Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

The family Delesseriaceae possesses enormous bioactive medicinal and pharmacological constituents that have calculable positive effects on various diseases in humans. The Delesseriaceae family contains approximately 25 different marine species that are found throughout coastal areas. This review aims to integrate global scientific literature, including seaweed studies in Mandapam, to provide a comprehensive understanding of species, encompassing taxonomy, ecology, and potential applications. Nitophyllum species contain bioactive components, especially polysaccharides and proteins. Deleseriaceae, a seaweed recognized for its nutritional richness, presents a potential resource for various therapeutic applications. However, it's important to note that the specific activities mentioned, such as insulin sensitization, lipid peroxidation inhibition, antimicrobial effects, and antioxidant properties, might not be well-documented or established in species such as , , , , , and . Further research is required to ascertain the exact bioactive compounds and potential health benefits associated with this seaweed species.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855296118240621104017
2024-06-27
2025-10-22
Loading full text...

Full text loading...

References

  1. CotasJ. GomesL. PachecoD. PereiraL. Ecosystem services provided by seaweeds.Hydrobiology202321759610.3390/hydrobiology2010006
    [Google Scholar]
  2. HealthH. Algae and microalgae and their bioactive molecules for human health.Molecules2021264118510.3390/molecules26041185
    [Google Scholar]
  3. ChoC.H. LuY.A. KimM.Y. JeonY.J. LeeS.H. Therapeutic potential of seaweed-derived bioactive compounds for cardiovascular disease treatment.Appl. Sci.2022123102510.3390/app12031025
    [Google Scholar]
  4. LomartireS. GonçalvesA.M.M. An overview of potential seaweed-derived bioactive compounds for pharmaceutical applications.Mar. Drugs202220214110.3390/md20020141 35200670
    [Google Scholar]
  5. XuJ. LiaoW. LiuY. GuoY. JiangS. ZhaoC. An overview on the nutritional and bioactive components of green seaweeds.Food Prod Process Nutrit2023511810.1186/s43014‑023‑00132‑5
    [Google Scholar]
  6. ChaisuwanW. PhimolsiripolY. ChaiyasoT. The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses.Front. Nutr.20218November77203310.3389/fnut.2021.772033 34805253
    [Google Scholar]
  7. CotasJ. LomartireS. GonçalvesA.M.M. PereiraL. From ocean to medicine: Harnessing seaweed’s potential for drug development.Int. J. Mol. Sci.202425279710.3390/ijms25020797 38255871
    [Google Scholar]
  8. ChenZ. WuW. WenY. Recent advances of natural pigments from algae.Food Prod Process Nutrit2023513910.1186/s43014‑023‑00155‑y
    [Google Scholar]
  9. Muñoz-MirandaL.A. Iñiguez-MorenoM. An extensive review of marine pigments: Sources, biotechnological applications, and sustainability.Aquat. Sci.20238536810.1007/s00027‑023‑00966‑8 37096011
    [Google Scholar]
  10. MeiL.S. FredericqS. HommersandM.H. CryptopleuraC. Systematics of the delesseriaceae (ceramiales, rhodophyta) based on large subunit rdna and rbc l sequences, including the the present classification of the Delesseriaceae retains the essential features of Kylin’s system, which recognizes two subfam.Analyzer2001899January881899
    [Google Scholar]
  11. WynneM.J. SaundersG.W. Taxonomic assessment of North American species of the genera Cumathamnion, Delesseria, Membranoptera and Pantoneura (Delesseriaceae, Rhodophyta) using molecular data.Algae201227315517310.4490/algae.2012.27.3.155
    [Google Scholar]
  12. JeongS.Y. WonB.Y. FredericqS. ChoT.O. Wynneophycus geminatus (Delesseriaceae, Rhodophyta), based on Hypoglossum geminatum Okamura.Phycologia201655216517710.2216/15‑94.1
    [Google Scholar]
  13. DongY.W. García MolinosJ. LarsonE.R. Biological traits, geographic distributions, and species conservation in aquatic ecosystems.Divers. Distrib.20222881516152310.1111/ddi.13600
