Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Glycosaminoglycans (GAGs), natural components of the extracellular matrix, exert significant influence over cellular function and regulate the microenvironment surrounding cells. This characteristic makes them promising targets for therapeutic intervention across a spectrum of diseases. In the realm of medical research, there has been a longstanding quest for precise and targeted drug delivery methods to mitigate adverse effects and enhance the efficacy of treatments for conditions, such as wounds, cancer, and organ disorders. However, implementing a systemic delivery approach, particularly for protein-based therapeutics, poses challenges. Addressing this challenge requires the development of biocompatible materials capable of efficiently encapsulating and releasing therapeutic proteins. GAGs emerge as promising candidates possessing these desirable attributes, given their bio-derived nature and ability to modulate biological responses. Within the realm of GAGs, various linear polysaccharides exhibit diverse functionalities and payloads. Notably, hyaluronic acid (HA) and chondroitin sulfate (CS) have been utilized as polysaccharide-based biomaterials for drug delivery, particularly in the treatment of rheumatoid arthritis. Modified HA and CS can self-assemble into micelles or micellar nanoparticles (NPs), enabling precise and controlled drug delivery. This paper explores a range of NP formulations derived from HA and CS, including drug conjugates, polymers, small molecules, polyelectrolyte nanocomplexes (PECs), metals, and nanogels. The versatility of these NP formulations extends to various therapeutic applications, including cancer chemotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT), sonodynamic therapy (SDT), and immunotherapy. By harnessing the unique properties of HA and CS, these NP-based systems offer promising avenues for advancing therapeutic interventions in diverse clinical settings.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855299172240624070122
2024-07-09
2025-10-22
Loading full text...

Full text loading...

References

  1. SodhiH. PanitchA. Glycosaminoglycans in tissue engineering: A review.Biomolecules20201112910.3390/biom11010029 33383795
    [Google Scholar]
  2. WihadmadyatamiH. KusindartaD.L. Glycoconjugate for tissue engineering BT: Polysaccharides of microbial origin: Biomedical applications.ChamSpringer International Publishing202211871211
    [Google Scholar]
  3. RadhouaniH. CorreiaS. GonçalvesC. ReisR.L. OliveiraJ.M. Glycosaminoglycans BT: Polysaccharides of microbial origin: Biomedical applications.ChamSpringer International Publishing2022167184
    [Google Scholar]
  4. PerezS. MakshakovaO. AnguloJ. BediniE. BisioA. de PazJ.L. Glycosaminoglycans: What Remains To Be Deciphered?JACS Au202033628656
    [Google Scholar]
  5. ChenJ. SunT. YouY. WuB. WangX. WuJ. Proteoglycans and glycosaminoglycans in stem cell homeostasis and bone tissue regeneration.Front. Cell Dev. Biol.2021976053210.3389/fcell.2021.760532 34917612
    [Google Scholar]
  6. ValletS.D. BerthollierC. Ricard-BlumS. The glycosaminoglycan interactome 2.0.Am. J. Physiol. Cell Physiol.20223226C1271C127810.1152/ajpcell.00095.2022 35544698
    [Google Scholar]
  7. CasaleJ CraneJS Biochemistry, Glycosaminoglycans. 2023 Mar 27. StatPearls.Treasure Island, FL: StatPearls Publishing2023Internet
    [Google Scholar]
  8. ZhangC. NiuJ. LiJ. Polysaccharide based supramolecular injectable hydrogels for in situ treatment of bladder cancer.Chin. Chem. Lett.202435110855610.1016/j.cclet.2023.108556
    [Google Scholar]
  9. MaX.K. LiuY. Supramolecular purely organic room-temperature phosphorescence.Acc. Chem. Res.202154173403341410.1021/acs.accounts.1c00336 34403251
    [Google Scholar]
  10. ShiD. ShengA. ChiL. Glycosaminoglycan-protein interactions and their roles in human disease.Front. Mol. Biosci.2021863966610.3389/fmolb.2021.639666 33768117
    [Google Scholar]
  11. BerdiakiA. NeaguM. GiataganaE.M. Glycosaminoglycans: Carriers and targets for tailored anti-cancer therapy.Biomolecules202111339510.3390/biom11030395 33800172
    [Google Scholar]
  12. RanaA. AdhikaryM. SinghP.K. DasB.C. BhatnagarS. “Smart” drug delivery: A window to future of translational medicine.Front Chem.202310109559810.3389/fchem.2022.1095598 36688039
    [Google Scholar]
  13. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.202120210112410.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  14. ChenJ. FanY. DongG. Designing biomimetic scaffolds for skin tissue engineering.Biomater. Sci.20231193051307610.1039/D3BM00046J 36970875
    [Google Scholar]
  15. EsmaeiliY. BidramE. BighamA. Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix.Alex. Eng. J.20238113716910.1016/j.aej.2023.08.080
    [Google Scholar]
  16. GovindarajuD.T. ChenC.H. ShalumonK.T. KaoH.H. ChenJ.P. Bioactive nanostructured scaffold-based approach for tendon and ligament tissue engineering.Nanomaterials20231312184710.3390/nano13121847 37368277
    [Google Scholar]
  17. MoonS.H. HwangH.J. JeonH.R. ParkS.J. BaeI.S. YangY.J. Photocrosslinkable natural polymers in tissue engineering.Front. Bioeng. Biotechnol.202311112775710.3389/fbioe.2023.1127757 36970625
    [Google Scholar]
  18. GhiselliG. Drug‐mediated regulation of glycosaminoglycan biosynthesis.Med. Res. Rev.20173751051109410.1002/med.21429 28029167
    [Google Scholar]
  19. PrydzK. Determinants of glycosaminoglycan (GAG) structure.Biomolecules2015532003202210.3390/biom5032003 26308067
    [Google Scholar]
  20. FraserJ.R.E. LaurentT.C. LaurentU.B.G. Hyaluronan: Its nature, distribution, functions and turnover.J. Intern. Med.19972421273310.1046/j.1365‑2796.1997.00170.x 9260563
    [Google Scholar]
  21. NecasJ. BartosikovaL. BraunerP. KolarJ. Hyaluronic acid (hyaluronan): A review.Vet. Med.200853839741110.17221/1930‑VETMED
    [Google Scholar]
  22. PrasadJ. NetamA.K. SatapathyT. Prakash RaoS. JainP. Anti-hyperlipidemic and antioxidant activities of a combination of terminalia arjuna and commiphora mukul on experimental animals BT: Advances in biomedical engineering and technology.SingaporeSpringer Singapore2021175188
    [Google Scholar]
