Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Rheumatoid Arthritis is a chronic autoimmune disease that affects around 0.5% of the population. Limitations in movement may result from joint damage, which causes inflammation of the joint linings and the gradual deterioration of bone and cartilage.

Objectives

This article gives a summary of the current understanding of the potential pharmacological processes of herbal drugs, risk factors, and innovative experimental approaches in the management of rheumatoid arthritis.

Methodology

A thorough literature search will be performed on five computerized databases, such as PubMed, Google Scholar, Science Direct, Elsevier, and Wiley Online Library (WOL), for review papers published between 1975 and 2023.

Results

There are concerns about the current generation of potent synthetic rheumatoid arthritis drugs, including toxic side effects and relapses in symptoms upon withdrawal from therapy. Because of these constraints, RA patients are increasingly turning to herbal therapies. Due to the presence of naturally occurring active components in medicinal plants, herbal treatments are utilized to reduce arthritic pain and other symptoms.

Conclusion

It emphasizes the growing significance of herbal medicines in the management of RA. Several plants are mentioned in the research as potential treatments for RA because of their anti-inflammatory properties.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855297541240604071031
2024-06-24
2025-10-23
Loading full text...

Full text loading...

References

  1. FiresteinG.S. Evolving concepts of rheumatoid arthritis.Nature2003423693735636110.1038/nature01661 12748655
    [Google Scholar]
  2. McInnesI.B. SchettG. Pathogenetic insights from the treatment of rheumatoid arthritis.Lancet2017389100862328233710.1016/S0140‑6736(17)31472‑1 28612747
    [Google Scholar]
  3. KamedaH. FujiiT. NakajimaA. Japan college of rheumatology guideline for the use of methotrexate in patients with rheumatoid arthritis.Mod. Rheumatol.2019291314010.1080/14397595.2018.1472358 29718746
    [Google Scholar]
  4. KayJ. WesthovensR. Methotrexate: The gold standard without standardisation.Ann. Rheum. Dis.20096871081108210.1136/ard.2008.102822 19525405
    [Google Scholar]
  5. O’DellJ.R. Therapeutic strategies for rheumatoid arthritis.N. Engl. J. Med.2004350252591260210.1056/NEJMra040226 15201416
    [Google Scholar]
  6. CurtisJ.R. SinghJ.A. Use of biologics in rheumatoid arthritis: Current and emerging paradigms of care.Clin. Ther.201133667970710.1016/j.clinthera.2011.05.044 21704234
    [Google Scholar]
  7. CiubotariuE. GabayC. FinckhA. Joint damage progression in patients with rheumatoid arthritis in clinical remission: Do biologics perform better than synthetic antirheumatic drugs?J. Rheumatol.20144181576158210.3899/jrheum.130767 25028383
    [Google Scholar]
  8. YamaokaK. TanakaY. Targeting the janus kinases in rheumatoid arthritis: Focus on tofacitinib.Expert Opin. Pharmacother.201415110311310.1517/14656566.2014.854771 24188100
    [Google Scholar]
  9. GhoreschiK. LaurenceA. O’SheaJ.J. Janus kinases in immune cell signaling.Immunol. Rev.2009228127328710.1111/j.1600‑065X.2008.00754.x 19290934
    [Google Scholar]
  10. O’SheaJ.J. KontziasA. YamaokaK. TanakaY. LaurenceA. Janus kinase inhibitors in autoimmune diseases.Ann. Rheum. Dis.201372S2ii111ii11510.1136/annrheumdis‑2012‑202576 23532440
    [Google Scholar]
  11. van der KraanP.T.C.T.M. van GaalenF.A. KasperkovitzP.V. Rheumatoid arthritis is a heterogeneous disease: Evidence for differences in the activation of the STAT‐1 pathway between rheumatoid tissues.Arthritis Rheum.20034882132214510.1002/art.11096 12905466
    [Google Scholar]
  12. WalkerJ.G. AhernM.J. ColemanM. Expression of Jak3, STAT1, STAT4, and STAT6 in inflammatory arthritis: Unique Jak3 and STAT4 expression in dendritic cells in seropositive rheumatoid arthritis.Ann. Rheum. Dis.200665214915610.1136/ard.2005.037929 16096332
    [Google Scholar]
  13. IsomäkiP. JunttilaI. VidqvistK.L. KorpelaM. SilvennoinenO. The activity of JAK-STAT pathways in rheumatoid arthritis: Constitutive activation of STAT3 correlates with interleukin 6 levels.Rheumatology20155461103111310.1093/rheumatology/keu430 25406356
    [Google Scholar]
  14. TanakaY. Recent progress and perspective in JAK inhibitors for rheumatoid arthritis: From bench to bedside.J. Biochem.2015158317317910.1093/jb/mvv069 26152731
    [Google Scholar]
  15. TanakaY. MaeshimaY. YamaokaK. In vitro and in vivo analysis of a JAK inhibitor in rheumatoid arthritis.Ann. Rheum. Dis.201271S2i70i7410.1136/annrheumdis‑2011‑200595 22460142
    [Google Scholar]
  16. NakayamadaS. KuboS. IwataS. TanakaY. Chemical JAK inhibitors for the treatment of rheumatoid arthritis.Expert Opin. Pharmacother.201617162215222510.1080/14656566.2016.1241237 27690665
    [Google Scholar]
  17. TanakaY. The JAK inhibitors: Do they bring a paradigm shift for the management of rheumatic diseases?Rheumatology201958S1i1i310.1093/rheumatology/key280 30806705
    [Google Scholar]
  18. HemminkiK. LiX. SundquistJ. SundquistK. Familial associations of rheumatoid arthritis with autoimmune diseases and related conditions.Arthritis Rheum.200960366166810.1002/art.24328 19248111
    [Google Scholar]
  19. FrisellT. SaevarsdottirS. AsklingJ. Family history of rheumatoid arthritis: An old concept with new developments.Nat. Rev. Rheumatol.201612633534310.1038/nrrheum.2016.52 27098907
    [Google Scholar]
  20. HuizingaT.W.J. AmosC.I. van der MilH.A.H.M. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA–DRB1 shared epitope for antibodies to citrullinated proteins.Arthritis Rheum.200552113433343810.1002/art.21385 16255021
    [Google Scholar]
  21. HillJ.A. SouthwoodS. SetteA. JevnikarA.M. BellD.A. CairnsE. Cutting edge: The conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule.J. Immunol.2003171253854110.4049/jimmunol.171.2.538 12847215
    [Google Scholar]
  22. ScallyS.W. PetersenJ. LawS.C. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis.J. Exp. Med.2013210122569258210.1084/jem.20131241 24190431
    [Google Scholar]
  23. ViatteS. PlantD. RaychaudhuriS. Genetics and epigenetics of rheumatoid arthritis.Nat. Rev. Rheumatol.20139314115310.1038/nrrheum.2012.237 23381558
    [Google Scholar]
  24. RieckM. ArechigaA. Onengut-GumuscuS. GreenbaumC. ConcannonP. BucknerJ.H. Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes.J. Immunol.200717974704471010.4049/jimmunol.179.7.4704 17878369
    [Google Scholar]
  25. SuzukiA. YamadaR. ChangX. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis.Nat. Genet.200334439540210.1038/ng1206 12833157
    [Google Scholar]
  26. TakP.P. KaldenJ.R. Advances in rheumatology: New targeted therapeutics.Arthritis Res. Ther.201113S1S510.1186/1478‑6354‑13‑S1‑S5 21624184
    [Google Scholar]
  27. SymmonsD.P.M. GabrielS.E. Epidemiology of CVD in rheumatic disease, with a focus on RA and SLE.Nat. Rev. Rheumatol.20117739940810.1038/nrrheum.2011.75 21629241
    [Google Scholar]
  28. KahlenbergJ.M. KaplanM.J. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus.Annu. Rev. Med.201364124926310.1146/annurev‑med‑060911‑090007 23020882
