Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8855
  • E-ISSN: 2212-3903

Abstract

Background

Those who suffer from migraines, a neurological illness characterized by unilateral pulsating headaches, may find their daily activities impaired. Migraine sufferers often experience non-selective symptoms after taking an oral administration, such as discomfort, nausea, vomiting, and in rare circumstances, auras. The elastic nanovesicles work well as drug-delivery vehicles across the nasal passages and into the brain. Despite kynurenic acid's (KNA) potential as a neuroprotective drug, because of its poor capacity to penetrate the BBB, it has very limited use in therapeutic settings. This is why different drug delivery strategies to deliver KNA to the brain are being explored. This research intended to optimize KNA’s solubility, bioavailability, and penetration across the nasal mucosa for intranasal administration by formulating and evaluating KNA-loaded spanlastics (KNA-SPLs).

Objectives

Due to its enormous surface area, permeable endothelium membrane, abundant blood flow, ability to avoid first-pass metabolism, and convenience, the nasal mucosa is a promising target for drug delivery. making it an ideal site for drug absorption. The purpose of this investigation was to create KNA-SPLs and KNA spanlastic gel with this information in mind.

Methods

After creating the KNA-SPLs with thin-film hydration, a Box-Behnken design (BBD) was used for optimization. The PDI, zeta potential, vesicle size, entrapment efficiency, and drug release of the KNA-SPLs optimized formulation were evaluated. In addition to pharmacodynamics, confocal scanning laser microscopy (CLSM), and transmission electron microscopy (TEM), researchers looked into the nasal cavity and the brain. KNA-SPLs were prepared as a part of the Carbopol 934P and HPMC K4M liquid gelling system for gelation. The gelling duration, gelling capacity, and viscosity of the resulting solution were evaluated over two pH ranges (5 and 6).

Results

The vesicles' average diameters varied from 102.46 ± 7.68 to 254.31 ± 5.03 nm. The best nano-spanlastic formulation (F3) showed excellent EE% (61.27 ± 0.51%), PDI (0.156 ± 0.01), zeta potential (-29.43 ± 0.38), and drug release > 80%. The ingredients were as follows: phospholipon 90G 70mg, span 60 mg, and tween 80 mg and 75 mg. For sustained release and bio-distribution, the gelling time (3.240.28) and dissolution rate (> 50% within 24 min) of the produced nasal gel (G5) containing 1% Carbopol and 4% HPMC were much lower. Studies on animals have shown that intranasal treatment significantly increases the pace and extent of brain and plasma absorption, showing a high efficiency for targeting the brain. Pharmacodynamic studies involving Swiss albino mice have corroborated that the treatment formulation crossed the blood-brain barrier, adding credence to the drug's much improved anti-migraine capacity.

Conclusion

When compared to the conventional gel formulations, intranasal administration of KNA has been shown to be feasible with the use of spanlastics. The use of intranasal drug administration to deliver KNA has been reported to be mostly successful. This study demonstrates the efficacy of KNA-SPLs in treating migraine by targeting the brain.

Loading

Article metrics loading...

/content/journals/cdth/10.2174/0115748855264862231005182145
2025-02-25
2025-12-03
Loading full text...

Full text loading...