  23. HachimD. WhittakerT.E. KimH. StevensM.M. Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices.J. Control. Release201931313114710.1016/j.jconrel.2019.10.018 31629041
    [Google Scholar]
  24. DosioF. ArpiccoS. StellaB. FattalE. Hyaluronic acid for anticancer drug and nucleic acid delivery.Adv. Drug Deliv. Rev.2016979720423610.1016/j.addr.2015.11.011 26592477
    [Google Scholar]
  25. CaiJ. FuJ. LiR. ZhangF. LingG. ZhangP. A potential carrier for anti-tumor targeted delivery-hyaluronic acid nanoparticles.Carbohydr. Polym.201920820835636410.1016/j.carbpol.2018.12.074 30658811
    [Google Scholar]
  26. BlancoA. BlancoG. Carbohydrates. Medical Biochemistry.Cambridge, MA, USAAcademic Press2017739710.1016/B978‑0‑12‑803550‑4.00004‑5
    [Google Scholar]
  27. CollinsM.N. BirkinshawC. Hyaluronic acid based scaffolds for tissue engineering—A review.Carbohydr. Polym.20139221262127910.1016/j.carbpol.2012.10.028 23399155
    [Google Scholar]
  28. VoigtJ. DriverV.R. Hyaluronic acid derivatives and their healing effect on burns, epithelial surgical wounds, and chronic wounds: A systematic review and meta‐analysis of randomized controlled trials.Wound Repair Regen.201220331733110.1111/j.1524‑475X.2012.00777.x 22564227
    [Google Scholar]
  29. YamanlarS. SantS. BoudouT. PicartC. KhademhosseiniA. Surface functionalization of hyaluronic acid hydrogels by polyelectrolyte multilayer films.Biomaterials201132245590559910.1016/j.biomaterials.2011.04.030 21571364
    [Google Scholar]
  30. KhunmaneeS. JeongY. ParkH. Crosslinking method of hyaluronic-based hydrogel for biomedical applications.J. Tissue Eng.2017810.1177/2041731417726464 28912946
    [Google Scholar]
  31. LouJ. StowersR. NamS. XiaY. ChaudhuriO. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture.Biomaterials201815421322210.1016/j.biomaterials.2017.11.004 29132046
    [Google Scholar]
  32. YinF. LinL. ZhanS. Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing.J. Biomater. Sci. Polym. Ed.201930319020110.1080/09205063.2018.1558933 30556771
    [Google Scholar]
  33. SolchagaL.A. YooJ.U. LundbergM. Hyaluronan‐based polymers in the treatment of osteochondral defects.J. Orthop. Res.200018577378010.1002/jor.1100180515 11117300
    [Google Scholar]
  34. PoldervaartM.T. GoversenB. de RuijterM. 3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity.PLoS One2017126e017762810.1371/journal.pone.0177628 28586346
    [Google Scholar]
  35. FedorovichN.E. SchuurmanW. WijnbergH.M. Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds.Tissue Eng. Part C Methods2012181334410.1089/ten.tec.2011.0060 21854293
    [Google Scholar]
  36. CavalloC. DesandoG. FerrariA. ZiniN. MarianiE. GrigoloB. Hyaluronan scaffold supports osteogenic differentiation of bone marrow concentrate cells.J. Biol. Regul. Homeost. Agents2016302409420 27358127
    [Google Scholar]
  37. BiancoP. RiminucciM. GronthosS. RobeyP.G. Bone marrow stromal stem cells: Nature, biology, and potential applications.Stem Cells200119318019210.1634/stemcells.19‑3‑180 11359943
    [Google Scholar]
  38. BlockJ.E. The role and effectiveness of bone marrow in osseous regeneration.Med. Hypotheses200565474074710.1016/j.mehy.2005.04.026 15950398
    [Google Scholar]
  39. SiderisE. GriffinD.R. DingY. Particle hydrogels based on hyaluronic acid building blocks.ACS Biomater. Sci. Eng.20162112034204110.1021/acsbiomaterials.6b00444 33440539
    [Google Scholar]
  40. ChiuY.C. LarsonJ.C. IsomA.Jr BreyE.M. Generation of porous poly(ethylene glycol) hydrogels by salt leaching.Tissue Eng. Part C Methods201016590591210.1089/ten.tec.2009.0646 19905877
    [Google Scholar]
  41. NamY.S. YoonJ.J. ParkT.G. A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive.J. Biomed. Mater. Res.20005311710.1002/(SICI)1097‑4636(2000)53:1<1::AID‑JBM1>3.0.CO;2‑R 10634946
    [Google Scholar]
  42. Poveda-ReyesS. MoulisovaV. Sanmartín-MasiáE. Quintanilla-SierraL. Salmerón-SánchezM. FerrerG.G. Gelatin—hyaluronic acid hydrogels with tuned stiffness to counterbalance cellular forces and promote cell differentiation.Macromol. Biosci.20161691311132410.1002/mabi.201500469 27213762
    [Google Scholar]
  43. LinH. BeckA.M. ShimomuraK. Optimization of photocrosslinked gelatin/hyaluronic acid hybrid scaffold for the repair of cartilage defect.J. Tissue Eng. Regen. Med.20191381418142910.1002/term.2883 31066519
    [Google Scholar]
  44. FengQ. LiQ. WenH. Injection and self‐assembly of bioinspired stem cell‐laden gelatin/hyaluronic acid hybrid microgels promote cartilage repair In Vivo.Adv. Funct. Mater.20192950190669010.1002/adfm.201906690
    [Google Scholar]
  45. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424122
    [Google Scholar]
  46. HozumiT. KageyamaT. OhtaS. FukudaJ. ItoT. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by schiff’s base formation.Biomacromolecules201819228829710.1021/acs.biomac.7b01133 29284268
    [Google Scholar]
  47. KumarP. CiftciS. BarthesJ. A composite Gelatin/hyaluronic acid hydrogel as an ECM mimic for developing mesenchymal stem cell‐derived epithelial tissue patches.J. Tissue Eng. Regen. Med.2020141455710.1002/term.2962 31597222
    [Google Scholar]
  48. LuoJ.W. LiuC. WuJ.H. In situ forming gelatin/hyaluronic acid hydrogel for tissue sealing and hemostasis.J. Biomed. Mater. Res. B Appl. Biomater.2020108379079710.1002/jbm.b.34433 31225694
    [Google Scholar]
  49. KazemiradS. HerisH.K. MongeauL. Viscoelasticity of hyaluronic acid‐gelatin hydrogels for vocal fold tissue engineering.J. Biomed. Mater. Res. B Appl. Biomater.2016104228329010.1002/jbm.b.33358 25728914
    [Google Scholar]
  50. NetamA.K. PrasadJ. SatapathyT. JainP. Evaluation for toxicity and improved therapeutic effectiveness of natural polymer co-administered along with venocin in acetic acid-induced colitis using rat model BT: Advances in Biomedical Engineering and Technology.SingaporeSpringer Singapore2021207220
    [Google Scholar]
  51. Ebrahimi-HosseinzadehB. PedramM. Hatamian-ZarmiA. In vivo evaluation of gelatin/hyaluronic acid nanofiber as Burn-wound healing and its comparison with ChitoHeal gel.Fibers Polym.201617682082610.1007/s12221‑016‑6259‑4
    [Google Scholar]
  52. WangZ. QianY. LiL. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing.J. Biomater. Appl.201630668669810.1177/0885328215586907 26012354
    [Google Scholar]