    [Google Scholar]
  14. DiaconuM. PavelL.V. HlihorR.M. Characterization of heavy metal toxicity in some plants and microorganisms—A preliminary approach for environmental bioremediation.N. Biotechnol.20205613013910.1016/j.nbt.2020.01.003 31945501
    [Google Scholar]
  15. OulahalN. DegraeveP. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides?Front. Microbiol.202212January75351810.3389/fmicb.2021.753518 35058892
    [Google Scholar]
  16. StanD. EnciuA.M. MateescuA.L. Natural compounds with antimicrobial and antiviral effect and nanocarriers used for their transportation.Front. Pharmacol.202112September72323310.3389/fphar.2021.723233 34552489
    [Google Scholar]
  17. KangJ.C. YangM.Y. KimM.S. Neoharaldiophyllum, a new genus of Delesseriaceae (Rhodophyta) based on carposporophyte development and molecular data.Bot. Mar.201760551553210.1515/bot‑2017‑0003
    [Google Scholar]
  18. BawejaP. KumarS. SahooD. LevineI. Biology of Seaweeds.Elsevier Inc.201610.1016/B978‑0‑12‑802772‑1.00003‑8
    [Google Scholar]
  19. WynneM.J. SchneiderC.W. Frikkiella gen. nov. (Delesseriaceae, Rhodophyta) from Bermuda and the Caribbean Sea.Systematic Bot.19962117784
    [Google Scholar]
  20. BartaD.G. ComanV. VodnarD.C. Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects.Algal Res.202158February10241010.1016/j.algal.2021.102410
    [Google Scholar]
  21. WynneM.J. Towards the resolution of taxonomic and nomenclatural problems concerning the typification of Acrosorium uncinatum (Delesseriaceae: Rhodophyta).Br. Phycol. J198924324525210.1080/00071618900650271
    [Google Scholar]
  22. KangJ.C. Taxonomic revision of hook-forming acrosorium (delesseriaceae, rhodophyta) from the northwestern pacific based on morphology and molecular data.Plants10112269
    [Google Scholar]
  23. ProvenceN.P. TaxaM.S. Diversity of marine and brackish macrophytes in the port-cros national park (Provence, France, Mediterranean Sea): Taxa and research effort over space and time.Diversity202214532910.3390/d14050329
    [Google Scholar]
  24. WraithJ. NormanP. PickeringC. Orchid conservation and research: An analysis of gaps and priorities for globally Red Listed species.Ambio202049101601161110.1007/s13280‑019‑01306‑7 31960279
    [Google Scholar]
  25. SherwoodA.R. LinS.M. WadeR.M. SpaldingH.L. SmithC.M. KosakiR.K. Characterization of Martensia (Delesseriaceae; Rhodophyta) from shallow and mesophotic habitats in the Hawaiian Islands: description of four new species.Eur. J. Phycol.202055217218510.1080/09670262.2019.1668062
    [Google Scholar]
  26. YadavS.K. PalaniswamyM. Martensia fragilis Harv. (Delesseriaceae): A new record to seaweed flora of Karnataka coast, India.J. Algal Biomass Util.2018925558
    [Google Scholar]
  27. BarotM. Nirmal KumarJ.I. KumarR.N. An evaluation of the nutritional composition of seaweeds as potential source of food and feed.Natl. Acad. Sci. Lett.201942645946410.1007/s40009‑019‑0783‑x
    [Google Scholar]
  28. SherwoodA.R. GuiryM.D. Inventory of the seaweeds and seagrasses of the hawaiian islands.Biology202312221510.3390/biology12020215 36829491
    [Google Scholar]
  29. KarthickP. RameshC. MohanrajuR. A checklist of seaweeds of the Andaman and Nicobar Islands, India: A way forward for seaweed cultivation, food, and drug applications.Environ. Monit. Assess.20211931067110.1007/s10661‑021‑09458‑4 34557981
    [Google Scholar]
  30. CoppejansE. MillarA.J.K. Marine red algae from the north coast of Papua New Guinea.Bot. Mar.200043431534610.1515/BOT.2000.034
    [Google Scholar]
  31. García-PozaS. LeandroA. CotasC. The evolution road of seaweed aquaculture: Cultivation technologies and the industry 4.0.Int. J. Environ. Res. Publ. Heal.20201718652810.3390/ijerph17186528
    [Google Scholar]