References

  1. OzsoyY. GungorS. CevherE. Nasal delivery of high molecular weight drugs.Molecules20091493754377910.3390/molecules14093754 19783956
    [Google Scholar]
  2. GuptaI. AdinS.N. RashidM.A. AlhamhoomY. AqilM. MujeebM. Spanlastics as a potential approach for enhancing the nose-to-brain delivery of Piperine: In vitro prospect and in vivo therapeutic efficacy for the management of epilepsy.Pharmaceutics202315264110.3390/pharmaceutics15020641 36839963
    [Google Scholar]
  3. AmmarH.O. HaiderM. IbrahimM. El HoffyN.M. In vitro and in vivo investigation for optimization of niosomal ability for sustainment and bioavailability enhancement of diltiazem after nasal administration.Drug Deliv.201724141442110.1080/10717544.2016.1259371 28165822
    [Google Scholar]
  4. BelgamwarV.S. PatelH.S. JoshiA.S. AgrawalA. SuranaS.J. TekadeA.R. Design and development of nasal mucoadhesive microspheres containing tramadol HCl for CNS targeting.Drug Deliv.201118535336010.3109/10717544.2011.557787 21351825
    [Google Scholar]
  5. ChalikwarS.S. MeneB.S. PardeshiC.V. BelgamwarV.S. SuranaS.J. Self-assembled, chitosan grafted PLGA nanoparticles for intranasal delivery: design, development and ex vivo characterization.Polym. Plast. Technol. Eng.201352436838010.1080/03602559.2012.751999
    [Google Scholar]
  6. IllumL. Nasal drug delivery—possibilities, problems and solutions.J. Control. Release2003871-318719810.1016/S0168‑3659(02)00363‑2 12618035
    [Google Scholar]
  7. PiaoH.M. BalakrishnanP. ChoH.J. Preparation and evaluation of fexofenadine microemulsions for intranasal delivery.Int. J. Pharm.20103951-230931610.1016/j.ijpharm.2010.05.041 20635476
    [Google Scholar]
  8. UgwokeM. AguR. VerbekeN. KingetR. Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives.Adv. Drug Deliv. Rev.200557111640166510.1016/j.addr.2005.07.009 16182408
    [Google Scholar]
  9. QiangF. ShinH.J. LeeB.J. HanH.K. Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome.Int. J. Pharm.20124301-216116610.1016/j.ijpharm.2012.04.007 22525082
    [Google Scholar]
  10. NemaT. JainA. JainA. Insulin delivery through nasal route using thiolated microspheres.Drug Deliv.201320521021510.3109/10717544.2012.746401 23495666
    [Google Scholar]
  11. Al-GhananeemA.M. SandeferE.P. DollW.J. PageR.C. ChangY. DigenisG.A. Gamma scintigraphy for testing bioequivalence: A case study on two cromolyn sodium nasal spray preparations.Int. J. Pharm.20083571-2707610.1016/j.ijpharm.2008.01.040 18329197
    [Google Scholar]
  12. MahajanH.S. GattaniS. In situ gels of Metoclopramide Hydrochloride for intranasal delivery: In vitro evaluation and in vivo pharmacokinetic study in rabbits.Drug Deliv.2010171192710.3109/10717540903447194 19958151
    [Google Scholar]
  13. ChavanpatilM.D. VaviaP.R. The influence of absorption enhancers on nasal absorption of acyclovir.Eur. J. Pharm. Biopharm.200457348348710.1016/j.ejpb.2004.01.001 15093597
    [Google Scholar]
  14. DhakarR.C. MauryaS.D. TilakV.K. DuptaA.K. A review on factors affecting the design of nasal drug delivery system.Int. J. Drug Deliv.20111194208
    [Google Scholar]
  15. BeyramiM. KarimiE. OskoueianE. Synthesized chrysin-loaded nanoliposomes improves cadmium-induced toxicity in mice.Environ. Sci. Pollut. Res. Int.20202732406434065110.1007/s11356‑020‑10113‑7 32671712
    [Google Scholar]