    [Google Scholar]
  29. AvouacJ. MeuneC. GobeauxC.C. Inflammation and disease activity are associated with high circulating cardiac markers in rheumatoid arthritis independently of traditional cardiovascular risk factors.J. Rheumatol.201441224825510.3899/jrheum.130713 24334650
    [Google Scholar]
  30. KoivuniemiR. PaimelaL. SuomalainenR. RepoL.M. Cardiovascular diseases in patients with rheumatoid arthritis.Scand. J. Rheumatol.201342213113510.3109/03009742.2012.723747 23244227
    [Google Scholar]
  31. TobónG.J. YouinouP. SarauxA. The environment, geo-epidemiology, and autoimmune disease: Rheumatoid arthritis.Autoimmun. Rev.201095A288A29210.1016/j.autrev.2009.11.019 19944780
    [Google Scholar]
  32. SymmonsD.P.M. Epidemiology of rheumatoid arthritis: Determinants of onset, persistence and outcome.Best Pract. Res. Clin. Rheumatol.200216570772210.1053/berh.2002.0257 12473269
    [Google Scholar]
  33. GerlagD.M. RazaK. van BaarsenL.G.M. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: Report from the study group for risk factors for rheumatoid arthritis.Ann. Rheum. Dis.201271563864110.1136/annrheumdis‑2011‑200990 22387728
    [Google Scholar]
  34. AhoK. KoskenvuoM. TuominenJ. KaprioJ. Occurrence of rheumatoid arthritis in a nationwide series of twins.J. Rheumatol.1986135899902 3820198
    [Google Scholar]
  35. SilmanA.J. MacGregorA.J. ThomsonW. Twin concordance rates for rheumatoid arthritis: Results from a nationwide study.Rheumatology1993321090390710.1093/rheumatology/32.10.903 8402000
    [Google Scholar]
  36. SvendsenA.J. KyvikK.O. HouenG. On the origin of rheumatoid arthritis: The impact of environment and genes-A population based twin study.PLoS One201382e5730410.1371/journal.pone.0057304 23468964
    [Google Scholar]
  37. FrisellT. HolmqvistM. KällbergH. KlareskogL. AlfredssonL. AsklingJ. Familial risks and heritability of rheumatoid arthritis: Role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age.Arthritis Rheum.201365112773278210.1002/art.38097 23897126
    [Google Scholar]
  38. EdeK. HwangK.K. WuC.C. Plasmin immunization preferentially induces IgG-anticardiolipin antibodies that are potentially prothrombotic in MRL/MpJ mice.Arthritis Rheum.20096010310810.1002/art.24818 19790056
    [Google Scholar]
  39. SomersE.C. AntonsenS. PedersenL. SørensenH.T. Parental history of lupus and rheumatoid arthritis and risk in offspring in a nationwide cohort study: does sex matter?Ann. Rheum. Dis.201372452552910.1136/annrheumdis‑2011‑201165 22586159
    [Google Scholar]
  40. GrantS.F. ThorleifssonG. FriggeM.L. The inheritance of rheumatoid arthritis in Iceland.Arthritis Rheum.200144102247225410.1002/1529‑0131(200110)44:10<2247::AID‑ART387>3.0.CO;2‑Y 11665965
    [Google Scholar]
  41. MacGregorA.J. SniederH. RigbyA.S. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins.Arthritis Rheum.2000431303710.1002/1529‑0131(200001)43:1<30::AID‑ANR5>3.0.CO;2‑B 10643697
    [Google Scholar]
  42. KleinK. KarouzakisE. GayS. Rheumatoid arthritis and epigenetics.In: The Epigenetics of Autoimmunity.Academic Press201814916610.1016/B978‑0‑12‑809912‑4.00007‑6
    [Google Scholar]
  43. NemtsovaM.V. ZaletaevD.V. BureI.V. Epigenetic changes in the pathogenesis of rheumatoid arthritis.Front. Genet.20191057010.3389/fgene.2019.00570 31258550
    [Google Scholar]
  44. WebsterA.P. PlantD. EckerS. Increased DNA methylation variability in rheumatoid arthritis-discordant monozygotic twins.Genome Med.20181016410.1186/s13073‑018‑0575‑9 30176915
    [Google Scholar]
  45. CostenbaderK.H. GayS. Alarcón-RiquelmeM.E. IaccarinoL. DoriaA. Genes, epigenetic regulation and environmental factors: Which is the most relevant in developing autoimmune diseases?Autoimmun. Rev.201211860460910.1016/j.autrev.2011.10.022 22041580
    [Google Scholar]
  46. Alpízar-RodríguezD. PluchinoN. CannyG. GabayC. FinckhA. The role of female hormonal factors in the development of rheumatoid arthritis.Rheumatology2016568kew31810.1093/rheumatology/kew318 27686101
    [Google Scholar]
  47. CutoloM. SerioloB. VillaggioB. PizzorniC. CraviottoC. SulliA. Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis.Ann. N. Y. Acad. Sci.2002966113114210.1111/j.1749‑6632.2002.tb04210.x 12114267
    [Google Scholar]
  48. StraubR.H. The complex role of estrogens in inflammation.Endocr. Rev.200728552157410.1210/er.2007‑0001 17640948
    [Google Scholar]
  49. ChenH. WangJ. ZhouW. YinH. WangM. Breastfeeding and risk of rheumatoid arthritis: A systematic review and metaanalysis.J. Rheumatol.20154291563156910.3899/jrheum.150195 26178286
    [Google Scholar]
  50. VilaP.M. DelclosG.L. VarasC. GuyerH. TarradellasB.J. ArisaA.A. Controversy of oral contraceptives and risk of rheumatoid arthritis: Meta-analysis of conflicting studies and review of conflicting meta-analyses with special emphasis on analysis of heterogeneity.Am. J. Epidemiol.1996144111410.1093/oxfordjournals.aje.a008846 8659479
    [Google Scholar]
  51. RenL. GuoP. SunQ.M. Number of parity and the risk of rheumatoid arthritis in women: A dose–response meta‐analysis of observational studies.J. Obstet. Gynaecol. Res.20174391428144010.1111/jog.13370 28613016
    [Google Scholar]
  52. ChenW.M. SubesingheS. MullerS. HiderS.L. MallenC.D. ScottI.C. The association between gravidity, parity and the risk of developing rheumatoid arthritis: A systematic review and meta-analysis.Semin. Arthritis Rheum.202050225226010.1016/j.semarthrit.2019.09.003
    [Google Scholar]
  53. PikwerM. BergströmU. NilssonJ.Å. JacobssonL. TuressonC. Early menopause is an independent predictor of rheumatoid arthritis.Ann. Rheum. Dis.201271337838110.1136/ard.2011.200059 21972241
    [Google Scholar]
  54. BengtssonC. MalspeisS. OrellanaC. SparksJ.A. CostenbaderK.H. KarlsonE.W. Association between menopausal factors and the risk of seronegative and seropositive rheumatoid arthritis: Results from the nurses’ health studies.Arthritis Care Res.201769111676168410.1002/acr.23194 28085997
    [Google Scholar]
  55. SilmanA. KayA. BrennanP. Timing of pregnancy in relation to the onset of rheumatoid arthritis.Arthritis Rheum.199235215215510.1002/art.1780350205 1734904
    [Google Scholar]
  56. ChenJ.Y. BallouS.P. The effect of antiestrogen agents on risk of autoimmune disorders in patients with breast cancer.J. Rheumatol.2015421555910.3899/jrheum.140367 25274893
    [Google Scholar]
  57. CaprioliM. CarraraG. SakellariouG. SilvagniE. ScirèC.A. Influence of aromatase inhibitors therapy on the occurrence of rheumatoid arthritis in women with breast cancer: Results from a large population-based study of the Italian Society for Rheumatology.RMD Open201732e00052310.1136/rmdopen‑2017‑000523 29071118
    [Google Scholar]
  58. WadströmH. PetterssonA. SmedbyK.E. AsklingJ. Risk of breast cancer before and after rheumatoid arthritis, and the impact of hormonal factors.Ann. Rheum. Dis.202079558158610.1136/annrheumdis‑2019‑216756 32161056
    [Google Scholar]
  59. Da SilvaJ.A.P. SpectorT.D. The role of pregnancy in the course and aetiology of rheumatoid arthritis.Clin. Rheumatol.199211218919410.1007/BF02207955 1617891