  53. XuW. WangZ. LiuY. Carboxymethyl chitosan/gelatin/hyaluronic acid blended-membranes as epithelia transplanting scaffold for corneal wound healing.Carbohydr. Polym.201819224025010.1016/j.carbpol.2018.03.033 29691018
    [Google Scholar]
  54. YewC. AzariP. ChoiJ. MuhamadF. Pingguan-MurphyB. Electrospun polycaprolactone nanofibers as a reaction membrane for lateral flow assay.Polymers20181012138710.3390/polym10121387 30961312
    [Google Scholar]
  55. ZarrintajP. ManouchehriS. AhmadiZ. Agarose-based biomaterials for tissue engineering.Carbohydr. Polym.2018187668410.1016/j.carbpol.2018.01.060 29486846
    [Google Scholar]
  56. ChuB. ZhangA. HuangJ. Preparation and biological evaluation of a novel agarose-grafting-hyaluronan scaffold for accelerated wound regeneration.Biomed. Mater.202015404500910.1088/1748‑605X/ab7b3e 32109900
    [Google Scholar]
  57. FootM. MulhollandM. Classification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using chemometric techniques.J. Pharm. Biomed. Anal.200538339740710.1016/j.jpba.2005.01.026 15925239
    [Google Scholar]
  58. BhairamM. PrasadJ. VermaK. JainP. GidwaniB. Formulation of transdermal patch of Losartan Potassium & Glipizide for the treatment of hypertension & diabetes.Mater. Today Proc.202383596810.1016/j.matpr.2023.01.147
    [Google Scholar]
  59. HwangN.S. VargheseS. LeeH.J. Response of zonal chondrocytes to extracellular matrix‐hydrogels.FEBS Lett.2007581224172417810.1016/j.febslet.2007.07.049 17692846
    [Google Scholar]
  60. LiuY. CaiS. ShuX.Z. ShelbyJ. PrestwichG.D. Release of basic fibroblast growth factor from a crosslinked glycosaminoglycan hydrogel promotes wound healing.Wound Repair Regen.200715224525110.1111/j.1524‑475X.2007.00211.x 17352757
    [Google Scholar]
  61. AravamudhanA. RamosD.M. NadaA.A. KumbarS.G. Natural polymers: Polysaccharides and their derivatives for biomedical applications. Natural and Synthetic Biomedical Polymers.Oxford, UKElsevier2014678910.1016/B978‑0‑12‑396983‑5.00004‑1
    [Google Scholar]
  62. CorradettiB. TaraballiF. MinardiS. Chondroitin sulfate immobilized on a biomimetic scaffold modulates inflammation while driving chondrogenesis.Stem Cells Transl. Med.20165567068210.5966/sctm.2015‑0233 27013739
    [Google Scholar]
  63. PiaiJ.F. RubiraA.F. MunizE.C. Self-assembly of a swollen chitosan/chondroitin sulfate hydrogel by outward diffusion of the chondroitin sulfate chains.Acta Biomater.2009572601260910.1016/j.actbio.2009.03.035 19394902
    [Google Scholar]
  64. StanfordC.M. SolurshM. KellerJ.C. Significant role of adhesion properties of primary osteoblast-like cells in early adhesion events for chondroitin sulfate and dermatan sulfate surface molecules.J. Biomed. Mater. Res.199947334535210.1002/(SICI)1097‑4636(19991205)47:3<345::AID‑JBM8>3.0.CO;2‑N 10487885
    [Google Scholar]
  65. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/1567201820666230112170035 36644864
    [Google Scholar]
  66. AndrewsS. ChengA. StevensH. Chondroitin sulfate glycosaminoglycan scaffolds for cell and recombinant protein-based bone regeneration.Stem Cells Transl. Med.20198657558510.1002/sctm.18‑0141 30666821
    [Google Scholar]
  67. MüllerP. BulnheimU. DienerA. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells.J. Cell. Mol. Med.200812128129110.1111/j.1582‑4934.2007.00103.x 18366455
    [Google Scholar]
  68. ShihY.R.V. HwangY. PhadkeA. Calcium phosphate-bearing matrices induce osteogenic differentiation of stem cells through adenosine signaling.Proc. Natl. Acad. Sci. USA2014111399099510.1073/pnas.1321717111 24395775
    [Google Scholar]
  69. BoonrungsimanS. GentlemanE. CarzanigaR. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation.Proc. Natl. Acad. Sci.201210935141701417510.1073/pnas.1208916109 22879397
    [Google Scholar]
  70. JunS.H. LeeE.J. JangT.S. KimH.E. JangJ.H. KohY.H. Bone morphogenic protein-2 (BMP-2) loaded hybrid coating on porous hydroxyapatite scaffolds for bone tissue engineering.J. Mater. Sci. Mater. Med.201324377378210.1007/s10856‑012‑4822‑0 23344924
    [Google Scholar]
  71. KweonH. YooM.K. ParkI.K. A novel degradable polycaprolactone networks for tissue engineering.Biomaterials200324580180810.1016/S0142‑9612(02)00370‑8 12485798
    [Google Scholar]
  72. NuttelmanC.R. BenoitD.S.W. TripodiM.C. AnsethK.S. The effect of ethylene glycol methacrylate phosphate in PEG hydrogels on mineralization and viability of encapsulated hMSCs.Biomaterials20062781377138610.1016/j.biomaterials.2005.08.014 16139351
    [Google Scholar]
  73. KimH.D. LeeE.A. AnY.H. Chondroitin sulfate-based biomineralizing surface hydrogels for bone tissue engineering.ACS Appl. Mater. Interfaces2017926216392165010.1021/acsami.7b04114 28605908
    [Google Scholar]
  74. MiyamotoA. YoshikawaM. MaedaH. Hard tissue-forming ability and ultra-micro structure of newly developed sponges as scaffolds made with sodium alginate gel and chondroitin sulfate.J. Biomed. Sci. Eng.2018111128930610.4236/jbise.2018.1111024
    [Google Scholar]
  75. SharmaB. FermanianS. GibsonM. Human cartilage repair with a photoreactive adhesive-hydrogel composite.Sci. Transl. Med.20135167167ra610.1126/scitranslmed.3004838 23303605
    [Google Scholar]
  76. TangC. HoltB.D. WrightZ.M. ArnoldA.M. MoyA.C. SydlikS.A. Injectable amine functionalized graphene and chondroitin sulfate hydrogel with potential for cartilage regeneration.J. Mater. Chem. B Mater. Biol. Med.20197152442245310.1039/C8TB02967A 32255121
    [Google Scholar]
  77. HuebschN. AranyP.R. MaoA.S. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate.Nat. Mater.20109651852610.1038/nmat2732 20418863
    [Google Scholar]
  78. IslamM. HuangY. JainP. FanB. TongL. WangF. Enzymatic hydrolysis of soy protein to high moisture textured meat analogue with emphasis on antioxidant effects: As a tool to improve techno-functional property.Biocatal. Agric. Biotechnol.20235010270010.1016/j.bcab.2023.102700
    [Google Scholar]
  79. RobbinsP.D. MorelliA.E. Regulation of immune responses by extracellular vesicles.Nat. Rev. Immunol.201414319520810.1038/nri3622 24566916
    [Google Scholar]
  80. ChenF. YuS. LiuB. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering.Sci. Rep.2016612001410.1038/srep20014 26817622
    [Google Scholar]