  16. MoeiniS. KarimiE. OskoueianE. Antiproliferation effects of nanophytosome-loaded phenolic compounds from fruit of Juniperus polycarpos against breast cancer in mice model: synthesis, characterization and therapeutic effects.Cancer Nanotechnol.20221312010.1186/s12645‑022‑00126‑x
    [Google Scholar]
  17. BadriaF. MazyedE. Formulation of nanospanlastics as a promising approach for improving the topical delivery of a natural leukotriene inhibitor (3-Acetyl-11-Keto-β-Boswellic Acid): Statistical optimization, in vitro characterization, and ex vivo permeation study.Drug Des. Devel. Ther.2020143697372110.2147/DDDT.S265167 32982176
    [Google Scholar]
  18. TurskiM.P. TurskaM. ZgrajkaW. KucD. TurskiW.A. Presence of kynurenic acid in food and honeybee products.Amino Acids2009361758010.1007/s00726‑008‑0031‑z 18231708
    [Google Scholar]
  19. TurskiM.P. ZgrajkaW. SiwickiA.K. PaluszkiewiczP. Presence and content of kynurenic acid in animal feed.J. Anim. Physiol. Anim. Nutr. (Berl.)2015991737810.1111/jpn.12208 25040314
    [Google Scholar]
  20. ChiarugiA. CalvaniM. MeliE. TraggiaiE. MoroniF. Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages.J. Neuroimmunol.20011201-219019810.1016/S0165‑5728(01)00418‑0 11694334
    [Google Scholar]
  21. ConnickJ.H. HeywoodG.C. SillsG.J. ThompsonG.G. BrodieM.J. StoneT.W. Nicotinylalanine increases cerebral kynurenic acid content and has anticonvulsant activity.Gen. Pharmacol.199223223523910.1016/0306‑3623(92)90017‑E 1639238
    [Google Scholar]
  22. GramsbergenJ.B.P. HodgkinsP.S. RassoulpourA. TurskiW.A. GuidettiP. SchwarczR. Brain-specific modulation of kynurenic acid synthesis in the rat.J. Neurochem.199769129029810.1046/j.1471‑4159.1997.69010290.x 9202322
    [Google Scholar]
  23. RussiP. AlesianiM. LombardiG. DavolioP. PellicciariR. MoroniF. Nicotinylalanine increases the formation of kynurenic acid in the brain and antagonizes convulsions.J. Neurochem.19925962076208010.1111/j.1471‑4159.1992.tb10097.x 1431895
    [Google Scholar]
  24. VécseiL. SzalárdyL. FülöpF. ToldiJ. Kynurenines in the CNS: recent advances and new questions.Nat. Rev. Drug Discov.2013121648210.1038/nrd3793 23237916
    [Google Scholar]
  25. VécseiL. BealM.F. Comparative behavioral and pharmacological studies with centrally administered kynurenine and kynurenic acid in rats.Eur. J. Pharmacol.1991196323924610.1016/0014‑2999(91)90436‑T 1893912
    [Google Scholar]
  26. CarpenedoR. MeliE. PeruginelliF. Pellegrini-GiampietroD.E. MoroniF. Kynurenine 3-mono-oxygenase inhibitors attenuate post-ischemic neuronal death in organotypic hippocampal slice cultures.J. Neurochem.20028261465147110.1046/j.1471‑4159.2002.01090.x 12354294
    [Google Scholar]
  27. SchwarczR. BrunoJ.P. MuchowskiP.J. WuH.Q. Kynurenines in the mammalian brain: when physiology meets pathology.Nat. Rev. Neurosci.201213746547710.1038/nrn3257 22678511
    [Google Scholar]
  28. StoneT.W. ConnickJ.H. Quinolinic acid and other kynurenines in the central nervous system.Neuroscience198515359761710.1016/0306‑4522(85)90063‑6 2866466
    [Google Scholar]
  29. HornokS. AbichuG. MeliM.L. Influence of the biotope on the tick infestation of cattle and on the tick-borne pathogen repertoire of cattle ticks in Ethiopia.PLoS One201499e10645210.1371/journal.pone.0106452 25248165
    [Google Scholar]
  30. VargaA.W. WohlleberM.E. GiménezS. Reduced slow-wave sleep is associated with high cerebrospinal fluid Aβ42 levels in cognitively normal elderly.Sleep 201639112041204810.5665/sleep.6240
    [Google Scholar]