    [Google Scholar]
  60. GabrielS.E. MichaudK. Epidemiological studies in incidence, prevalence, mortality, and comorbidity of the rheumatic diseases.Arthritis Res. Ther.200911322910.1186/ar2669 19519924
    [Google Scholar]
  61. MichaudK. WolfeF. Comorbidities in rheumatoid arthritis.Best Pract. Res. Clin. Rheumatol.200721588590610.1016/j.berh.2007.06.002 17870034
    [Google Scholar]
  62. BoscarinoJ.A. Posttraumatic stress disorder and physical illness: Results from clinical and epidemiologic studies.Ann. N. Y. Acad. Sci.20041032114115310.1196/annals.1314.011 15677401
    [Google Scholar]
  63. LeeY.C. Agnew-BlaisJ. MalspeisS. Post‐traumatic stress disorder and risk for incident rheumatoid arthritis.Arthritis Care Res.201668329229810.1002/acr.22683 26239524
    [Google Scholar]
  64. StraubR.H. DhabharF.S. BijlsmaJ.W.J. CutoloM. How psychological stress via hormones and nerve fibers may exacerbate rheumatoid arthritis.Arthritis Rheum.2005521162610.1002/art.20747 15641084
    [Google Scholar]
  65. DougadosM. SoubrierM. AntunezA. Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring: Results of an international, cross-sectional study (COMORA).Ann. Rheum. Dis.2014731626810.1136/annrheumdis‑2013‑204223 24095940
    [Google Scholar]
  66. VallerandI.A. PattenS.B. BarnabeC. Depression and the risk of rheumatoid arthritis.Curr. Opin. Rheumatol.201931327928410.1097/BOR.0000000000000597 30789849
    [Google Scholar]
  67. MatchamF. RaynerL. SteerS. HotopfM. The prevalence of depression in rheumatoid arthritis: A systematic review and meta-analysis.Rheumatology201352122136214810.1093/rheumatology/ket169 24003249
    [Google Scholar]
  68. LuM.C. GuoH.R. LinM.C. LivnehH. LaiN.S. TsaiT.Y. Bidirectional associations between rheumatoid arthritis and depression: A nationwide longitudinal study.Sci. Rep.2016612064710.1038/srep20647 26857028
    [Google Scholar]
  69. VallerandI.A. LewinsonR.T. FrolkisA.D. Depression as a risk factor for the development of rheumatoid arthritis: A population-based cohort study.RMD Open201842e00067010.1136/rmdopen‑2018‑000670 30018804
    [Google Scholar]
  70. SparksJ.A. MalspeisS. HahnJ. Depression and subsequent risk for incident rheumatoid arthritis among women.Arthritis Care Res.2021731788910.1002/acr.24441 32937012
    [Google Scholar]
  71. Gunes-BayirA. MendesB. DadakA. The integral role of diets including natural products to manage rheumatoid arthritis: A narrative review.Curr. Issues Mol. Biol.20234575373538810.3390/cimb45070341 37504257
    [Google Scholar]
  72. AletahaD. SmolenJ.S. Diagnosis and management of rheumatoid arthritis: A review.JAMA2018320131360137210.1001/jama.2018.13103 30285183
    [Google Scholar]
  73. BurmesterG.R. PopeJ.E. Novel treatment strategies in rheumatoid arthritis.Lancet2017389100862338234810.1016/S0140‑6736(17)31491‑5 28612748
    [Google Scholar]
  74. D’AgostinoM.A. TerslevL. WakefieldR. Novel algorithms for the pragmatic use of ultrasound in the management of patients with rheumatoid arthritis: From diagnosis to remission.Ann. Rheum. Dis.201675111902190810.1136/annrheumdis‑2016‑209646 27553213
    [Google Scholar]
  75. PradoA.D. StaubH.L. BisiM.C. Ultrasound and its clinical use in rheumatoid arthritis: Where do we stand?Adv. Rheumatol.201958119 30657086
    [Google Scholar]
  76. ZayatA.S. EllegaardK. ConaghanP.G. The specificity of ultrasound-detected bone erosions for rheumatoid arthritis.Ann. Rheum. Dis.201574589790310.1136/annrheumdis‑2013‑204864 24445255
    [Google Scholar]
  77. YoshimiR. HamaM. TakaseK. Ultrasonography is a potent tool for the prediction of progressive joint destruction during clinical remission of rheumatoid arthritis.Mod. Rheumatol.201323345646510.3109/s10165‑012‑0690‑1 22802010
    [Google Scholar]
  78. SharmaA. GoelA. Pathogenesis of rheumatoid arthritis and its treatment with anti-inflammatory natural products.Mol. Biol. Rep.20235054687470610.1007/s11033‑023‑08406‑4 37022525
    [Google Scholar]
  79. MinegishiT.K. HoritaN. KobayashiK. Diagnostic test accuracy of ultrasound for synovitis in rheumatoid arthritis: Systematic review and meta-analysis.Rheumatology2018571495810.1093/rheumatology/kex036 28340066
    [Google Scholar]
  80. LinY.J. AnzagheM. SchülkeS. Update on the pathomechanism, diagnosis, and treatment options for rheumatoid arthritis.Cells20209488010.3390/cells9040880 32260219
    [Google Scholar]
  81. CohenS.B. PotterH. DeodharA. EmeryP. ConaghanP. OstergaardM. Extremity magnetic resonance imaging in rheumatoid arthritis: Updated literature review.Arthritis Care Res.201163566066510.1002/acr.20413 21136501
    [Google Scholar]
  82. ShriveA.K. HoldenD. MylesD.A.A. GreenhoughT.J. Structure solution of C-reactive proteins: Molecular replacement with a twist.Acta Crystallogr. D Biol. Crystallogr.19965261049105710.1107/S0907444996008311 15299563
    [Google Scholar]
  83. BaumannH. GauldieJ. The acute phase response.Immunol. Today1994152748010.1016/0167‑5699(94)90137‑6 7512342
    [Google Scholar]
  84. KutaA.E. BaumL.L. C-reactive protein is produced by a small number of normal human peripheral blood lymphocytes.J. Exp. Med.1986164132132610.1084/jem.164.1.321 3723078
    [Google Scholar]
  85. CalabroP. ChangD.W. WillersonJ.T. YehE.T.H. Release of C-reactive protein in response to inflammatory cytokines by human adipocytes: Linking obesity to vascular inflammation.J. Am. Coll. Cardiol.20054661112111310.1016/j.jacc.2005.06.017 16168299
    [Google Scholar]
  86. ZhangD. SunM. SamolsD. KushnerI. STAT3 participates in transcriptional activation of the C-reactive protein gene by interleukin-6.J. Biol. Chem.1996271169503950910.1074/jbc.271.16.9503 8621622
    [Google Scholar]
  87. CalabróP. WillersonJ.T. YehE.T.H. Inflammatory cytokines stimulated C-reactive protein production by human coronary artery smooth muscle cells.Circulation2003108161930193210.1161/01.CIR.0000096055.62724.C5 14530191
    [Google Scholar]
  88. SiegelJ. OsmandA.P. WilsonM.F. GewurzH. Interactions of C-reactive protein with the complement system. II. C-reactive protein-mediated consumption of complement by poly-L-lysine polymers and other polycations.J. Exp. Med.1975142370972110.1084/jem.142.3.709 809531
    [Google Scholar]
  89. MoldC. GewurzH. Du ClosT.W. Regulation of complement activation by C-reactive protein.Immunopharmacology1999421-3233010.1016/S0162‑3109(99)00007‑7 10408362
    [Google Scholar]
  90. BharadwajD. SteinM.P. VolzerM. MoldC. ClosT.W.D. The major receptor for C-reactive protein on leukocytes is fcgamma receptor II.J. Exp. Med.1999190458559010.1084/jem.190.4.585 10449529
    [Google Scholar]
  91. LuJ. MarnellL.L. MarjonK.D. MoldC. Du ClosT.W. SunP.D. Structural recognition and functional activation of FcγR by innate pentraxins.Nature2008456722498999210.1038/nature07468 19011614
    [Google Scholar]
  92. WilliamsT.N. ZhangC.X. GameB.A. HeL. HuangY. C-reactive protein stimulates MMP-1 expression in U937 histiocytes through Fc[γ]RII and extracellular signal-regulated kinase pathway: an implication of CRP involvement in plaque destabilization.Arterioscler. Thromb. Vasc. Biol.2004241616610.1161/01.ATV.0000104014.24367.16 14592848