  81. BergerJ. ReistM. MayerJ.M. FeltO. PeppasN.A. GurnyR. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications.Eur. J. Pharm. Biopharm.2004571193410.1016/S0939‑6411(03)00161‑9 14729078
    [Google Scholar]
  82. CheniteA. Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions.Carbohydr. Polym.2001461394710.1016/S0144‑8617(00)00281‑2
    [Google Scholar]
  83. NairM.B. BaranwalG. VijayanP. KeyanK.S. JayakumarR. Composite hydrogel of chitosan–poly(hydroxybutyrate- co -valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering.Colloids Surf. B Biointerfaces2015136849210.1016/j.colsurfb.2015.08.026 26363270
    [Google Scholar]
  84. AbbadessaA. BlokzijlM.M. MouserV.H.M. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications.Carbohydr. Polym.201614916317410.1016/j.carbpol.2016.04.080 27261741
    [Google Scholar]
  85. SadeghiA. Pezeshki-ModaressM. ZandiM. Electrospun polyvinyl alcohol/gelatin/chondroitin sulfate nanofibrous scaffold: Fabrication and in vitro evaluation.Int. J. Biol. Macromol.20181141248125610.1016/j.ijbiomac.2018.04.002 29627465
    [Google Scholar]
  86. SadeghiA. ZandiM. Pezeshki-ModaressM. RajabiS. Tough, hybrid chondroitin sulfate nanofibers as a promising scaffold for skin tissue engineering.Int. J. Biol. Macromol.2019132637510.1016/j.ijbiomac.2019.03.208 30928369
    [Google Scholar]
  87. Fernandes-CunhaG.M. NaK.S. PutraI. Corneal wound healing effects of mesenchymal stem cell secretome delivered within a viscoelastic gel carrier.Stem Cells Transl. Med.20198547848910.1002/sctm.18‑0178 30644653
    [Google Scholar]
  88. NiY. TangZ. CaoW. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.Int. J. Biol. Macromol.20157436737510.1016/j.ijbiomac.2014.10.058 25445680
    [Google Scholar]
  89. BhowmickS. ScharnweberD. KoulV. Co-cultivation of keratinocyte-human mesenchymal stem cell (hMSC) on sericin loaded electrospun nanofibrous composite scaffold (cationic gelatin/hyaluronan/chondroitin sulfate) stimulates epithelial differentiation in hMSCs: In vitro study.Biomaterials201688839610.1016/j.biomaterials.2016.02.034 26946262
    [Google Scholar]
  90. SawatjuiN. DamrongrungruangT. LeeanansaksiriW. JearanaikoonP. HongengS. LimpaiboonT. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances In vitro chondrogenesis of bone marrow mesenchymal stem cells.Mater. Sci. Eng. C201552909610.1016/j.msec.2015.03.043 25953544
    [Google Scholar]
  91. HuffmanF.G. Uronic acids. Encyclopedia of Food Sciences and Nutrition.2nd edOxford, UKAcademic Press20035890589610.1016/B0‑12‑227055‑X/01221‑9
    [Google Scholar]
  92. JyothsnaK.M. SarkarP. JhaK.K. RaghunathanV. BhatR. Differential levels of dermatan sulfate generate distinct Collagen I gel architectures.bioRxiv2020
    [Google Scholar]
  93. HayderJ. ChaouchM.A. AmiraN. Co-immobilization of chitosan and dermatan sulfate from Raja montagui skin on polyethylene terephthalate surfaces: Characterization and antibiofilm activity.Int. J. Polym. Mater.201867527728710.1080/00914037.2017.1320664
    [Google Scholar]
  94. OguraC. HiranoK. MizumotoS. YamadaS. NishiharaS. Dermatan sulphate promotes neuronal differentiation in mouse and human stem cells.J. Biochem.2020 32730567
    [Google Scholar]
  95. ListikE. XavierE.G. Silva PinhalM.A. TomaL. Dermatan sulfate epimerase 1 expression and mislocalization may interfere with dermatan sulfate synthesis and breast cancer cell growth.Carbohydr. Res.202048810790610.1016/j.carres.2020.107906 31972438
    [Google Scholar]
  96. SinghR PrasadJ SatapathyT JainP SinghS Pharmacological evaluation for anti-bacterial and anti-inflammatory potential of polymeric microparticles Ind J BiochemBiophys202158215661
    [Google Scholar]
  97. RezaeiS. BakhtiyariS. AssadollahiK. HeidarizadiS. MoayeriA. AziziM. Evaluating chondroitin sulfate and dermatan sulfate expression in glial scar to determine appropriate intervention time in rats.Basic Clin. Neurosci.20201113140 32483473
    [Google Scholar]
  98. WalimbeT. PanitchA. Proteoglycans in biomedicine: Resurgence of an underexploited class of ECM molecules.Front. Pharmacol.202010166110.3389/fphar.2019.01661 32082161
    [Google Scholar]
  99. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  100. LiS. ZhangF. YuY. ZhangQ. A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy.Carbohydr. Polym.202023511598310.1016/j.carbpol.2020.115983 32122513
    [Google Scholar]
  101. BlachmanA. FunezF. BiroccoA.M. Targeted anti-inflammatory peptide delivery in injured endothelial cells using dermatan sulfate/chitosan nanomaterials.Carbohydr. Polym.202023011561010.1016/j.carbpol.2019.115610 31887960
    [Google Scholar]
  102. RasenteR.Y. ImperialeJ.C. Lázaro-MartínezJ.M. Dermatan sulfate/chitosan polyelectrolyte complex with potential application in the treatment and diagnosis of vascular disease.Carbohydr. Polym.201614436237010.1016/j.carbpol.2016.02.046 27083828
    [Google Scholar]
  103. GallagherJ.T. WalkerA. Molecular distinctions between heparan sulphate and heparin. Analysis of sulphation patterns indicates that heparan sulphate and heparin are separate families of N -sulphated polysaccharides.Biochem. J.1985230366567410.1042/bj2300665 2933029
    [Google Scholar]
  104. PanY. XiaoC. TanH. Covalently injectable chitosan/chondroitin sulfate hydrogel integrated gelatin/heparin microspheres for soft tissue engineering.Int. J. Polym. Mater.2019201919
    [Google Scholar]
  105. MammadovB. SeverM. GecerM. Sciatic nerve regeneration induced by glycosaminoglycan and laminin mimetic peptide nanofiber gels.RSC Advances2016611211053511054710.1039/C6RA24450E
    [Google Scholar]
  106. MuraliS. RaiB. DombrowskiC. Affinity-selected heparan sulfate for bone repair.Biomaterials201334225594560510.1016/j.biomaterials.2013.04.017 23632323
    [Google Scholar]
  107. WangC. PoonS. MuraliS. Engineering a vascular endothelial growth factor 165-binding heparan sulfate for vascular therapy.Biomaterials201435256776678610.1016/j.biomaterials.2014.04.084 24854095
    [Google Scholar]
  108. LeeJ.H. LuoX. RenX. A heparan sulfate device for the regeneration of osteochondral defects.Tissue Eng. Part A2019255-635236310.1089/ten.tea.2018.0171 30351222
    [Google Scholar]
  109. Sefkow-WernerJ. MachillotP. SalesA. Heparan sulfate co-immobilized with cRGD ligands and BMP2 on biomimetic platforms promotes BMP2-mediated osteogenic differentiation.Acta Biomater.20201149010310.1016/j.actbio.2020.07.015 32673751