  31. StoneT.W. Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection.Trends Pharmacol. Sci.200021414915410.1016/S0165‑6147(00)01451‑6 10740291
    [Google Scholar]
  32. MoroniF. RussiP. LombardiG. BeniM. CarlàV. Presence of kynurenic acid in the mammalian brain.J. Neurochem.198851117718010.1111/j.1471‑4159.1988.tb04852.x 3379401
    [Google Scholar]
  33. Rey-LópezJ.P. de RezendeL.F. Pastor-ValeroM. TessB.H. The prevalence of metabolically healthy obesity: a systematic review and critical evaluation of the definitions used.Obes. Rev.2014151078179010.1111/obr.12198 25040597
    [Google Scholar]
  34. DalpiazE. Di StefanoG. A universe of stories: Mobilizing narrative practices during transformative change.Strateg. Manage. J.201839366469610.1002/smj.2730
    [Google Scholar]
  35. NowakM. BrownT.D. GrahamA. HelgesonM.E. MitragotriS. Size, shape, and flexibility influence nanoparticle transport across brain endothelium under flow.Bioeng. Transl. Med.201952e10153 32440560
    [Google Scholar]
  36. SharmaA. PahwaS. BhatiS. KudeshiaP. Spanlastics: A modern approach for nanovesicular drug delivery.Int. J. Pharm. Sci. Res.20201110571065
    [Google Scholar]
  37. de VriesT. VillalónC.M. MaassenVanDenBrink A. Pharmacological treatment of migraine: CGRP and 5-HT beyond the triptans.Pharmacol. Ther.202021110752810.1016/j.pharmthera.2020.107528 32173558
    [Google Scholar]
  38. El-NabarawyN.A. TeaimaM.H. HelalD.A. Assessment of spanlastic vesicles of zolmitriptan for treating migraine in rats.Drug Des. Devel. Ther.2019133929393710.2147/DDDT.S220473 31819367
    [Google Scholar]
  39. ShahH.S. UsmanF. Ashfaq–KhanM. Preparation and characterization of anticancer niosomal withaferin & ndash; A formulation for improved delivery to cancer cells: In vitro, in vivo, and in silico evaluation.J. Drug Deliv. Sci. Technol.20205910186310.1016/j.jddst.2020.101863
    [Google Scholar]
  40. GeX. WeiM. HeS. YuanW.E. Advances of non-ionic surfactant vesicles (Niosomes) and their application in drug delivery.Pharmaceutics20191125510.3390/pharmaceutics11020055 30700021
    [Google Scholar]
  41. SinicoC. FaddaA.M. Vesicular carriers for dermal drug delivery.Expert Opin. Drug Deliv.20096881382510.1517/17425240903071029 19569979
    [Google Scholar]
  42. BarteldsR. NematollahiM.H. PolsT. Niosomes, an alternative for liposomal delivery.PLoS One2018134e019417910.1371/journal.pone.0194179 29649223
    [Google Scholar]
  43. NareshR.A.R. ChandrasekharG. PillaiG.K. UdupaN. Anti-inflammatory activity of Niosome encapsulated diclofenac sodium with Tween-85 in arthritic rats.Int. J. Pharmacol.1994264648
    [Google Scholar]
  44. ParthasarathiG. UdupaN. UmadeviP. PillaiG. Niosome encapsulated of vincristine sulfate: improved anticancer activity with reduced toxicity in mice.J. Drug Target.19942217318210.3109/10611869409015907 8069596
    [Google Scholar]
  45. MazyedE.A. HelalD.A. ElkhoudaryM.M. Abd ElhameedA.G. YasserM. Formulation and optimization of nanospanlastics for improving the bioavailability of green tea epigallocatechin gallate.Pharmaceuticals (Basel)20211416810.3390/ph14010068 33467631
    [Google Scholar]
  46. FarghalyD.A. AboelwafaA.A. HamzaM.Y. MohamedM.I. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: Optimization using experimental design and in vivo evaluation.AAPS PharmSciTech20171882898290910.1208/s12249‑017‑0771‑8 28429293
    [Google Scholar]