    [Google Scholar]
  93. NabataA. KurokiM. UebaH. C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells: Implications for the destabilization of atherosclerotic plaque.Atherosclerosis2008196112913510.1016/j.atherosclerosis.2007.03.003 17531242
    [Google Scholar]
  94. DevarajS. YunJ.M. StaleyD.C. JialalI. C-reactive protein induces M-CSF release and macrophage proliferation.J. Leukoc. Biol.200985226226710.1189/jlb.0808458 19008293
    [Google Scholar]
  95. HanK.H. HongK.H. ParkJ.H. C-reactive protein promotes monocyte chemoattractant protein-1-mediated chemotaxis through upregulating CC chemokine receptor 2 expression in human monocytes.Circulation2004109212566257110.1161/01.CIR.0000131160.94926.6E 15136507
    [Google Scholar]
  96. KimK.W. KimB.M. MoonH.W. LeeS.H. KimH.R. Role of C-reactive protein in osteoclastogenesis in rheumatoid arthritis.Arthritis Res. Ther.20151714110.1186/s13075‑015‑0563‑z 25889630
    [Google Scholar]
  97. MallyaR.K. de BeerF.C. BerryH. HamiltonE.D. MaceB.E. PepysM.B. Correlation of clinical parameters of disease activity in rheumatoid arthritis with serum concentration of C-reactive protein and erythrocyte sedimentation rate.J. Rheumatol.198292224228 7097681
    [Google Scholar]
  98. FakimG.A. Medicinal plants: Traditions of yesterday and drugs of tomorrow.Mol. Aspects Med.200627119310.1016/j.mam.2005.07.008 16105678
    [Google Scholar]
  99. PanS.Y. ZhouS.F. GaoS.H. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics.Evid. Based Complement. Alternat. Med.2013201312510.1155/2013/627375 23634172
    [Google Scholar]
  100. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  101. FarnsworthN.R. SoejartoD.D. Global importance of medicinal plants. AkereleO. HeywoodV. SyngeH. Conservation of Medicinal Plants.Cambridge University Press1991255210.1017/CBO9780511753312.005
    [Google Scholar]
  102. RahmatullahM. NahainA-A. RahmanT. JahanR. ChowdhuryA. Potential therapeutic benefits of aloe barbadensis in treatment of rheumatoid arthritis.J. Autoimmune Dis. Rheumatol.201421354410.12970/2310‑9874.2014.02.01.6
    [Google Scholar]
  103. BurangeP.J. TawarM.G. BairagiR.A. Synthesis of silver nanoparticles by using Aloe vera and Thuja orientalis leaves extract and their biological activity: A comprehensive review.Bull. Natl. Res. Cent.202145118110.1186/s42269‑021‑00639‑2
    [Google Scholar]
  104. SalehiB. AlbayrakS. AntolakH. Aloe genus plants: From farm to food applications and phytopharmacotherapy.Int. J. Mol. Sci.2018199284310.3390/ijms19092843 30235891
    [Google Scholar]
  105. DarziS. PaulK. LeitanS. WerkmeisterJ.A. MukherjeeS. Immunobiology and application of aloe vera-based scaffolds in tissue engineering.Int. J. Mol. Sci.2021224170810.3390/ijms22041708 33567756
    [Google Scholar]
  106. KshirsagarA.D. PanchalP.V. HarleU.N. NandaR.K. ShaikhH.M. Anti-inflammatory and antiarthritic activity of anthraquinone derivatives in rodents.Int. J. Inflamm.2014201411210.1155/2014/690596 25610704
    [Google Scholar]
  107. NeenaI. GaneshE. PoornimaP. KorishettarR. An ancient herb aloevera in dentistry: A review.J Oral Res Rev2015712510.4103/2249‑4987.160174
    [Google Scholar]
  108. MeherS.K. DasB. PandaP. BhuyanG.C. RaoM.M. Uses of Withania somnifera (Linn) Dunal (Ashwagandha) in Ayurveda and its pharmacological evidences.Res J Pharmacol Pharmacodynam201681232910.5958/2321‑5836.2016.00006.9
    [Google Scholar]
  109. KrutikaJ. TavhareS. PanaraK. KumarP. KarraN. Studies of ashwagandha (Withania somnifera dunal).Int. J. Pharm. Biol. Arch.20167111
    [Google Scholar]
  110. PaulS. ChakrabortyS. AnandU. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects.Biomed. Pharmacother.202114311217510.1016/j.biopha.2021.112175 34649336
    [Google Scholar]
  111. UddinS.J. HasanM.F. AfrozM. Curcumin and its multi-target function against pain and inflammation: An update of pre-clinical data.Curr. Drug Targets202122665667110.2174/1389450121666200925150022 32981501
    [Google Scholar]
  112. RahmanI. BiswasS.K. KirkhamP.A. Regulation of inflammation and redox signaling by dietary polyphenols.Biochem. Pharmacol.200672111439145210.1016/j.bcp.2006.07.004 16920072
    [Google Scholar]
  113. KeumY.S. YuS. ChangP.P.J. Mechanism of action of sulforaphane: Inhibition of p38 mitogen-activated protein kinase isoforms contributing to the induction of antioxidant response element-mediated heme oxygenase-1 in human hepatoma HepG2 cells.Cancer Res.200666178804881310.1158/0008‑5472.CAN‑05‑3513 16951197
    [Google Scholar]
  114. SarathaV. PillaiS.I. SubramanianS. Isolation and characterization of lupeol, a triterpenoid from Calotropis gigantea latex.Int. J. Pharm. Sci. Rev. Res.20111025457
    [Google Scholar]
  115. DogaraA.M. A systematic review on the biological evaluation of Calotropis procera (Aiton) dryand.Future J Pharm Sci2023911610.1186/s43094‑023‑00467‑3
    [Google Scholar]
  116. TahsinM.R. SultanaA. Mohtasim KhanM.S. An evaluation of pharmacological healing potentialities of Terminalia Arjuna against several ailments on experimental rat models with an in-silico approach.Heliyon2021711e0822510.1016/j.heliyon.2021.e08225 34816025
    [Google Scholar]
  117. BussmannR.W. The globalization of traditional medicine in northern peru: from shamanism to molecules.Evid. Based Complement. Alternat. Med.2013201314610.1155/2013/291903 24454490
    [Google Scholar]
  118. XuS. PengH. WangN. ZhaoM. Inhibition of TNF-α and IL-1 by compounds from selected plants for rheumatoid arthritis therapy: <i>in vivo</i> and <i>in silico</i> studies.Trop. J. Pharm. Res.201817227728510.4314/tjpr.v17i2.12
    [Google Scholar]
  119. AdcocksC. ButtleD.J. CollinP. Catechins from green tea (Camellia sinensis) inhibit bovine and human cartilage proteoglycan and type II collagen degradation in vitro.J. Nutr.2002132334134610.1093/jn/132.3.341 11880552
    [Google Scholar]
  120. HasanM.R. HaqueM.M. HoqueM.A. Antioxidant activity study and GC-MS profiling of Camellia sinensis Linn.Heliyon2024101e2351410.1016/j.heliyon.2023.e23514 38192794
    [Google Scholar]
  121. ShindeU.A. PhadkeA.S. NairA.M. MungantiwarA.A. DikshitV.J. SarafM.N. Studies on the anti-inflammatory and analgesic activity of Cedrus deodara (Roxb.) Loud. wood oil.J. Ethnopharmacol.1999651212710.1016/S0378‑8741(98)00150‑0 10350366
    [Google Scholar]
  122. RathorS.R. GoyalH.R. Studies on the anti inflammatory and anti arthritic activity of an Indian medicinal plant.Cedrvs Deodara Indian J Pharmacol197352334343
    [Google Scholar]
  123. ShindeU.A. PhadkeA.S. NairA.M. MungantiwarA.A. DikshitV.J. SarafM.N. Preliminary studies on the immunomodulatory activity of Cedrus deodara wood oil.Fitoterapia199970433333910.1016/S0367‑326X(99)00031‑3
    [Google Scholar]
  124. PatilK.R. PatilC.R. JadhavR.B. MahajanV.K. PatilP.R. GaikwadP.S. Anti-arthritic activity of bartogenic acid isolated from fruits of Barringtonia racemosa Roxb.(Lecythidaceae).Evid. Based Complement. Alternat. Med.201120111710.1093/ecam/nep148 19770265
    [Google Scholar]
