    [Google Scholar]
  56. LiangB. GuN. Empagliflozin in the treatment of heart failure and type 2 diabetes mellitus: Evidence from several large clinical trials.Int. J. Med. Sci.20221971118112110.7150/ijms.72772 35919809
    [Google Scholar]
  57. Bayes-GenisA. Iborra-EgeaO. SpitaleriG. Decoding empagliflozin’s molecular mechanism of action in heart failure with preserved ejection fraction using artificial intelligence.Sci. Rep.20211111202510.1038/s41598‑021‑91546‑z 34103605
    [Google Scholar]
  58. RamaniJ. ShahH. VyasV.K. SharmaM. A review on the medicinal chemistry of sodium glucose co-transporter 2 inhibitors (SGLT2-I): Update from 2010 to present.Eur. J. Med. Chem. Rep.20222022100074
    [Google Scholar]
  59. LohmannJ.J. HennequinL.F. ThomasA.P. Chemical compounds.patent US 6,258,9512001
  60. FramptonJ.E. Empagliflozin: a review in type 2 diabetes.Drugs201878101037104810.1007/s40265‑018‑0937‑z 29946963
    [Google Scholar]
  61. PackerM. AnkerS.D. ButlerJ. Cardiovascular and renal outcomes with empagliflozin in heart failure.N. Engl. J. Med.2020383151413142410.1056/NEJMoa2022190 32865377
    [Google Scholar]
  62. KohlerS. SalsaliA. HantelS. Safety and tolerability of empagliflozin in patients with type 2 diabetes.Clin. Ther.20163861299131310.1016/j.clinthera.2016.03.031 27085585
    [Google Scholar]
  63. NdefoU.A. AnidiobiN.O. BasheerE. EatonA.T. Empagliflozin (Jardiance): a novel SGLT2 inhibitor for the treatment of type-2 diabetes.PT2015406364368 26045645
    [Google Scholar]
  64. HalimiS. VergèsB. Adverse effects and safety of SGLT-2 inhibitors.Diabetes Metab.2014406Suppl. 1S28S3410.1016/S1262‑3636(14)72693‑X 25554069
    [Google Scholar]
  65. LiuB. WangY. ZhangY. YanB. Mechanisms of protective effects of SGLT2 inhibitors in cardiovascular disease and renal dysfunction.Curr. Top. Med. Chem.201919201818184910.2174/1568026619666190828161409 31456521
    [Google Scholar]
  66. PabelS. HamdaniN. LueddeM. SossallaS. SGLT2 inhibitors and their mode of action in heart failure—has the mystery been unravelled?Curr. Heart Fail. Rep.202118531532810.1007/s11897‑021‑00529‑8 34523061
    [Google Scholar]
  67. SalvatoreT. GalieroR. CaturanoA. An overview of the cardiorenal protective mechanisms of SGLT2 inhibitors.Int. J. Mol. Sci.2022237365110.3390/ijms23073651 35409011
    [Google Scholar]
  68. ChenX. HocherC.F. ShenL. KrämerB.K. HocherB. Reno- and cardioprotective molecular mechanisms of SGLT2 inhibitors beyond glycemic control: from bedside to bench.Am. J. Physiol. Cell Physiol.20233253C661C68110.1152/ajpcell.00177.2023 37519230
    [Google Scholar]
  69. PalmerB.F. CleggD.J. Kidney-protective effects of SGLT2 inhibitors.Clin. J. Am. Soc. Nephrol.202318227928910.2215/CJN.09380822 36220189
    [Google Scholar]
  70. FerranniniE. Sodium-glucose co-transporters and their inhibition: clinical physiology.Cell Metab.2017261273810.1016/j.cmet.2017.04.011 28506519
    [Google Scholar]
  71. NatarajanR. Evaluation of Comparative Efficacy and Pleiotrophy of the Available Three SGLT2 Inhibitors in Type 2 DM Subjects. Doctoral dissertation, KM College of Pharmacy, Madurai
    [Google Scholar]
  72. RavindranS. MunusamyS. Renoprotective mechanisms of sodium‐glucose co‐transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease.J. Cell. Physiol.202223721182120510.1002/jcp.30621 34713897
    [Google Scholar]
  73. DavidsonJ.A. KuritzkyL. Sodium glucose co-transporter 2 inhibitors and their mechanism for improving glycemia in patients with type 2 diabetes.Postgrad. Med.20141266334810.3810/pgm.2014.10.2819 25414933
    [Google Scholar]
  74. DandonaP. ChaudhuriA. Sodium-glucose co-transporter 2 inhibitors for type 2 diabetes mellitus: An overview for the primary care physician.Int. J. Clin. Pract.2017715e1293710.1111/ijcp.12937 28440009
    [Google Scholar]