    [Google Scholar]
  110. CasellaA. PanitchA. LeachJ.K. Endogenous electric signaling as a blueprint for conductive materials in tissue engineering.Bioelectricity2020312741
    [Google Scholar]
  111. MelroseJ. Keratan sulfate (KS)‐proteoglycans and neuronal regulation in health and disease: the importance of KS ‐glycodynamics and interactive capability with neuroregulatory ligands.J. Neurochem.2019149217019410.1111/jnc.14652 30578672
    [Google Scholar]
  112. Gonzalez-GilA. PorellR.N. FernandesS.M. Sialylated keratan sulfate proteoglycans are Siglec-8 ligands in human airways.Glycobiology2018281078680110.1093/glycob/cwy057 29924315
    [Google Scholar]
  113. KumagaiT. KiwamotoT. BrummetM.E. Airway glycomic and allergic inflammatory consequences resulting from keratan sulfate galactose 6-O-sulfotransferase (CHST1) deficiency.Glycobiology201828640641710.1093/glycob/cwy025 29659839
    [Google Scholar]
  114. GaoC. FujinawaR. YoshidaT. A keratan sulfate disaccharide prevents inflammation and the progression of emphysema in murine models.Am. J. Physiol. Lung Cell. Mol. Physiol.20173122L268L27610.1152/ajplung.00151.2016 28011617
    [Google Scholar]
  115. ZhengT. ZhaoC. ZhaoB. Impairment of the autophagy-lysosomal pathway and activation of pyroptosis in macular corneal dystrophy.Cell Death Discov.2020618510.1038/s41420‑020‑00320‑z 32983576
    [Google Scholar]
  116. LeiphrakpamP.D. PatilP.P. RemmersN. Role of keratan sulfate expression in human pancreatic cancer malignancy.Sci. Rep.201991966510.1038/s41598‑019‑46046‑6 31273306
    [Google Scholar]
  117. HadleyJ.A. Horvat-GordonM. KimW.K. PraulC.A. BurnsD. LeachR.M.Jr Bone sialoprotein keratan sulfate proteoglycan (BSP-KSPG) and FGF-23 are important physiolog-ical components of medullary bone.Comp. Biochem. Physiol. Part A Mol. Integr. Physiol.20161941710.1016/j.cbpa.2015.12.009 26773479
    [Google Scholar]
  118. MelroseJ. Mucin-like glycopolymer gels in electrosensory tissues generate cues which direct electrolocation in amphibians and neuronal activation in mammals.Neural Regen. Res.20191471191119510.4103/1673‑5374.251298 30804244
    [Google Scholar]
  119. FuL. SunX. HeW. Keratan sulfate glycosaminoglycan from chicken egg white.Glycobiology201626769370010.1093/glycob/cww017 26903438
    [Google Scholar]
  120. RestainoO.F. FinamoreR. DianaP. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate.Anal. Chim. Acta2017958597010.1016/j.aca.2016.12.005 28110685
    [Google Scholar]
  121. da CunhaA.L. de OliveiraL.G. MaiaL.F. de OliveiraL.F.C. MichelacciY.M. de AguiarJ.A.K. Pharmaceutical grade chondroitin sulfate: Structural analysis and identification of contaminants in different commercial preparations.Carbohydr. Polym.201513430030810.1016/j.carbpol.2015.08.006 26428128
    [Google Scholar]
  122. BottelliS. GrilloG. BarindelliE. NencioniA. Di MariaA. FossatiT. Validated high-performance anion-exchange chromatography with pulsed amperometric detection method for the determination of residual keratan sulfate and other glucosamine impurities in sodium chondroitin sulfate.J. Chromatogr. A20171505434910.1016/j.chroma.2017.04.045 28535934
    [Google Scholar]
  123. LinX. Functions of heparan sulfate proteoglycans in cell signaling during development.Development2004131246009602110.1242/dev.01522 15563523
    [Google Scholar]
  124. HabuchiH. SuzukiS. SaitoT. Structure of a heparan sulphate oligosaccharide that binds to basic fibroblast growth factor.Biochem. J.1992285380581310.1042/bj2850805 1497618
    [Google Scholar]
  125. MaccaranaM. CasuB. LindahlU. Minimal sequence in heparin/heparan sulfate required for binding of basic fibroblast growth factor.J. Biol. Chem.19942695390310.1016/S0021‑9258(17)41946‑6 8106436
    [Google Scholar]
  126. ForsbergE. PejlerG. RingvallM. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme.Nature1999400674677377610.1038/23488 10466727
    [Google Scholar]
  127. HumphriesD.E. WongG.W. FriendD.S. Heparin is essential for the storage of specific granule proteases in mast cells.Nature1999400674676977210.1038/23481 10466726
    [Google Scholar]
  128. ShippE.L. Hsieh-WilsonL.C. Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays.Chem. Biol.200714219520810.1016/j.chembiol.2006.12.009 17317573
    [Google Scholar]
  129. IshiharaM. Structural requirements in heparin for binding and activation of FGF-1 and FGF-4 are different from that for FGF-2.Glycobiology19944681782410.1093/glycob/4.6.817 7537556
    [Google Scholar]
  130. XuR. OriA. RuddT.R. Diversification of the structural determinants of fibroblast growth factor-heparin interactions: implications for binding specificity.J. Biol. Chem.201228747400614007310.1074/jbc.M112.398826 23019343
    [Google Scholar]
  131. PencS.F. PomahacB. WinklerT. Dermatan sulfate released after injury is a potent promoter of fibroblast growth factor-2 function.J. Biol. Chem.199827343281162812110.1074/jbc.273.43.28116 9774430
    [Google Scholar]
  132. ZamfirA. SeidlerD.G. KresseH. Peter-KatalinićJ. Structural investigation of chondroitin/dermatan sulfate oligosaccharides from human skin fibroblast decorin.Glycobiology2003131173374210.1093/glycob/cwg086 12799343
    [Google Scholar]
  133. ClaassenC. SewaldL. TovarG.E.M. BorchersK. Controlled release of vascular endothelial growth factor from heparin-functionalized gelatin type A and albumin hydrogels.Gels20173435
    [Google Scholar]
  134. TanQ. TangH. HuJ. Controlled release of chitosan/heparin nanoparticle-delivered VEGF enhances regeneration of decellularized tissue-engineered scaffolds.Int. J. Nanomedicine20116692994210.2147/IJN.S18753 21720505
    [Google Scholar]
  135. YeX. WangH. ZhouJ. The effect of Heparin-VEGF multilayer on the biocompatibility of decellularized aortic valve with platelet and endothelial progenitor cells.PLoS One201381e5462210.1371/journal.pone.0054622 23359625
    [Google Scholar]
  136. JinK. LiB. LouL. In vivo vascularization of MSC-loaded porous hydroxyapatite constructs coated with VEGF-functionalized collagen/heparin multilayers.Sci. Rep.2016611987110.1038/srep19871 26794266
    [Google Scholar]