  32. NorrisR.E. Claudea elegans (Delesseriaceae, Rhodophyceae) in Natal, its first record in the western Indian Ocean and Africa.S. Afr. J. Bot.198753431131510.1016/S0254‑6299(16)31422‑3
    [Google Scholar]
  33. WillanR.C. BryceC. Slack-SmithS.M. Kimberley marine biota. Historical data: molluscs.Rec West Aust Mus Suppl201684128710.18195/issn.0313‑122x.84.2015.287‑343
    [Google Scholar]
  34. LinS.M. FredericqS. Nitophyllum hommersandii sp. nov. (Delesseriaceae, Rhodophyta) from Taiwan.Eur. J. Phycol.200338214315110.1080/0967026031000095534
    [Google Scholar]
  35. MichaelJ. Nitophyllum adhaerens sp. nov. (Delesseriaceae, Rhodophyta) from the Caribbean and Bermuda.Cryptogamie Algologie199718211221
    [Google Scholar]
  36. KalimuthuS. KaliperumalN. Distribution and seasonal changes of marine algal flora from seven localities around mandapam.Mar. Fish.1992623520
    [Google Scholar]
  37. LinS.M. FredericqS. HommersandM.H. Systematics of the delesseriaceae (ceramiales, rhodophyta) based on large subunit rdna and rbc l sequences, including the phycodryoideae, subfam. nov.J. Phycol.200137588189910.1046/j.1529‑8817.2001.01012.x
    [Google Scholar]
  38. KumarS. HosokawaM. MiyashitaK. Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms.Mar. Drugs201311125130514710.3390/md11125130 24351910
    [Google Scholar]
  39. KaruppusamyS. RajauriaG. FitzpatrickS. Biological properties and health-promoting functions of laminarin: A comprehensive review of preclinical and clinical studies.Mar. Drugs2022201277210.3390/md20120772
    [Google Scholar]
  40. PradhanB. BhuyanP.P. Sulfated polysaccharide: An updated comprehensive review.Mar. Drugs202321530010.3390/md21050300 37233494
    [Google Scholar]
  41. El-BilawyE.H. Al-MansoriA.N.A. AlotibiF.O. Antiviral and antifungal of Ulva fasciata extract: HPLC analysis of polyphenolic compounds.Sustainability202214191279910.3390/su141912799
    [Google Scholar]
  42. KumarL.R.G. PaulP.T. AnasK.K. Phlorotannins – bioactivity and extraction perspectives.J. Appl. Phycol.3442173218510.1007/s10811‑022‑02749‑4
    [Google Scholar]
  43. JinS. HueyP. TehX. Phlorotannins from brown algae: A review on their antioxidant mechanisms and applications in oxidative stress mediated diseases.J. Appl. Phycol.35212610.1007/s10811‑023‑02913‑4
    [Google Scholar]
  44. NecasJ. BartosikovaL. Carrageenan: A review.Vet. Med.201358418720510.17221/6758‑VETMED
    [Google Scholar]
  45. MirzaeiA. EsmkhaniM. ZallaghiM. NezafatZ. JavanshirS. Biomedical and environmental applications of carrageenan-based hydrogels: A review.J. Polym. Environ.20233151679170510.1007/s10924‑022‑02726‑5
    [Google Scholar]
  46. AccessO. AchparakiM. ThessalonikeosE. Novel ionic liquid-type Gemini surfactants: Synthesis, surface property and antimicrobial activity.Coll. Surf. A Physicochem. Engin Aspects2012395116124
    [Google Scholar]
  47. WangB. WanY. ZhengY. Alginate-based composites for environmental applications: A critical review.Crit. Rev. Environ. Sci. Technol.201949431835610.1080/10643389.2018.1547621 34121831
    [Google Scholar]
  48. JinJ.O. YadavD. MadhwaniK. PuranikN. ChavdaV. SongM. Seaweeds in the oncology arena: Anti-cancer potential of fucoidan as a drug—a review.Molecules20222718603210.3390/molecules27186032 36144768
    [Google Scholar]
  49. TangY. PuQ. ZhaoQ. ZhouY. JiangX. HanT. Effects of fucoidan isolated from Laminaria japonica on immune response and gut microbiota in cyclophosphamide-treated mice.Front. Immunol.202213May91661810.3389/fimmu.2022.916618 35664002
    [Google Scholar]
  50. SmythP.P.A. Iodine, seaweed, and the thyroid.Eur. Thyroid J.202110210110810.1159/000512971 33981614
    [Google Scholar]
  51. NitschkeU. StengelD.B. A new HPLC method for the detection of iodine applied to natural samples of edible seaweeds and commercial seaweed food products.Food Chem.201517232633410.1016/j.foodchem.2014.09.030 25442561
    [Google Scholar]