  125. PatilK.R. PatilC.R. Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa Roxb. in acute and chronic animal models of inflammation.J. Tradit. Complement. Med.201771869310.1016/j.jtcme.2016.02.001 28053892
    [Google Scholar]
  126. ChoudharyM. KumarV. GuptaP.K. SinghS. Anti-arthritic activity of Barleria prionitis Linn. leaves in acute and chronic models in Sprague Dawley rats.Bull. Fac. Pharm. Cairo Univ.201452219920910.1016/j.bfopcu.2014.07.002
    [Google Scholar]
  127. KhandareM.S. Mango (Mangifera indica Linn) A medicinal and holy plant.J Medici Plants Stud2016444446
    [Google Scholar]
  128. GarcíaD. DelgadoR. UbeiraF.M. LeiroJ. Modulation of rat macrophage function by the Mangifera indica L. extracts vimang and mangiferin.Int. Immunopharmacol.20022679780610.1016/S1567‑5769(02)00018‑8 12095170
    [Google Scholar]
  129. DetheS.M. GururajaG.M. MundkinajedduD. KumarA.S. AllanJ.J. AgarwalA. Evaluation of cholesterol-lowering activity of standardized extract of Mangifera indica in albino Wistar rats.Pharmacognosy Res.201791212610.4103/0974‑8490.199770 28250649
    [Google Scholar]
  130. SannegowdaK.M. VenkateshaS.H. MoudgilK.D. Tinospora cordifolia inhibits autoimmune arthritis by regulating key immune mediators of inflammation and bone damage.Int. J. Immunopathol. Pharmacol.201528452153110.1177/0394632015608248 26467057
    [Google Scholar]
  131. GodboleA. SwetaK.M. AbhinavO. SinghO.P. The effect of T. Cordifolia and Z. Officinale in the treatment of rheumatoid arthritis.Int J Pharm Phytopharm Res2019919
    [Google Scholar]
  132. AbiramasundariG. SumalathaK.R. SreepriyaM. Effects of Tinospora cordifolia (Menispermaceae) on the proliferation, osteogenic differentiation and mineralization of osteoblast model systems in vitro.J. Ethnopharmacol.2012141147448010.1016/j.jep.2012.03.015 22449439
    [Google Scholar]
  133. SharmaA. GoelA. LinZ. In vitro and in silico anti-rheumatic arthritis activity of Nyctanthes arbor-tristis.Molecules20232816612510.3390/molecules28166125 37630377
    [Google Scholar]
  134. SnijeshV.P. SinghS. Molecular modeling and network based approach in explaining the medicinal properties of Nyctanthes arbortristis, Lippia nodiflora for rheumatoid arthritis.J Bioinform Intell Control201431313810.1166/jbic.2014.1072
    [Google Scholar]
  135. RathoreB. PaulB. ChaudhuryB.P. SaxenaA.K. SahuA.P. GuptaY.K. Comparative studies of different organs of Nyctanthes arbortristis in modulation of cytokines in murine model of arthritis.Biomed. Environ. Sci.2007202154159 17624191
    [Google Scholar]
  136. MehtaA. SethiyaN.K. MehtaC. ShahG.B. Anti–arthritis activity of roots of Hemidesmus indicus R.Br. (Anantmul) in rats.Asian Pac. J. Trop. Med.20125213013510.1016/S1995‑7645(12)60011‑X 22221757
    [Google Scholar]
  137. PasupuletiR. SubramaniyamN.K. PalakurthyS.R. PonnalaS. KadaganchiS. Evaluation of synergistic activity of Hemidesmus indicus and Terminalia catappa on rheumatoid arthritis in rats.Amer J Phytomed Clin Therap201316514519
    [Google Scholar]
  138. BanerjeeA. GangulyS. Medicinal importance of Hemidesmus indicus: A review on its utilities from ancient Ayurveda to 20th Century.Adv. Biores.201453208213
    [Google Scholar]
  139. JoshiD.G. JatD.R.K. PatilD.S.B. Investigation of in vitro anti-arthritic activity of aqueous extracts of leaves of Vitex negundo L. using methotrexate as DMARDs.J. Pharmacogn. Phytochem.202110296396510.22271/phyto.2021.v10.i2m.13926
    [Google Scholar]
  140. ZhengC.J. ZhaoX.X. AiH.W. Therapeutic effects of standardized Vitex negundo seeds extract on complete Freund’s adjuvant induced arthritis in rats.Phytomedicine201421683884610.1016/j.phymed.2014.02.003 24680620
    [Google Scholar]
  141. AhirraoR.A. PatelM.R. Anti-arthritic activity of Vitex negundo Linn. Leaves.Asian J. Res. Chem201257843845
    [Google Scholar]
  142. AmreshG. SinghP.N. RaoC.V. Antinociceptive and antiarthritic activity of Cissampelos pareira roots.J. Ethnopharmacol.2007111353153610.1016/j.jep.2006.12.026 17240096
    [Google Scholar]
  143. KumariS. Anmol, Bhatt V, Suresh PS, Sharma U. Cissampelos pareira L.: A review of its traditional uses, phytochemistry, and pharmacology.J. Ethnopharmacol.202127411385010.1016/j.jep.2021.113850 33485976
    [Google Scholar]
  144. BafnaA. MishraS. Antioxidant and immunomodulatory activity of the alkaloidal fraction of Cissampelos pareira linn.Sci. Pharm.2010781213110.3797/scipharm.0904‑16 21179368
    [Google Scholar]
  145. KavithaS.K. HelenA. Antirheumatic potential of justicia gendarussa root extract on chronic arthritic models.In: A Holistic and Integrated Approach to Lifestyle Diseases.1st edApple Academic Press2022111154
    [Google Scholar]
  146. KumarK.S. SabuV. SindhuG. RaufA.A. HelenA. Isolation, identification and characterization of apigenin from Justicia gendarussa and its anti-inflammatory activity.Int. Immunopharmacol.20185915716710.1016/j.intimp.2018.04.004 29655057
    [Google Scholar]
  147. KuberB.R. In vitro antioxidant potential, total phenolic and flavonoid contents in Justicia gendarussa leaf extracts.Res J Pharm Technol20211452707271310.52711/0974‑360X.2021.00477
    [Google Scholar]
  148. KarthikeyanM. KarthikeyanD. Effect of ethanolic extract of Premna corymbosa (Burm. F.) Rottl. & Willd. leaves in complete freund’s adjuvant-induced arthritis in wistar albino rats.J. Basic Clin. Physiol. Pharmacol.2010211152610.1515/JBCPP.2010.21.1.15 20506686
    [Google Scholar]
  149. RajendranR. KrishnakumarE. Anti-arthritic activity of Premna serratifolia Linn., wood against adjuvant induced arthritis.Avicenna J. Med. Biotechnol.201022101106 23407688
    [Google Scholar]
  150. RajendranR. BashaN.S. RubyS. Evaluation of in vitro antioxidant activity of stem-bark and stem-wood of Premna serratifolia Lin.,(Verbenaceae).J. Pharmacogn. Phytochem.2009111114
    [Google Scholar]
  151. ZhangY. MaoX. LiW. Tripterygium wilfordii: An inspiring resource for rheumatoid arthritis treatment.Med. Res. Rev.20214131337137410.1002/med.21762 33296090
    [Google Scholar]
  152. CanterP.H. LeeH.S. ErnstE. A systematic review of randomised clinical trials of Tripterygium wilfordii for rheumatoid arthritis.Phytomedicine200613537137710.1016/j.phymed.2006.01.010 16487688
    [Google Scholar]
  153. BaoJ. DaiS.M. A chinese herb Tripterygium wilfordii Hook F in the treatment of rheumatoid arthritis: Mechanism, efficacy, and safety.Rheumatol. Int.20113191123112910.1007/s00296‑011‑1841‑y 21365177
    [Google Scholar]
  154. NarendhirakannanR.T. SubramanianS. KandaswamyM. Free radical scavenging activity of Cleome gynandra L. leaves on adjuvant induced arthritis in rats.Mol. Cell. Biochem.20052761-2718010.1007/s11010‑005‑3234‑6 16132687
    [Google Scholar]
  155. MishraS.S. MoharanaS.K. DashM.R. Review on Cleome gynandra.Int. J. Res. Pharm. Chem.201113681689
    [Google Scholar]
  156. BabuV. SinghR. KashyapP.K. Pharmacological and toxicological study of coumarinolignoids from Cleome viscosa in Small Animals for the management of rheumatoid arthritis.Planta Med.2023891627110.1055/a‑1906‑1837 36167313
    [Google Scholar]