  137. ChenJ. YangL. GuoL. DuanX. Sodium hyaluronate as a drug-release system for VEGF 165 improves graft revascularization in anterior cruciate ligament reconstruction in a rabbit model.Exp. Ther. Med.20124343043410.3892/etm.2012.629 23181113
    [Google Scholar]
  138. BraghirolliD.I. HelferV.E. ChagastellesP.C. DalbertoT.P. GambaD. PrankeP. Electrospun scaffolds functionalized with heparin and vascular endothelial growth factor increase the proliferation of endothelial progenitor cells.Biomed. Mater.201712202500310.1088/1748‑605X/aa5bbc 28140340
    [Google Scholar]
  139. ChenL. HeZ. ChenB. Loading of VEGF to the heparin cross-linked demineralized bone matrix improves vascularization of the scaffold.J. Mater. Sci. Mater. Med.201021130931710.1007/s10856‑009‑3827‑9 19634004
    [Google Scholar]
  140. ParkD. KimY. KimH. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ.Mol. Cells201233656357410.1007/s10059‑012‑2294‑1 22610405
    [Google Scholar]
  141. OnoK. HattoriH. TakeshitaS. KuritaA. IshiharaM. Structural features in heparin that interact with VEGF165 and modulate its biological activity.Glycobiology19999770571110.1093/glycob/9.7.705 10362840
    [Google Scholar]
  142. PrisellP.T. CamberO. HiseliusJ. NorstedtG. Evaluation of hyaluronan as a vehicle for peptide growth factors.Int. J. Pharm.1992851-3515610.1016/0378‑5173(92)90133‑M
    [Google Scholar]
  143. FthenouE. ZafiropoulosA. KatonisP. TsatsakisA. KaramanosN.K. TzanakakisG.N. Chondroitin sulfate prevents platelet derived growth factor‐mediated phosphorylation of PDGF‐Rβ in normal human fibroblasts severely impairing mitogenic responses.J. Cell. Biochem.200810361866187610.1002/jcb.21570 17960571
    [Google Scholar]
  144. MajackR.A. CookS.C. BornsteinP. Platelet-derived growth factor and heparin-like glycosaminoglycans regulate thrombospondin synthesis and deposition in the matrix by smooth muscle cells.J. Cell Biol.198510131059107010.1083/jcb.101.3.1059 4030891
    [Google Scholar]
  145. KangS. YoonJ.S. LeeJ.Y. KimH.J. ParkK. KimS.E. Long-term local PDGF delivery using porous microspheres modified with heparin for tendon healing of rotator cuff tendinitis in a rabbit model.Carbohydr. Polym.201920920937238110.1016/j.carbpol.2019.01.017 30732820
    [Google Scholar]
  146. YounesiM. KnapikD.M. CumskyJ. Effects of PDGF-BB delivery from heparinized collagen sutures on the healing of lacerated chicken flexor tendon in vivo.Acta Biomater.2017636320020910.1016/j.actbio.2017.09.006 28890257
    [Google Scholar]
  147. YounesiM. DonmezB.O. IslamA. AkkusO. Heparinized collagen sutures for sustained delivery of PDGF-BB: Delivery profile and effects on tendon-derived cells In-Vitro.Acta Biomater.2016414110010910.1016/j.actbio.2016.05.036 27240725
    [Google Scholar]
  148. IwamotoR. MineN. KawaguchiT. MinamiS. SaekiK. MekadaE. HB-EGF function in cardiac valve development requires interaction with heparan sulfate proteoglycans.Development2010137132205221410.1242/dev.048926 20530548
    [Google Scholar]
  149. PrinczM.A. SheardownH. Heparin‐modified dendrimer crosslinked collagen matrices for the delivery of heparin‐binding epidermal growth factor.J. Biomed. Mater. Res. A2012100A81929193710.1002/jbm.a.34128 22492552
    [Google Scholar]
  150. JohnsonN.R. WangY. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing.J. Control. Release2013166212412910.1016/j.jconrel.2012.11.004 23154193
    [Google Scholar]
  151. JohnsonN.R. WangY. Coacervate delivery of HB‐EGF accelerates healing of type 2 diabetic wounds.Wound Repair Regen.201523459160010.1111/wrr.12319 26032846
    [Google Scholar]
  152. ThönesS. RotherS. WippoldT. Hyaluronan/collagen hydrogels containing sulfated hyaluronan improve wound healing by sustained release of heparin-binding EGF-like growth factor.Acta Biomater.2019868613514710.1016/j.actbio.2019.01.029 30660005
    [Google Scholar]
  153. SirkoS. von HolstA. WeberA. Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny.Stem Cells201028477578710.1002/stem.309 20087964
    [Google Scholar]
  154. ZierisA. ChwalekK. ProkophS. Dual independent delivery of pro-angiogenic growth factors from starPEG-heparin hydrogels.J. Control. Release20111561283610.1016/j.jconrel.2011.06.042 21763368
    [Google Scholar]
  155. AwadaH.K. JohnsonN.R. WangY. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction.J. Control. Release201520720771710.1016/j.jconrel.2015.03.034 25836592
    [Google Scholar]
  156. BaiY. BaiL. ZhouJ. ChenH. ZhangL. Sequential delivery of VEGF, FGF-2 and PDGF from the polymeric system enhance HUVECs angiogenesis in vitro and CAM angiogenesis.Cell. Immunol.2018323323193210.1016/j.cellimm.2017.10.008 29111157
    [Google Scholar]
  157. FreemanI. CohenS. The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization.Biomaterials200930112122213110.1016/j.biomaterials.2008.12.057 19152972
    [Google Scholar]
  158. TengoodJ.E. KovachK.M. VescoviP.E. RussellA.J. LittleS.R. Sequential delivery of vascular endothelial growth factor and sphingosine 1-phosphate for angiogenesis.Biomaterials201031307805781210.1016/j.biomaterials.2010.07.010 20674008
    [Google Scholar]
  159. DaviesN.H. SchmidtC. BezuidenhoutD. ZillaP. Sustaining neovascularization of a scaffold through staged release of vascular endothelial growth factor-A and platelet-derived growth factor-BB.Tissue Eng. Part A2012181-2263410.1089/ten.tea.2011.0192 21895488
    [Google Scholar]
  160. ParajóY. d’AngeloI. WelleA. Garcia-FuentesM. AlonsoM.J. Hyaluronic acid/Chitosan nanoparticles as delivery vehicles for VEGF and PDGF-BB.Drug Deliv.201017859660410.3109/10717544.2010.509357 20883178
    [Google Scholar]
  161. ChenD. ZhaoM. MundyG.R. Bone morphogenetic proteins.Growth Factors200422423324110.1080/08977190412331279890 15621726
    [Google Scholar]
  162. JamesA.W. LaChaudG. ShenJ. A review of the clinical side effects of bone morphogenetic Protein-2.Tissue Eng. Part B Rev.201622428429710.1089/ten.teb.2015.0357 26857241
    [Google Scholar]
  163. GandhiN.S. ManceraR.L. Prediction of heparin binding sites in bone morphogenetic proteins (BMPs).Biochim. Biophys. Acta. Proteins Proteomics20121824121374138110.1016/j.bbapap.2012.07.002 22824487
    [Google Scholar]
  164. YangH.S. LaW.G. BhangS.H. JeonJ.Y. LeeJ.H. KimB.S. Heparin-conjugated fibrin as an injectable system for sustained delivery of bone morphogenetic protein-2.Tissue Eng. Part A20101641225123310.1089/ten.tea.2009.0390 19886733