  47. ElhabakM. IbrahimS. AbouelattaS.M. Topical delivery of l -ascorbic acid spanlastics for stability enhancement and treatment of UVB induced damaged skin.Drug Deliv.202128144545310.1080/10717544.2021.1886377 33620008
    [Google Scholar]
  48. SalehA. KhalifaM. ShawkyS. Bani-AliA. EassaH. Zolmitriptan Intranasal spanlastics for enhanced migraine treatment; Formulation parameters optimized via quality by design approach.Sci. Pharm.20218922410.3390/scipharm89020024
    [Google Scholar]
  49. AbdelmonemR. el NabarawiM. AttiaA. Development of novel bioadhesive granisetron hydrochloride spanlastic gel and insert for brain targeting and study their effects on rats.Drug Deliv.2018251707710.1080/10717544.2017.1413447 29228824
    [Google Scholar]
  50. YassinG. AmerR. FayezA.M. Carbamazepine loaded vesicular structures for enhanced brain targeting via intranasal route: Optimization, in vitro evaluation, and in vivo study.International Journal of Applied Pharmaceutics20191126427410.22159/ijap.2019v11i4.33474
    [Google Scholar]
  51. AhadA. Al-SalehA.A. Al-MohizeaA.M. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate.Saudi Pharm. J.20172571040104610.1016/j.jsps.2017.01.006 29158713
    [Google Scholar]
  52. AlmuqbilR.M. SreeharshaN. NairA.B. Formulation-by-design of Efinaconazole spanlastic nanovesicles for transungual delivery using statistical risk management and multivariate analytical tchniques.Pharmaceutics2022147141910.3390/pharmaceutics14071419 35890316
    [Google Scholar]
  53. HargreavesR. OlesenJ. Calcitonin gene-related peptide modulators—The history and renaissance of a new migraine drug class.Headache201959695197010.1111/head.13510 31020659
    [Google Scholar]
  54. ShirsatA. ChitlangeS. Application of quality by design approach to optimize process and formulation parameters of rizatriptan loaded chitosan nanoparticles.J. Adv. Pharm. Technol. Res.201563889610.4103/2231‑4040.157983 26317071
    [Google Scholar]
  55. AbdellatifM.M. KhalilI.A. KhalilM.A.F. Sertaconazole nitrate loaded nanovesicular systems for targeting skin fungal infection: In-vitro, ex-vivo and in-vivo evaluation.Int. J. Pharm.20175271-211110.1016/j.ijpharm.2017.05.029 28522423
    [Google Scholar]
  56. MadheswaranT. BaskaranR. YongC.S. YooB.K. Enhanced topical delivery of finasteride using glyceryl monooleate-based liquid crystalline nanoparticles stabilized by cremophor surfactants.AAPS PharmSciTech2014151445110.1208/s12249‑013‑0034‑2 24222268
    [Google Scholar]
  57. SongJ. BiH. XieX. GuoJ. WangX. LiuD. Preparation and evaluation of sinomenine hydrochloride in situ gel for uveitis treatment.Int. Immunopharmacol.20131719910710.1016/j.intimp.2013.05.020 23747586
    [Google Scholar]
  58. CaiZ. SongX. SunF. YangZ. HouS. LiuZ. Formulation and evaluation of in situ gelling systems for intranasal administration of gastrodin.AAPS PharmSciTech20111241102110910.1208/s12249‑011‑9678‑y 21879392
    [Google Scholar]
  59. KhuranaS. JainN.K. BediP.M.S. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation.Life Sci.2013926-738339210.1016/j.lfs.2013.01.005 23353874
    [Google Scholar]
  60. SitaV.G. JadhavD. VaviaP. Niosomes for nose-to-brain delivery of bromocriptine: Formulation development, efficacy evaluation and toxicity profiling.J. Drug Deliv. Sci. Technol.20205810179110.1016/j.jddst.2020.101791
    [Google Scholar]
  61. NabaiL. GhaharyA. JacksonJ. Localized controlled release of Kynurenic acid encapsulated in synthetic polymer reduces implant-induceddermalfibrosis.Pharmaceutics2022148154610.3390/pharmaceutics14081546 35893802