  157. RajendranR. BashaN.S. RubyS. Evaluation of in vitro antioxidant activity of stem-bark and stem-wood of Premna serratifolia Lin.,(Verbenaceae).Res J Pharmacogn Phytochem2009111114
    [Google Scholar]
  158. RaniS. SuriyaprakashT.N. PrabuS.L. Monograph on Premna serratifolia Linn.In: Phytotherapy in the Management of Diabetes and Hypertension.Bentham Science Publisher Ltd.201620421210.2174/9781681081618116020013
    [Google Scholar]
  159. EkambaramS. PerumalS.S. SubramanianV. Evaluation of antiarthritic activity of Strychnos potatorum Linn seeds in Freund’s adjuvant induced arthritic rat model.BMC Complement. Altern. Med.20101015610.1186/1472‑6882‑10‑56 20939932
    [Google Scholar]
  160. EkambaramS.P. PerumalS.S. SubramanianV. Assessment of the in-vivo and in-vitro antioxidant potential of Strychnos potatorum Linn. seeds in Freund’s adjuvant induced arthritic rats.J. Med. Plants Res.201151947804787
    [Google Scholar]
  161. KhanM.Y. AzizI. AhmadI. RoyM. VermaV.K. A natural cure to arthritis by phytomedicines-A review.Asian J Res Pharmaceut Sci20155421622010.5958/2231‑5659.2015.00031.4
    [Google Scholar]
  162. SaravananS. BabuN.P. PandikumarP. IgnacimuthuS. Therapeutic effect of Saraca asoca (Roxb.) Wilde on lysosomal enzymes and collagen metabolism in adjuvant induced arthritis.Inflammopharmacology201119631732510.1007/s10787‑011‑0091‑7 21947518
    [Google Scholar]
  163. GuptaM. SasmalS. MukherjeeA. Therapeutic effects of acetone extract of saraca asoca seeds on rats with adjuvant-induced arthritis via attenuating inflammatory responses.ISRN Rheumatol.2014201495968710.1155/2014/959687
    [Google Scholar]
  164. BorokarA.A. PansareT.A. Plant profile, phytochemistry and pharmacology of Ashoka (Saraca asoca (Roxb.), De. Wilde)-A comprehensive review.Int J Ayurvedic Herb Med20177225242541
    [Google Scholar]
  165. NairV. SinghS. GuptaY.K. Anti-arthritic and disease modifying activity of Terminalia chebula Retz. in experimental models.J. Pharm. Pharmacol.201062121801180610.1111/j.2042‑7158.2010.01193.x 21054408
    [Google Scholar]
  166. SeoJ.B. JeongJ.Y. ParkJ.Y. Anti-arthritic and analgesic effect of NDI10218, a standardized extract of Terminalia chebula, on arthritis and pain model.Biomol. Ther.201220110411210.4062/biomolther.2012.20.1.104 24116282
    [Google Scholar]
  167. LiuF. ZhanS. ZhangP. Simultaneous quantitative analysis and in vitro anti-arthritic effects of five polyphenols from Terminalia chebula.Front. Physiol.202314113894710.3389/fphys.2023.1138947 36969583
    [Google Scholar]
  168. BhardwajL.K. ChandrulK.K. SharmaU.S. Evaluation of anti-arthritic activity of Ficus benghalensis Linn. root extracts on freund’s adjuvant induced arthritis in rats.J Phytopharmacol201651101410.31254/phyto.2016.5103
    [Google Scholar]
  169. ThiteA.T. PatilR.R. NaikS.R. Anti-arthritic activity profile of methanolic extract of Ficus bengalensis: Comparison with some clinically effective drugs.Biomed. Aging Pathol.20144320721710.1016/j.biomag.2014.03.005
    [Google Scholar]
  170. SiddiquiM.A. GuptaA. SinghA. KumarN. Formulation and evaluation of ficus benghalensis emulgel for its anti- rheumatoid arthritis effect.J Innov Appl Pharm Sci2021633136
    [Google Scholar]
  171. CordaroM. D’AmicoR. FuscoR. Actaea racemosa L. rhizome protect against MPTP-induced neurotoxicity in mice by modulating oxidative stress and neuroinflammation.Antioxidants20221214010.3390/antiox12010040 36670902
    [Google Scholar]
  172. ValleD.V. Uncaria tomentosa.Ital. J. Dermatol. Venereol.2017152665165710.23736/S0392‑0488.17.05712‑1
    [Google Scholar]
  173. Allen-HallL. ArnasonJ.T. CanoP. LafrenieR.M. Uncaria tomentosa acts as a potent TNF-α inhibitor through NF-κB.J. Ethnopharmacol.2010127368569310.1016/j.jep.2009.12.004 19995599
    [Google Scholar]
  174. GhoshS. KumarA. SachanN. ChandraP. Re-exploring an epicentre spice with immense therapeutic potentials: Black pepper (Piper nigrum).Curr. Nutr. Food Sci.20201691326133710.2174/1573401316666200316120944
    [Google Scholar]
  175. CockI.E. WinnettV. SirdaartaJ. MatthewsB. The potential of selected Australian medicinal plants with anti-Proteus activity for the treatment and prevention of rheumatoid arthritis.Pharmacogn. Mag.2015114219010.4103/0973‑1296.157734 26109767
    [Google Scholar]
  176. UttraAM Alamgeer ShahzadM Ribes orientale: A novel therapeutic approach targeting rheumatoid arthritis with reference to pro-inflammatory cytokines, inflammatory enzymes and anti-inflammatory cytokines.J. Ethnopharmacol.20192379210710.1016/j.jep.2019.03.019 30872172
    [Google Scholar]
  177. RaduA.F. NegruP.A. RaduA. Simulation-based research on phytoconstituents of Embelia ribes targeting proteins with pathophysiological implications in rheumatoid arthritis.Life2023137146710.3390/life13071467 37511842
    [Google Scholar]
  178. DeligiannidouG.E. GougoulaV. BezirtzoglouE. KontogiorgisC. ConstantinidesT.K. The role of natural products in rheumatoid arthritis: Current knowledge of basic in vitro and in vivo research.Antioxidants202110459910.3390/antiox10040599 33924632
    [Google Scholar]
  179. YinW. WangT.S. YinF.Z. CaiB.C. Analgesic and anti-inflammatory properties of brucine and brucine N-oxide extracted from seeds of Strychnos nux-vomica.J. Ethnopharmacol.2003882-320521410.1016/S0378‑8741(03)00224‑1 12963144
    [Google Scholar]
  180. MianS.S. TajuddinT. UpadhyayS. Anti-arthritic evaluation of ginger, colchicum and detoxified nux-vomica combination for poly herbal unani formulation.Biomed. Pharmacol. J.20211431219122910.13005/bpj/2224
    [Google Scholar]
  181. PérezP.S.S. CruzP.B. BarbierO.C. CamargoM.M.E. The ethanolic extract of eysenhardtia polystachya (Ort.) Sarg. bark and its fractions delay the progression of rheumatoid arthritis and show antinociceptive activity in murine models. Iranian journal of pharmaceutical research.Iran. J. Pharm. Res.2018171236248 29755555
    [Google Scholar]
  182. CastroA.A.J. MoralesZ.J.R. ArgáezA.V. Pharmacological and toxicological study of a chemical-standardized ethanol extract of the branches and leaves from Eysenhardtia polystachya (Ortega) Sarg. (Fabaceae).J. Ethnopharmacol.201822431432210.1016/j.jep.2018.06.016 29913299
    [Google Scholar]
  183. GarangZ. FengQ. LuoR. Commiphora mukul (Hook. ex Stocks) Engl.: Historical records, application rules, phytochemistry, pharmacology, clinical research, and adverse reaction.J. Ethnopharmacol.202331711671710.1016/j.jep.2023.116717 37301302
    [Google Scholar]
  184. KumaraA.A. JayratneD.L. DayaratnaT. Assessments of antibacterial potential of Commiphora mukul (Guggulu Extract).Int J Pharma Res Health Sci20175216501653
    [Google Scholar]
  185. KimY.J. LeeJ.D. LeeY.H. The effects of betula platyphylla on cartilage pratection, anti-inflammatory and analgesic activity in arthritis.J Acupunct Res20072427381
    [Google Scholar]
  186. HuhJ.E. HongJ.M. BaekY.H. LeeJ.D. ChoiD.Y. ParkD.S. Anti-inflammatory and anti-nociceptive effect of Betula platyphylla var. japonica in human interleukin-1β-stimulated fibroblast-like synoviocytes and in experimental animal models.J. Ethnopharmacol.2011135112613410.1016/j.jep.2011.03.005 21396437