  75. AdesharaK.A. DiwanA.G. TupeR.S.G. DiwanA. S Tupe R. Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies.Curr. Drug Targets201617111309132810.2174/1389450117666151209124007 26648059
    [Google Scholar]
  76. SharmaS. MittalA. KumarS. MittalA. Structural Perspectives and Advancement of SGLT2 Inhibitors for the Treatment of Type 2 Diabetes.Curr. Diabetes Rev.2022186e17092119660110.2174/1573399817666210917122745 34538233
    [Google Scholar]
  77. RozanskiA. BlumenthalJ.A. KaplanJ. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy.Circulation199999162192221710.1161/01.CIR.99.16.2192 10217662
    [Google Scholar]
  78. VogtT. PopeC. MulloolyJ. HollisJ. Mental health status as a predictor of morbidity and mortality: a 15-year follow-up of members of a health maintenance organization.Am. J. Public Health199484222723110.2105/AJPH.84.2.227 8296945
    [Google Scholar]
  79. RaitakanO.T. PorkkaK.V.K. TaimelaS. TelamaR. RäsänenL. VllkariJ.S. Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults. The Cardiovascular Risk in Young Finns Study.Am. J. Epidemiol.1994140319520510.1093/oxfordjournals.aje.a117239 8030623
    [Google Scholar]
  80. MillerW.C. KocejaD.M. HamiltonE.J. A meta-analysis of the past 25 years of weight loss research using diet, exercise or diet plus exercise intervention.Int. J. Obes.1997211094194710.1038/sj.ijo.0800499 9347414
    [Google Scholar]
  81. Physical activity and health: a report of the Surgeon General.Atlanta:Centers for Disease Control and Prevention1996
    [Google Scholar]
  82. MenottiA. LantiM. PudduP.E. KromhoutD. Coronary heart disease incidence in northern and southern European populations: a reanalysis of the seven countries study for a European coronary risk chart.Br. Heart J.200084323824410.1136/heart.84.3.238 10956281
    [Google Scholar]
  83. RobertsonR.M. SmahaL. Can a Mediterranean-style diet reduce heart disease?Circulation2001103131821182210.1161/01.CIR.103.13.1821 11282917
    [Google Scholar]
  84. PanagiotakosDB PitsavosC ChrysohoouC StefanadisC ToutouzasP Therole of traditional Mediterranean-type of diet and lifestyle in the development of acute coronary syndromes: preliminary results from CARDIO2000 study.Cent Eur J Public Health in press
    [Google Scholar]
  85. PowerC. RodgersB. HopeS. U-shaped relation for alcohol consumption and health in early adulthood and implications for mortality.Lancet1998352913187710.1016/S0140‑6736(98)23937‑7 9742982
    [Google Scholar]
  86. PanagiotakosD.B. PitsavosC. ChrysohoouC. StefanadisC. ToutouzasP. Risk stratification of coronary heart disease through established and emerging lifestyle factors in a Mediterranean population: CARDIO2000 epidemiological study.Eur. J. Cardiovasc. Prev. Rehabil.20018632933510.1177/174182670100800601 11873088
    [Google Scholar]
  87. HallmanT. BurellG. SetterlindS. OdénA. LisspersJ. Psychosocial risk factors for coronary heart disease, their importance compared with other risk factors and gender differences in sensitivity.Eur. J. Cardiovasc. Prev. Rehabil.200181394910.1177/174182670100800106 11234725
    [Google Scholar]
  88. KarasekR.A. TheorellT. SchwartzJ.E. SchnallP.L. PieperC.F. MichelaJ.L. Job characteristics in relation to the prevalence of myocardial infarction in the US Health Examination Survey (HES) and the Health and Nutrition Examination Survey (HANES).Am. J. Public Health198878891091810.2105/AJPH.78.8.910 3389427
    [Google Scholar]
  89. PanagiotakosD.B. PitsavosC. ChrysohoouC. MoraitiA.D. StefanidisC.I. ToutouzasP.K. The effect of short-term depressive episodes on the risk stratification of acute coronary syndromes.Acta Cardiol.200156635736510.2143/AC.56.6.2005699 11791803
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855308158240806105408
Loading
/content/journals/cdth/10.2174/0115748855308158240806105408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test