    [Google Scholar]
  62. LatherV. SharmaD. PanditaD. Proniosomal gel-mediated transdermal delivery of bromocriptine: in vitro and ex vivo evaluation.J. Exp. Nanosci.201611131044105710.1080/17458080.2016.1184768
    [Google Scholar]
  63. PraveenA. AqilM. ImamS.S. AhadA. MoolakkadathT. AhmadF.J. Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: Formulation design, characterization and nasal toxicity study.Colloids Surf. B Biointerfaces201917455356210.1016/j.colsurfb.2018.11.025 30502666
    [Google Scholar]
  64. HarunaY. MoritaY. YadaT. SatohM. FoxD.A. KashiharaN. Fluvastatin reverses endothelial dysfunction and increased vascular oxidative stress in rat adjuvant-induced arthritis.Arthritis Rheum.20075661827183510.1002/art.22632 17530711
    [Google Scholar]
  65. ZhangG. SunG. GuanH. Naringenin nanocrystals for improving anti-rheumatoid arthritis activity.Asian Journal Pharmaceutical Sciences202116681682510.1016/j.ajps.2021.09.001 35027956
    [Google Scholar]
  66. MittalD. MdS. HasanQ. Brain targeted nanoparticulate drug delivery system of rasagiline via intranasal route.Drug Deliv.201623113013910.3109/10717544.2014.907372 24786489
    [Google Scholar]
  67. HansrajG.P. SinghS.K. KumarP. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential.Int. J. Biol. Macromol.20158146747610.1016/j.ijbiomac.2015.08.035 26299709
    [Google Scholar]
  68. SharmaA. PahwaS. BhatiS. KudeshiaP. Spanlastics: A modern approach for nanovesicular drug delivery system.Int. J. Pharm. Sci. Res.20201110571065
    [Google Scholar]
  69. RanadeS. ThiagarajanP. Selection of a design for response surface.IOP Conf Ser Mater Sci Eng2017
    [Google Scholar]
  70. ElsenosyF.M. AbdelbaryG.A. ElshafeeyA.H. ElsayedI. FaresA.R. Brain targeting of Duloxetine HCl via intranasal delivery of loaded cubosomal gel: In vitro characterization, ex vivo permeation, and in vivo biodistribution studies.Int. J. Nanomedicine2020159517953710.2147/IJN.S277352 33324051
    [Google Scholar]
  71. Abdel-MageedHM FahmyM ShakerDS MohamedSA Development of novel delivery system for nanoencapsulation of catalase: Formulation, characterization, and in vivo evaluation using oxidative skin injury model.Artif Cells Nanomed Biotechnol201846sup136271
    [Google Scholar]
  72. UnnisaA. ChettupalliA.K. Al HagbaniT. Development of Dapagliflozin solid lipid nanoparticles as a novel carrier for oral delivery: Statistical design, optimization, in-vitro and in-vivo characterization, and evaluation.Pharmaceuticals (Basel)202215556810.3390/ph15050568 35631394
    [Google Scholar]
  73. AmarachintaP.R. SharmaG. SamedN. ChettupalliA.K. AlleM. KimJ.C. Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensiv effect.J. Nanobiotechnology202119115
    [Google Scholar]
  74. ChettupalliA.K. AnanthulaM. AmarachintaP.R. BakshiV. YataV.K. Design, formulation, in-vitro and ex-vivo evaluation of atazanavir loaded cubosomal gel.Biointerface Res. Appl. Chem.20211141203712054
    [Google Scholar]
  75. AlzubaidiA.F.A. El-HelwA.R.M. AhmedT.A. AhmedO.A.A. The use of experimental design in the optimization of risperidone biodegradable nanoparticles: in vitro and in vivo study.Artif. Cells Nanomed. Biotechnol.201745231332010.3109/21691401.2016.1147453 26900050
    [Google Scholar]