    [Google Scholar]
  165. JeonO. PowellC. SolorioL.D. KrebsM.D. AlsbergE. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels.J. Control. Release2011154325826610.1016/j.jconrel.2011.06.027 21745508
    [Google Scholar]
  166. KimR.Y. LeeB. ParkS.N. KoJ.H. KimI.S. HwangS.J. Is heparin effective for the controlled delivery of high-dose bone morphogenetic protein-2?Tissue Eng. Part A2016229-1080181710.1089/ten.tea.2015.0537 27098389
    [Google Scholar]
  167. YangH.S. LaW.G. ChoY.M. ShinW. YeoG.D. KimB.S. Comparison between heparin-conjugated fibrin and collagen sponge as bone morphogenetic protein-2 carriers for bone regeneration.Exp. Mol. Med.201244535035510.3858/emm.2012.44.5.039 22322342
    [Google Scholar]
  168. ThanyaphooS. KaewsrichanJ. A new biocompatible delivery scaffold containing heparin and bone morphogenetic protein 2.Acta Pharm.201666337338510.1515/acph‑2016‑0026 27383886
    [Google Scholar]
  169. HanninkG. GeutjesP.J. DaamenW.F. BumaP. Evaluation of collagen/heparin coated TCP/HA granules for long-term delivery of BMP-2.J. Mater. Sci. Mater. Med.201324232533210.1007/s10856‑012‑4802‑4 23135410
    [Google Scholar]
  170. RochaP.M. SantoV.E. GomesM.E. ReisR.L. ManoJ.F. Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering.J. Bioact. Compat. Polym.201126549350710.1177/0883911511420700
    [Google Scholar]
  171. MillerGM Hsieh-WilsonLC Sugar-dependent modulation of neuronal development, regeneration, and plasticity by chondroitin sulfate proteoglycans.Exp Neurol2015274Pt B1152510.1016/j.expneurol.2015.08.015 26315937
    [Google Scholar]
  172. BrownJ.M. XiaJ. ZhuangB. A sulfated carbohydrate epitope inhibits axon regeneration after injury.Proc. Natl. Acad. Sci.2012109134768477310.1073/pnas.1121318109 22411830
    [Google Scholar]
  173. RickardS.M. MummeryR.S. MulloyB. RiderC.C. The binding of human glial cell line-derived neurotrophic factor to heparin and heparan sulfate: Importance of 2-O-sulfate groups and effect on its interaction with its receptor, GFRalpha1.Glycobiology200313641942610.1093/glycob/cwg046 12626395
    [Google Scholar]
  174. WoodM.D. HunterD. MackinnonS.E. Sakiyama-ElbertS.E. Heparin-binding-affinity-based delivery systems releasing nerve growth factor enhance sciatic nerve regeneration.J. Biomater. Sci. Polym. Ed.2010216-777178710.1163/156856209X445285 20482984
    [Google Scholar]
  175. PurushothamanA. SugaharaK. FaissnerA. Chondroitin sulfate “wobble motifs” modulate maintenance and differentiation of neural stem cells and their progeny.J. Biol. Chem.201228752935294210.1074/jbc.R111.298430 22094467
    [Google Scholar]
  176. ButterfieldK.C. ConovaloffA.W. PanitchA. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.Biomatter20111217418110.4161/biom.18791 23507746
    [Google Scholar]
  177. PominV.H. Keratan sulfate: An up-to-date review.Int. J. Biol. Macromol.2015727228228910.1016/j.ijbiomac.2014.08.029 25179279
    [Google Scholar]
  178. Salek-ArdakaniS. ArrandJ.R. ShawD. MackettM. Heparin and heparan sulfate bind interleukin-10 and modulate its activity.Blood20009651879188810.1182/blood.V96.5.1879 10961890
    [Google Scholar]
  179. ToidaT. SakaiS. AkiyamaH. LinhardtR.J. Immunological activity of chondroitin sulfate.Adv. Pharmacol.2006535340341510.1016/S1054‑3589(05)53019‑9 17239777
    [Google Scholar]
  180. MummeryR.S. RiderC.C. Characterization of the heparin-binding properties of IL-6.J. Immunol.2000165105671567910.4049/jimmunol.165.10.5671 11067924
    [Google Scholar]
  181. NajjamS. MulloyB. ThezeJ. GordonM. GibbsR. RiderC.C. Further characterization of the binding of human recombinant interleukin 2 to heparin and identification of putative binding sites.Glycobiology19988550951610.1093/glycob/8.5.509 9597549
    [Google Scholar]
  182. ChenW.C.W. LeeB.G. ParkD.W. Controlled dual delivery of fibroblast growth factor-2 and Interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair.Biomaterials2015727213815110.1016/j.biomaterials.2015.08.050 26370927
    [Google Scholar]
  183. JohnsonN.R. KrugerM. GoetschK.P. Coacervate delivery of growth factors combined with a degradable hydrogel preserves heart function after myocardial infarction.ACS Biomater. Sci. Eng.20151975375910.1021/acsbiomaterials.5b00077 33445252
    [Google Scholar]
  184. MansurovN. ChenW.C.W. AwadaH. HuardJ. WangY. SaparovA. A controlled release system for simultaneous delivery of three human perivascular stem cell‐derived factors for tissue repair and regeneration.J. Tissue Eng. Regen. Med.2018122e1164e117210.1002/term.2451 28482145
    [Google Scholar]
  185. SchirmerL. AtallahP. WernerC. FreudenbergU. StarPEG-heparin hydrogels to protect and sustainably deliver IL-4.Adv. Healthc. Mater.20165243157316410.1002/adhm.201600797 27860466
    [Google Scholar]
  186. BonitoV. SmitsA.I.P.M. GoorO.J.G.M. Modulation of macrophage phenotype and protein secretion via heparin-IL-4 functionalized supramolecular elastomers.Acta Biomater.2018717124726010.1016/j.actbio.2018.02.032 29518556
    [Google Scholar]
  187. ProkophS. ChavakisE. LeventalK.R. Sustained delivery of SDF-1α from heparin-based hydrogels to attract circulating pro-angiogenic cells.Biomaterials201233194792480010.1016/j.biomaterials.2012.03.039 22483246
    [Google Scholar]
  188. BenoitD.S.W. AnsethK.S. Heparin functionalized PEG gels that modulate protein adsorption for hMSC adhesion and differentiation.Acta Biomater.20051446147010.1016/j.actbio.2005.03.002 16701827
    [Google Scholar]
  189. XuH.L. TianF.R. XiaoJ. Sustained-release of FGF-2 from a hybrid hydrogel of heparin-poloxamer and decellular matrix promotes the neuroprotective effects of proteins after spinal injury.Int. J. Nanomedicine2018131368169410.2147/IJN.S152246 29440894
    [Google Scholar]
  190. LeeJ.S. GoD.H. BaeJ.W. LeeS.J. ParkK.D. Heparin conjugated polymeric micelle for long-term delivery of basic fibroblast growth factor.J. Control. Release2007117220420910.1016/j.jconrel.2006.11.004 17196698
    [Google Scholar]
  191. ChuH. GaoJ. ChenC.W. HuardJ. WangY. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis.Proc. Natl. Acad. Sci.201110833134441344910.1073/pnas.1110121108 21808045
    [Google Scholar]