    [Google Scholar]
  187. BoudreauM.D. BelandF.A. An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera.J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev.200624110315410.1080/10590500600614303 16690538
    [Google Scholar]
  188. AkbarS. Andrographis paniculata: A review of pharmacological activities and clinical effects.Altern. Med. Rev.20111616677 21438648
    [Google Scholar]
  189. KhyadeM.S. KasoteD.M. VaikosN.P. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology.J. Ethnopharmacol.2014153111810.1016/j.jep.2014.01.025 24486598
    [Google Scholar]
  190. AliH. UddinS. JalalS. Chemistry and biological activities of Berberis lycium Royle.J Biolog Active Prod Nature20155529531210.1080/22311866.2015.1073627
    [Google Scholar]
  191. SamaniA.M. BahmaniM. KopaeiR.M. The chemical composition, botanical characteristic and biological activities of Borago officinalis: A review.Asian Pac. J. Trop. Med.20147S22S2810.1016/S1995‑7645(14)60199‑1 25312125
    [Google Scholar]
  192. AdhikariB. SherH. JanH.A. Berberis aristata DC. Berberis asiatica Roxb. ex DC. Berberis chitria Lindl Berberis glaucocarpa Stapf Berberis lycium Royle Berberis orthobotrys Bien. ex Aitch. ssp. orthobotrys Berberis vulgaris L. Berberidaceae.In: Ethnobotany of the Himalayas.Springer International Publishing2020118
    [Google Scholar]
  193. AlamM. KhanH. SamiullahL. SiddiqueK.M. A review on phytochemical and pharmacological studies of Kundur (Boswellia serrata Roxb ex Colebr.)-A unani drug.J. Appl. Pharmaceut Sci.20122012148156
    [Google Scholar]
  194. TerefeworkZ. NickG. SuomalainenS. PaulinL. LindströmK. Phylogeny of Rhizobium galegae with respect to other rhizobia and agrobacteria.Int. J. Syst. Bacteriol.199848234935610.1099/00207713‑48‑2‑349 9731273
    [Google Scholar]
  195. BoniniS.A. PremoliM. TambaroS. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history.J. Ethnopharmacol.201822730031510.1016/j.jep.2018.09.004 30205181
    [Google Scholar]
  196. AroraN. Pandey-RaiS. Celastrus paniculatus, an endangered Indian medicinal plant with miraculous cognitive and other therapeutic properties: an overview.Int J Pharm Bio Sci201233290303
    [Google Scholar]
  197. SinghN. RaoA.S. NandalA. Phytochemical and pharmacological review of Cinnamomum verum J. Presl-A versatile spice used in food and nutrition.Food Chem.202133812777310.1016/j.foodchem.2020.127773 32829297
    [Google Scholar]
  198. Klimek-SzczykutowiczM. SzopaA. EkiertH. Citrus limon (Lemon) phenomenon—A review of the chemistry, pharmacological properties, applications in the modern pharmaceutical, food, and cosmetics industries, and biotechnological studies.Plants20209111910.3390/plants9010119 31963590
    [Google Scholar]
  199. NimishP.L. SanjayK.B. NaynaB.M. JaimikR.D. Phytopharmacological properties of Coriander sativum as a potential medicinal tree: An overview.J. Appl. Pharm. Sci.2011142025
    [Google Scholar]
  200. El-FarA. ShaheenH. AlsenosyA. El-SayedY. Al JaouniS. MousaS. Costus speciosus: Traditional uses, phytochemistry, and therapeutic potentials.Pharmacogn. Rev.2018122312010.4103/phrev.phrev_29_17
    [Google Scholar]
  201. TungB.T. NhamD.T. HaiN.T. ThuD.K. Curcuma longa, the polyphenolic curcumin compound and pharmacological effects on liver.In: dietary interventions in liver disease foods, nutrients, and dietary supplements.Academic Press20191253410.1016/B978‑0‑12‑814466‑4.00010‑0
    [Google Scholar]
  202. CampoyG.A. GarciaE. RamirezM.A. Phytochemical and pharmacological study of the Eysenhardtia genus.Plants202099112410.3390/plants9091124 32878035
    [Google Scholar]
  203. Al-SnafiA.E. Glycyrrhiza glabra: A phytochemical and pharmacological review.IOSR J. Pharm.20188617
    [Google Scholar]
  204. MohanrajR. SivasankarS. Sweet potato (Ipomoea batatas [L. Lam)-A valuable medicinal food: A review.J. Med. Food201417773374110.1089/jmf.2013.2818 24921903
    [Google Scholar]
  205. SecaA.M.L. GrigoreA. PintoD.C.G.A. SilvaA.M.S. The genus inula and their metabolites: From ethnopharmacological to medicinal uses.J. Ethnopharmacol.2014154228631010.1016/j.jep.2014.04.010 24754913
    [Google Scholar]
  206. StohsS.J. HartmanM.J. Review of the safety and efficacy of Moringa oleifera.Phytother. Res.201529679680410.1002/ptr.5325 25808883
    [Google Scholar]
  207. TimoszukM. BielawskaK. SkrzydlewskaE. Evening primrose (Oenothera biennis) biological activity dependent on chemical composition.Antioxidants20187810810.3390/antiox7080108 30110920
    [Google Scholar]
  208. AgrawalJ. PalA. Nyctanthes arbor-tristis Linn—A critical ethnopharmacological review.J. Ethnopharmacol.2013146364565810.1016/j.jep.2013.01.024 23376280
    [Google Scholar]
  209. AdeyemiT.O. OgundipeO.T. OlowokudejoJ.D. A review of the taxonomy of African Sapindaceae based on quantitative and qualitative characters.Ife J. Sci.2013152303314
    [Google Scholar]
  210. HaqueN. SofiG. AliW. RashidM. ItratM. A comprehensive review of phytochemical and pharmacological profile of anar (Punica granatum Linn): A heaven’s fruit.J Ayurved Herb Med201511222610.31254/jahm.2015.1107
    [Google Scholar]
  211. DamanhouriZ.A. AhmadA. A review on therapeutic potential of Piper nigrum L. (Black Pepper): The king of spices.Med. Aromat. Plants20143316110.4172/2167‑0412.1000161
    [Google Scholar]
  212. BussmannR.W. BatsatsashviliK. KikvidzeZ. Ribes biebersteinii Berland. ex DC. Ribes nigrum L. Ribes odoratum HL Wendl. Ribes orientalis Desf. Ribes rubrum L. Ribes uva-crispa L. G rossulariaceae.In: Ethnobotany of the Mountain Regions of Far Eastern EuropeUral, Northern Caucasus, Turkey, and Iran. Springer202019
    [Google Scholar]
  213. BeheraM.C. MohantyT.L. ParamanikB.K. Silvics, phytochemistry and ethnopharmacy of endangered poison nut tree (Strychnos nux-vomica L.): A review.J. Pharmacogn. Phytochem.20176512071216
    [Google Scholar]
  214. DawkinsK. EsiobuN. Emerging insights on Brazilian pepper tree (Schinus terebinthifolius) invasion: The potential role of soil microorganisms.Front Plant Sci2016771210.3389/fpls.2016.00712 27252726
    [Google Scholar]
  215. KumarV. Van StadenJ. A review of Swertia chirayita (Gentianaceae) as a traditional medicinal plant.Front. Pharmacol.2016630810.3389/fphar.2015.00308 26793105
    [Google Scholar]
  216. BatihaG.E.S. Magdy BeshbishyA. WasefL. Uncaria tomentosa (Willd. ex Schult.) DC.: A review on chemical constituents and biological activities.Appl. Sci.2020108266810.3390/app10082668
    [Google Scholar]
  217. BagA. BhattacharyyaS.K. ChattopadhyayR.R. The development of Terminalia chebula Retz. (Combretaceae) in clinical research.Asian Pac. J. Trop. Biomed.20133324425210.1016/S2221‑1691(13)60059‑3 23620847
    [Google Scholar]
  218. MishraL.C. SinghB.B. DagenaisS. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review.Altern. Med. Rev.200054334346 10956379
    [Google Scholar]
  219. MatsunoH. YudohK. NakazawaF. KoizumiF. Relationship between histological findings and clinical findings in rheumatoid arthritis.Pathol. Int.200252852753310.1046/j.1440‑1827.2002.01389.x 12366812