  76. AzizD.E. AbdelbaryA.A. ElassasyA.I. Implementing central composite design for developing transdermal diacerein-loaded niosomes: Ex vivo permeation and in vivo deposition.Curr. Drug Deliv.20181591330134210.2174/1567201815666180619105419 29921206
    [Google Scholar]
  77. JunyaprasertV.B. TeeranachaideekulV. SupapermT. Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes.AAPS PharmSciTech20089385185910.1208/s12249‑008‑9121‑1 18636334
    [Google Scholar]
  78. RestuinjayaL.A. SimaremareE.S. PratiwiR.D. Optimization of tween 80 and span 60 on cream ethanol extract the leaves matoa (Pometia pinnata) as an antioxidant.J Adv Pharm Pract201911121
    [Google Scholar]
  79. ShiloM. SharonA. BaranesK. MotieiM. LelloucheJ.P.M. PopovtzerR. The effect of nanoparticle size on the probability to cross the blood-brain barrier: an in-vitro endothelial cell model.J. Nanobiotechnology20151311910.1186/s12951‑015‑0075‑7 25880565
    [Google Scholar]
  80. El MenshaweS.F. NafadyM.M. AboudH.M. KharshoumR.M. ElkelawyA.M.M.H. HamadD.S. Transdermal delivery of fluvastatin sodium via tailored spanlastic nanovesicles: mitigated Freund’s adjuvant-induced rheumatoid arthritis in rats through suppressing p38 MAPK signaling pathway.Drug Deliv.20192611140115410.1080/10717544.2019.1686087 31736366
    [Google Scholar]
  81. MehannaM.M. MotawaaA.M. SamahaM.W. Nanovesicular carrier-mediated transdermal delivery of tadalafil: i- formulation and physicsochemical characterization.Drug Dev. Ind. Pharm.201541571472110.3109/03639045.2014.900075 24669976
    [Google Scholar]
  82. YoshiokaT. SternbergB. FlorenceA. Preparation and properties of vesicles (niosomes) of sorbitan monoesters (Span 20, 40, 60 and 80) and a sorbitan triester (Span 85).Int. J. Pharm.199410511610.1016/0378‑5173(94)90228‑3
    [Google Scholar]
  83. Al-mahallawiA.M. AbdelbaryA.A. AburahmaM.H. Investigating the potential of employing bilosomes as a novel vesicular carrier for transdermal delivery of tenoxicam.Int. J. Pharm.20154851-232934010.1016/j.ijpharm.2015.03.033 25796122
    [Google Scholar]
  84. PundS. SheteY. JagadaleS. Multivariate analysis of physicochemical characteristics of lipid based nanoemulsifying cilostazol—Quality by design.Colloids Surf. B Biointerfaces2014115293610.1016/j.colsurfb.2013.11.019 24316585
    [Google Scholar]
  85. JoshiA. PundS. NivsarkarM. VasuK. ShishooC. Dissolution test for site-specific release isoniazid pellets in USP apparatus 3 (reciprocating cylinder): Optimization using response surface methodology.Eur. J. Pharm. Biopharm.200869276977510.1016/j.ejpb.2007.11.020 18191554
    [Google Scholar]
  86. KennethJ. Reversible gel forming composition for sustained delivery of bio-affecting substances, and methods of use. Patent US 5599534 1997
    [Google Scholar]
  87. AbdelbaryG.A. AburahmaM.H. Oro-dental mucoadhesive proniosomal gel formulation loaded with lornoxicam for management of dental pain.J. Liposome Res.201525210712110.3109/08982104.2014.941861 25058447
    [Google Scholar]
  88. JainS.P. ShahS.P. RajadhyakshaN.S. SinghP.S.P.P. AminP.D. In situ ophthalmic gel of ciprofloxacin hydrochloride for once a day sustained delivery.Drug Dev. Ind. Pharm.200834444545210.1080/03639040701831710 18401787
    [Google Scholar]
  89. RavouruN. KondreddyP. KorakanchiD.M.H. Formulation and evaluation of niosomal nasal drug delivery system of folic acid for brain targeting.Curr. Drug Discov. Technol.201310427028210.2174/15701638113109990031 23863098
    [Google Scholar]