  52. MatsuuraH.N. Fett-NetoA.G. Plant Alkaloids: Main Features, Toxicity, and Mechanisms of Action.Plant Toxins Toxinology.Springer201510.1007/978‑94‑007‑6728‑7_2‑1
    [Google Scholar]
  53. JannatK. BalakrishnanR. HanJ.H. YuY.J. KimG.W. ChoiD.K. The neuropharmacological evaluation of seaweed: A potential therapeutic source.Cells20231222265210.3390/cells12222652 37998387
    [Google Scholar]
  54. BaiL. XuD. ZhouY.M. Antioxidant activities of natural polysaccharides and their derivatives for biomedical and medicinal applications.Antioxidants20221112249110.3390/antiox11122491 36552700
    [Google Scholar]
  55. GeorgeA. ShrivastavP.S. Fucoidan, a brown seaweed polysaccharide in nanodrug delivery.Drug Deliv. Transl. Res.202313102427244610.1007/s13346‑023‑01329‑4 37010790
    [Google Scholar]
  56. MohammedA.S.A. NaveedM. JostN. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities).J. Polym. Environ.20212982359237110.1007/s10924‑021‑02052‑2 33526994
    [Google Scholar]
  57. AmarowiczR. Tannins: The new natural antioxidants?Eur. J. Lipid Sci. Technol.2007109654955110.1002/ejlt.200700145
    [Google Scholar]
  58. PetchiduraiG. NagothJ.A. JohnM.S. SahayarajK. MurugesanN. PucciarelliS. Standardization and quantification of total tannins, condensed tannin and soluble phlorotannins extracted from thirty-two drifted coastal macroalgae using high performance liquid chromatography.Bioresour. Technol. Rep.2019710027310.1016/j.biteb.2019.100273
    [Google Scholar]
  59. González-HernándezR.A. Valdez-CruzN.A. Macías-RubalcavaM.L. Trujillo-RoldánM.A. Overview of fungal terpene synthases and their regulation.World J. Microbiol. Biotechnol.202339719410.1007/s11274‑023‑03635‑y 37169980
    [Google Scholar]
  60. GeorgianD.C. RamadossN. DonaC. BasuC.C. Therapeutic and medicinal uses of terpenes.Medicinal Plants20192019333359
    [Google Scholar]
  61. NishikitoD.F. BorgesA.C.A. LaurindoL.F. Anti-Inflammatory, antioxidant, and other health effects of dragon fruit and potential delivery systems for its bioactive compounds.Pharmaceutics202315115910.3390/pharmaceutics15010159 36678789
    [Google Scholar]
  62. GoschB.J. MagnussonM. PaulN.A. de NysR. Total lipid and fatty acid composition of seaweeds for the selection of species for oil‐based biofuel and bioproducts.Glob. Change Biol. Bioenergy20124691993010.1111/j.1757‑1707.2012.01175.x
    [Google Scholar]
  63. de CarvalhoC.C.C.R. CaramujoM.J. Carotenoids in aquatic ecosystems and aquaculture: A colorful business with implications for human health.Front. Mar. Sci.20174APR10.3389/fmars.2017.00093
    [Google Scholar]
  64. LeeJ.C. HouM.F. HuangH.W. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties.Cancer Cell Int.20131315510.1186/1475‑2867‑13‑55 23724847
    [Google Scholar]
  65. SharmaR. MondalA.S. TrivediN. Anticancer potential of algae-derived metabolites: Recent updates and breakthroughs.Fut J Pharmaceut Sci2023914410.1186/s43094‑023‑00492‑2
    [Google Scholar]
  66. LiuE. GaoH. ZhaoY. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence.Front. Pharmacol.202213July90043910.3389/fphar.2022.900439 35935866
    [Google Scholar]
  67. GüvenK.C. PercotA. SezikE. Alkaloids in marine algae.Mar. Drugs20108226928410.3390/md8020269
    [Google Scholar]
  68. Suciati, Laili ER, Ekasari W, Kuatman, Nuengchamnong N, Suphrom N. Chemical profiles and in vitro cholinesterase inhibitory activities of the flower extracts of cassia spectabilis.Adv. Pharmacol. Pharm. Sci.202320231910.1155/2023/6066601
    [Google Scholar]
  69. SongL. ChenX. LiuX. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides.Mar. Drugs2015141410.3390/md14010004 26729137
    [Google Scholar]
  70. RavillaL. A Review on Halodule uninervis – A potent seagrass.Int J Res Pharm Sci202011187587910.26452/ijrps.v11i1.1909
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855296118240621104017
Loading
/content/journals/cdth/10.2174/0115748855296118240621104017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test