Skip to content
2000
image of Neuroprotective Potential of Butrin: Mechanistic and Therapeutic Insights

Abstract

Introduction

Butrin, a flavonoid glycoside derived from , has garnered attention for its neuroprotective effects attributed to its multifaceted pharmacological profile. It modulates dopamine and norepinephrine levels and exhibits antioxidant, anti-inflammatory, and mitochondrial-protective actions. These properties position butrin as a promising candidate for therapeutic intervention in neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. This review consolidates mechanistic insights, preclinical evidence, and therapeutic perspectives of butrin to assess its potential clinical applicability in managing neurodegenerative disorders.

Methods

This review critically analyzes existing preclinical studies on the neuroprotective effects of butrin. Emphasis is placed on its mechanisms of action, including mitigation of oxidative stress, suppression of neuroinflammation, enhancement of neurotrophic factors, and preservation of mitochondrial integrity. Additionally, the review explores current limitations in clinical translation and evaluates emerging drug delivery strategies aimed at improving its therapeutic potential.

Results

Preclinical evidence indicates that butrin effectively counters excitotoxicity and protein aggregation, key pathological features of neurodegenerative disorders. It attenuates neuropathological processes and demonstrates synergistic effects when combined with other neuroprotective and anti-inflammatory agents. Nonetheless, its poor bioavailability and limited ability to cross the blood-brain barrier remain significant barriers to clinical application.

Discussion

Despite its promising pharmacological profile, the clinical translation of butrin is constrained by absorption challenges and suboptimal pharmacokinetics. Innovative strategies, such as nanocarrier-based delivery systems, drug repurposing, and combination therapies, may enhance its therapeutic efficacy. Addressing these limitations is crucial for advancing butrin from bench to bedside.

Conclusion

Butrin exhibits compelling neuroprotective properties supported by robust preclinical data. However, large-scale clinical trials are essential to validate its efficacy. Integrating advanced drug delivery systems and personalized medicine approaches may unlock its full potential in managing neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775398736250911114640
2025-09-29
2025-12-05
Loading full text...

Full text loading...