    [Google Scholar]
  220. WolfeF. Comparative usefulness of C-reactive protein and erythrocyte sedimentation rate in patients with rheumatoid arthritis.J. Rheumatol.199724814771485 9263138
    [Google Scholar]
  221. van LeeuwenM.A. van der HeijdeD.M. van RijswijkM.H. Interrelationship of outcome measures and process variables in early rheumatoid arthritis. A comparison of radiologic damage, physical disability, joint counts, and acute phase reactants.J. Rheumatol.1994213425429 7516430
    [Google Scholar]
  222. RhodesB. FürnrohrB.G. VyseT.J. C-reactive protein in rheumatology: Biology and genetics.Nat. Rev. Rheumatol.20117528228910.1038/nrrheum.2011.37 21468143
    [Google Scholar]
  223. JansenL.M.A. van der BruinsmaH.I.E. van SchaardenburgD. BezemerP.D. DijkmansB.A. Predictors of radiographic joint damage in patients with early rheumatoid arthritis.Ann. Rheum. Dis.2001601092492710.1136/ard.60.10.924 11557647
    [Google Scholar]
  224. DevlinJ. GoughA. HuissoonA. The acute phase and function in early rheumatoid arthritis. C-reactive protein levels correlate with functional outcome.J. Rheumatol.1997241913 9002004
    [Google Scholar]
  225. IsiksacanZ. ErelO. ElbukenC. A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate.Lab Chip201616244682469010.1039/C6LC01036A 27858026
    [Google Scholar]
  226. RamsayE.S. LermanM.A. How to use the erythrocyte sedimentation rate in paediatrics.Arch. Dis. Child. Educ. Pract. Ed.20151001303610.1136/archdischild‑2013‑305349 25205237
    [Google Scholar]
  227. AletahaD. NeogiT. SilmanA.J. 2010 rheumatoid arthritis classification criteria: an american college of rheumatology/European league against rheumatism collaborative initiative.Arthritis Rheum.20106292569258110.1002/art.27584 20872595
    [Google Scholar]
  228. RadnerH. NeogiT. SmolenJ.S. AletahaD. Performance of the 2010 ACR/EULAR classification criteria for rheumatoid arthritis: A systematic literature review.Ann. Rheum. Dis.201473111412310.1136/annrheumdis‑2013‑203284 23592710
    [Google Scholar]
  229. SokkaT. KautiainenH. MöttönenT. HannonenP. Work disability in rheumatoid arthritis 10 years after the diagnosis.J. Rheumatol.199926816811685 10451062
    [Google Scholar]
  230. WolfeF. HäuserW. HassettA.L. KatzR.S. WalittB.T. The development of fibromyalgia – I: Examination of rates and predictors in patients with rheumatoid arthritis (RA).Pain2011152229129910.1016/j.pain.2010.09.027 20961687
    [Google Scholar]
  231. FriesJ.F. Current treatment paradigms in rheumatoid arthritis.Rheumatology200039S1303510.1093/oxfordjournals.rheumatology.a031492 11001377
    [Google Scholar]
  232. KlontzasM.E. KenanidisE.I. HeliotisM. TsiridisE. MantalarisA. Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells.Expert Opin. Biol. Ther.201515111541155210.1517/14712598.2015.1068755 26176327
    [Google Scholar]
  233. Di NicolaM. Carlo-StellaC. MagniM. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli.Blood200299103838384310.1182/blood.V99.10.3838 11986244
    [Google Scholar]
  234. KramperaM. GlennieS. DysonJ. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide.Blood200310193722372910.1182/blood‑2002‑07‑2104 12506037
    [Google Scholar]
  235. AggarwalS. PittengerM.F. Human mesenchymal stem cells modulate allogeneic immune cell responses.Blood200510541815182210.1182/blood‑2004‑04‑1559 15494428
    [Google Scholar]
  236. ZhengZ.H. LiX.Y. DingJ. JiaJ.F. ZhuP. Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis.Rheumatology2008471223010.1093/rheumatology/kem284 18077486
    [Google Scholar]
  237. ZhangQ. LiQ. ZhuJ. Comparison of therapeutic effects of different mesenchymal stem cells on rheumatoid arthritis in mice.PeerJ20197e702310.7717/peerj.7023 31198641
    [Google Scholar]
  238. ParkE.H. LimH. LeeS. Intravenous infusion of umbilical cord blood-derived mesenchymal stem cells in rheumatoid arthritis: A phase Ia clinical trial.Stem Cells Transl. Med.20187963664210.1002/sctm.18‑0031 30112846
    [Google Scholar]
  239. GhoryaniM. SarabiS.Z. AfshariT.J. GhasemiA. PoursamimiJ. MohammadiM. Amelioration of clinical symptoms of patients with refractory rheumatoid arthritis following treatment with autologous bone marrow-derived mesenchymal stem cells: A successful clinical trial in Iran.Biomed. Pharmacother.20191091834184010.1016/j.biopha.2018.11.056 30551438
    [Google Scholar]
  240. SwansonK.V. DengM. TingJ.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics.Nat. Rev. Immunol.201919847748910.1038/s41577‑019‑0165‑0 31036962
    [Google Scholar]
  241. KollyL. BussoN. PalmerG. Talabot-AyerD. ChobazV. SoA. Expression and function of the NALP3 inflammasome in rheumatoid synovium.Immunology2010129217818510.1111/j.1365‑2567.2009.03174.x 19824913
    [Google Scholar]
  242. GuoC. FuR. WangS. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis.Clin. Exp. Immunol.2018194223124310.1111/cei.13167 30277570
    [Google Scholar]
  243. WilliamsonD.J. BegleyC.G. VadasM.A. MetcalfD. The detection and initial characterization of colony-stimulating factors in synovial fluid.Clin. Exp. Immunol.19887216773 3260840
    [Google Scholar]
  244. XuW.D. FiresteinG.S. TaetleR. KaushanskyK. ZvaiflerN.J. Cytokines in chronic inflammatory arthritis. II. Granulocyte-macrophage colony-stimulating factor in rheumatoid synovial effusions.J. Clin. Invest.198983387688210.1172/JCI113971 2646320
    [Google Scholar]
  245. BerenbaumF. RajzbaumG. AmorB. ToubertA. Evidence for GM-CSF receptor expression in synovial tissue. An analysis by semi-quantitative polymerase chain reaction on rheumatoid arthritis and osteoarthritis synovial biopsies.Eur. Cytokine Netw.1994514346 8049356
    [Google Scholar]
  246. CookA.D. BraineE.L. CampbellI.K. RichM.J. HamiltonJ.A. Blockade of collagen-induced arthritis post-onset by antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF): requirement for GM-CSF in the effector phase of disease.Arthritis Res. Ther.20013529329810.1186/ar318 11549370
    [Google Scholar]
  247. GinhouxF. GuilliamsM. Tissue-resident macrophage ontogeny and homeostasis.Immunity201644343944910.1016/j.immuni.2016.02.024 26982352
    [Google Scholar]
  248. ZhangX. ZhangD. JiaH. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment.Nat. Med.201521889590510.1038/nm.3914
    [Google Scholar]
  249. LiuJ. LiuZ. PangY. ZhouH. The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases.J. Nanobiotechnology202220112710.1186/s12951‑022‑01343‑7 35279135
    [Google Scholar]
  250. NogalesR.A. PérezL.A.A. CervantesA.S.D. Effect of aqueous and particulate silk fibroin in a rat model of experimental colitis.Int. J. Pharm.201651111910.1016/j.ijpharm.2016.06.120 27363935
    [Google Scholar]
  251. ChenZ. VongC.T. GaoC. Bilirubin nanomedicines for the treatment of reactive oxygen species (ROS)-mediated diseases.Mol. Pharm.20201772260227410.1021/acs.molpharmaceut.0c00337 32433886
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855297541240604071031
Loading
/content/journals/cdth/10.2174/0115748855297541240604071031
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test