  192. AwadaH.K. LongD.W. WangZ. HwangM.P. KimK. WangY. A single injection of protein-loaded coacervate-gel significantly improves cardiac function post infarction.Biomaterials2017125125658010.1016/j.biomaterials.2017.02.020 28231509
    [Google Scholar]
  193. ChuH. JohnsonN.R. MasonN.S. WangY. A [polycation:heparin] complex releases growth factors with enhanced bioactivity.J. Control. Release2011150215716310.1016/j.jconrel.2010.11.025 21118705
    [Google Scholar]
  194. ZengH.Y. HuangY.C. Basic fibroblast growth factor released from fucoidan-modified chitosan/alginate scaffolds for promoting fibroblasts migration.J. Polym. Res.20182538310.1007/s10965‑018‑1476‑8
    [Google Scholar]
  195. KarumbaiahL. EnamS.F. BrownA.C. Chondroitin sulfate glycosaminoglycan hydrogels create endogenous niches for neural stem cells.Bioconjug. Chem.201526122336234910.1021/acs.bioconjchem.5b00397 26440046
    [Google Scholar]
  196. ThomopoulosS. DasR. SilvaM.J. Enhanced flexor tendon healing through controlled delivery of PDGF‐BB.J. Orthop. Res.20092791209121510.1002/jor.20875 19322789
    [Google Scholar]
  197. ParkY.J. LeeY.M. LeeJ.Y. SeolY.J. ChungC.P. LeeS.J. Controlled release of platelet-derived growth factor-BB from chondroitin sulfate–chitosan sponge for guided bone regeneration.J. Control. Release2000672-338539410.1016/S0168‑3659(00)00232‑7 10825569
    [Google Scholar]
  198. TellierL.E. MillerT. McDevittT.C. TemenoffJ.S. Hydrolysis and sulfation pattern effects on release of bioactive bone morphogenetic protein-2 from heparin-based microparticles.J. Mater. Chem. B Mater. Biol. Med.20153408001800910.1039/C5TB00933B 27785363
    [Google Scholar]
  199. HettiaratchiM.H. MillerT. TemenoffJ.S. GuldbergR.E. McDevittT.C. Heparin microparticle effects on presentation and bioactivity of bone morphogenetic protein-2.Biomaterials201435257228723810.1016/j.biomaterials.2014.05.011 24881028
    [Google Scholar]
  200. HettiaratchiM.H. RouseT. ChouC. Enhanced in vivo retention of low dose BMP-2 via heparin microparticle delivery does not accelerate bone healing in a critically sized femoral defect.Acta Biomater.20175959213210.1016/j.actbio.2017.06.028 28645809
    [Google Scholar]
  201. HeT. WuD. WangX. RongJ. ZhaoJ. Photo-crosslinking hyaluronan-heparin hybrid hydrogels for BMP-2 sustained delivery.J Polym Eng201737212513310.1515/polyeng‑2015‑0379
    [Google Scholar]
  202. KisielM. KlarA.S. VenturaM. Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation.PLoS One2013810e7855110.1371/journal.pone.0078551 24167632
    [Google Scholar]
  203. AnouzR. RepanasA. SchwarzE. GrothT. ret al., Novel surface coatings using oxidized glycosaminoglycans as delivery systems of bone morphogenetic protein 2 (BMP-2) for bone regeneration.Macromol. Biosci.20181811180028310.1002/mabi.201800283 30259667
    [Google Scholar]
  204. KeskinD.S. TezcanerA. KorkusuzP. KorkusuzF. HasirciV. Collagen–chondroitin sulfate-based PLLA–SAIB-coated rhBMP-2 delivery system for bone repair.Biomaterials200526184023403410.1016/j.biomaterials.2004.09.063 15626448
    [Google Scholar]
  205. FanJ. ParkH. LeeM.K. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model.Tissue Eng. Part A20142015-162169217910.1089/ten.tea.2013.0523 24524819
    [Google Scholar]
  206. LiY CaoJ HanS ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis.Artif Cells Nanomed Biotechnol201846sup21526010.1080/21691401.2018.1452752 29575932
    [Google Scholar]
  207. ZhaoJ. LuoC. ChenY. Preparation, structure and BMP-2 controlled release of heparin-conjugated hyaluronan microgels.Carbohydr. Polym.201186280681110.1016/j.carbpol.2011.05.026
    [Google Scholar]
  208. BaiX. LüS. CaoZ. Dual crosslinked chondroitin sulfate injectable hydrogel formed via continuous Diels-Alder (DA) click chemistry for bone repair.Carbohydr. Polym.201716616612313010.1016/j.carbpol.2017.02.062 28385214
    [Google Scholar]
  209. StadlingerB. PillingE. HuhleM. Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: An animal study.Int. J. Oral Maxillofac. Surg.2008371545910.1016/j.ijom.2007.05.024 17983729
    [Google Scholar]
  210. ConovaloffA. PanitchA. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration.J. Neural Eng.20118505600310.1088/1741‑2560/8/5/056003 21804177
    [Google Scholar]
  211. HachimD. LoPrestiS.T. YatesC.C. BrownB.N. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration.Biomaterials20171121129510710.1016/j.biomaterials.2016.10.019 27760399
    [Google Scholar]
  212. SorannoD.E. RodellC.B. AltmannC. Delivery of interleukin-10 via injectable hydrogels improves renal outcomes and reduces systemic inflammation following ischemic acute kidney injury in mice.Am. J. Physiol. Renal Physiol.20163112F362F37210.1152/ajprenal.00579.2015 26962109
    [Google Scholar]
  213. LimJ.J. HammoudiT.M. Bratt-LealA.M. Development of nano- and microscale chondroitin sulfate particles for controlled growth factor delivery.Acta Biomater.20117398699510.1016/j.actbio.2010.10.009 20965281
    [Google Scholar]
  214. WangB. TanL. DengD. Novel stable cytokine delivery system in physiological pH solution: chitosan oligosaccharide/heparin nanoparticles.Int. J. Nanomedicine2015101034173427 26056441
    [Google Scholar]
  215. HollowayJ.L. MaH. RaiR. HankensonK.D. BurdickJ.A. Synergistic effects of SDF-1alpha and BMP-2 delivery from proteolytically degradable hyaluronic acid hydrogels for bone repair.Macromol. Biosci.20151591218122310.1002/mabi.201500178 26059079
    [Google Scholar]
  216. DalonneauF. LiuX.Q. SadirR. The effect of delivering the chemokine SDF-1α in a matrix-bound manner on myogenesis.Biomaterials201435154525453510.1016/j.biomaterials.2014.02.008 24612919
    [Google Scholar]
  217. HachimD. IftikharA. LoPrestiS.T. Distinct release strategies are required to modulate macrophage phenotype in young versus aged animals.J. Control. Release2019305305657410.1016/j.jconrel.2019.05.020 31103676
    [Google Scholar]
  218. RobertsJ.J. FarrugiaB.L. GreenR.A. Rnjak-KovacinaJ. MartensP.J. In situ formation of poly(vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor.J. Tissue Eng.20167710.1177/2041731416677132 27895888
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855299172240624070122
Loading
/content/journals/cdth/10.2174/0115748855299172240624070122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test