  90. AkhterS. KushwahaS. WarsiM.H. Development and evaluation of nanosized niosomal dispersion for oral delivery of Ganciclovir.Drug Dev. Ind. Pharm.2012381849210.3109/03639045.2011.592529 21726136
    [Google Scholar]
  91. Abd-ElalR.M.A. ShammaR.N. RashedH.M. BendasE.R. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency.Drug Deliv.20162393374338610.1080/10717544.2016.1183721 27128792
    [Google Scholar]
  92. LiP. BaiJ. LuY. WenR. DuS. Bioavailability and brain-targeting of puerarin by different administration routes in rats.J. Drug Deliv. Sci. Technol.201323658358610.1016/S1773‑2247(13)50088‑8
    [Google Scholar]
  93. FatouhA. ElshafeeyA. AbdelbaryA. Intranasal agomelatine solid lipid nanoparticles to enhance brain delivery: formulation, optimization and in vivo pharmacokinetics.Drug Des. Devel. Ther.2017111815182510.2147/DDDT.S102500 28684900
    [Google Scholar]
  94. MahajanH.S. MahajanM.S. NerkarP.P. AgrawalA. Nanoemulsion-based intranasal drug delivery system of saquinavir mesylate for brain targeting.Drug Deliv.201421214815410.3109/10717544.2013.838014 24128122
    [Google Scholar]
  95. YasirM SaraUVS Solid lipid nanoparticles for nose to brain delivery of haloperidol: in vitro drug release and pharmacokinetics evaluation Acta Pharm Sin2014B44546310.1016/j.apsb.2014.10.005
  96. Yin WinK. FengS.S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs.Biomaterials200526152713272210.1016/j.biomaterials.2004.07.050 15585275
    [Google Scholar]
  97. NikaiT. BasbaumA.I. AhnA.H. Profound reduction of somatic and visceral pain in mice by intrathecal administration of the anti-migraine drug, sumatriptan.Pain2008139353354010.1016/j.pain.2008.06.002 18723285
    [Google Scholar]
  98. BartschT. KnightY.E. GoadsbyP.J. Activation of 5-HT1B/1D receptor in the periaqueductal gray inhibits nociception.Ann. Neurol.200456337138110.1002/ana.20193 15349864
    [Google Scholar]
  99. OkamotoK. ThompsonR. TashiroA. ChangZ. BereiterD.A. Bright light produces Fos-positive neurons in caudal trigeminal brainstem.Neuroscience2009160485886410.1016/j.neuroscience.2009.03.003 19285114
    [Google Scholar]
  100. AboudH.M. AliA.A. EI-Menshave SF, Elbary AA. Nanotransferosomes of carvidilol for intranasal delivery: formulation, characterization and in vivo evaluation.Drug Deliv.2015237111 25715807
    [Google Scholar]
  101. RajinikanthP.S. SankarC. MishraB. Sodium alginate microspheres of metoprolol tartrate for intranasal systemic delivery: development and evaluation.Drug Deliv.2003101212810.1080/713840323 12554360
    [Google Scholar]
  102. MaoS. ChenJ. WeiZ. LiuH. BiD. Intranasal administration of melatonin starch microspheres.Int. J. Pharm.20042721-2374310.1016/j.ijpharm.2003.11.028 15019067
    [Google Scholar]
  103. VyasS.P. GoswamiS.K. SinghR. Liposomes based nasal delivery system of nifedipine: Development and characterization.Int. J. Pharm.19951181233010.1016/0378‑5173(94)00296‑H
    [Google Scholar]
  104. QuadirM. ZiaH. NeedhamT.E. Development and evaluation of nasal formulations of ketorolac.Drug Deliv.20007422322910.1080/107175400455155 11195429
    [Google Scholar]
  105. VarshosazJ. SadraiH. HeidariA. Nasal delivery of insulin using bioadhesive chitosan gels.Drug Deliv.2006131313810.1080/10717540500309040 16401591
    [Google Scholar]
/content/journals/cdth/10.2174/0115748855264862231005182145
Loading
/content/journals/cdth/10.2174/0115748855264862231005182145
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test