References

  1. Wagner H. Geyer B. Fiebig M. Kiso Y. Hikino H. Isobutrin and butrin, the antihepatotoxic principles of Butea monosperma flowers. Planta Med. 1986 52 2 77 79 10.1055/s‑2007‑969083 3725938
    [Google Scholar]
  2. Subramaniyan B. Kumar V. Mathan G. Effect of sodium salt of Butrin, a novel compound isolated from Butea monosperma flowers on suppressing the expression of SIRT1 and Aurora B kinase-mediated apoptosis in colorectal cancer cells. Biomed. Pharmacother. 2017 90 402 413 10.1016/j.biopha.2017.03.086 28390310
    [Google Scholar]
  3. Gupta S.R. Ravindranath B. Seshadri T.R. The glucosides of Butea monosperma. Phytochemistry 1970 9 10 2231 2235 10.1016/S0031‑9422(00)85390‑X
    [Google Scholar]
  4. Michel T. Destandau E. Pecher V. Two-step centrifugal partition chromatography (CPC) fractionation of Butea monosperma (Lam.) biomarkers. Separ. Purif. Tech. 2011 80 1 32 37 10.1016/j.seppur.2011.04.002
    [Google Scholar]
  5. Rasheed Z. Akhtar N. Khan A. Khan K.A. Haqqi T.M. Butrin, isobutrin, and butein from medicinal plant Butea monosperma selectively inhibit nuclear factor-kappaB in activated human mast cells: suppression of tumor necrosis factor-α, interleukin (IL)-6, and IL-8. J. Pharmacol. Exp. Ther. 2010 333 2 354 363 10.1124/jpet.109.165209 20164300
    [Google Scholar]
  6. Krolikiewicz-Renimel I. Michel T. Destandau E. Protective effect of a Butea monosperma (Lam.) Taub. flowers extract against skin inflammation: Antioxidant, anti-inflammatory and matrix metalloproteinases inhibitory activities. J. Ethnopharmacol. 2013 148 2 537 543 10.1016/j.jep.2013.05.001 23680157
    [Google Scholar]
  7. Subramaniyan B. Polachi N. Mathan G. Isocoreopsin: An active constituent of n-butanol extract of Butea monosperma flowers against colorectal cancer (CRC). J. Pharm. Anal. 2016 6 5 318 325 10.1016/j.jpha.2016.04.007 29403999
    [Google Scholar]
  8. Dabadi P. Krupanidhi A.M. Dhanush C.R. A review on pharmacological activities of Butea monosperma. Int J Res Pharm Pharm Sci 2024 9 4 4 8
    [Google Scholar]
  9. Gupta P. Chauhan N.S. Pande M. Pathak A. Phytochemical and pharmacological review on Butea monosperma (Palash). Int. J. Agron. Plant Prod. 2012 3 7 255 258
    [Google Scholar]
  10. Ataullah M.D. Kumar S. Siroliya V.K. Malik J. Singh G. Tiwari A. Pharmacognostical and phytochemical studies on leaves of Butea monosperma (L.) Taub. European J Biomedical 2024 11 7 40 44
    [Google Scholar]
  11. Patel G Dwivedi N Tripathi IP Biochemical studies of Butea monosperma.
    [Google Scholar]
  12. Zahra N. Mazhar A. Zahid B. Evaluation of influence of Butea monosperma floral extract on inflammatory biomarkers. Open Chem. 2024 22 1 20230199 10.1515/chem‑2023‑0199
    [Google Scholar]
  13. Jung Y.J. Tweedie D. Scerba M.T. Greig N.H. Neuroinflammation as a factor of neurodegenerative disease: thalidomide analogs as treatments. Front. Cell Dev. Biol. 2019 7 313 10.3389/fcell.2019.00313 31867326
    [Google Scholar]
  14. Zhao MM Duan JY Shen Y Liu Y Zeng KW Recent advances in neuroinflammation prevention and therapy: The role of natural products and underlying mechanisms based on molecular targets. Br J Pharmacol 2024 2 bph.16404 10.1111/bph.16404 3872179
    [Google Scholar]
  15. Lahooti B. Chhibber T. Bagchi S. Varahachalam S.P. Jayant R.D. Therapeutic role of inflammasome inhibitors in neurodegenerative disorders. Brain Behav. Immun. 2021 91 771 783 10.1016/j.bbi.2020.11.004 33157255
    [Google Scholar]
  16. Cardoso F.S. Salehpour F. Coimbra N.C. Gonzalez-Lima F. Gomes da Silva S. Photobiomodulation for the treatment of neuroinflammation: A systematic review of controlled laboratory animal studies. Front. Neurosci. 2022 16 1006031 10.3389/fnins.2022.1006031 36203812
    [Google Scholar]
  17. Singh A. Chokriwal A. Sharma M.M. Jain D. Saxena J. Stephen B.J. Therapeutic role and drug delivery potential of neuroinflammation as a target in neurodegenerative disorders. ACS Chem. Neurosci. 2017 8 8 1645 1655 10.1021/acschemneuro.7b00144 28719178
    [Google Scholar]
  18. Yilmaz C. Karali K. Fodelianaki G. Neurosteroids as regulators of neuroinflammation. Front. Neuroendocrinol. 2019 55 100788 10.1016/j.yfrne.2019.100788 31513776
    [Google Scholar]
  19. Bellavite P. Neuroprotective potentials of flavonoids: Experimental studies and mechanisms of action. Antioxidants 2023 12 2 280 10.3390/antiox12020280 36829840
    [Google Scholar]
  20. Youdim K.A. Spencer J.P. Schroeter H. Rice-Evans C. Dietary flavonoids as potential neuroprotectants. Biol. Chem. 2002 383 3-4 503 519 10.1515/BC.2002.052 12033439
    [Google Scholar]
  21. Gutierrez-Merino C. Lopez-Sanchez C. Lagoa R. Samhan-Arias A.K. Bueno C. Garcia-Martinez V. Neuroprotective actions of flavonoids. Curr. Med. Chem. 2011 18 8 1195 1212 10.2174/092986711795029735 21291366
    [Google Scholar]
  22. Li J. Yu Y. Zhang Y. Flavonoids derived from Chinese medicine: Potential neuroprotective agents. Am. J. Chin. Med. 2024 52 6 1613 1640 10.1142/S0192415X24500630 39343989
    [Google Scholar]
  23. Hamsalakshmi, Alex AM, Arehally. Marappa M, Joghee S, Chidambaram SB. Therapeutic benefits of flavonoids against neuroinflammation: a systematic review. Inflammopharmacology 2022 2 1 26 10.1007/s10787‑022‑00978‑6
    [Google Scholar]
  24. Al Amin M. Dehbia Z. Nafady M.H. Flavonoids and Alzheimer’s disease: Reviewing the evidence for neuroprotective potential. Mol. Cell. Biochem. 2025 480 1 43 73 10.1007/s11010‑023‑04922‑w 38568359
    [Google Scholar]
  25. Zhu J.T.T. Choi R.C.Y. Chu G.K.Y. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: A comparison of different flavonoids in activating estrogenic effect and in preventing β-amyloid-induced cell death. J. Agric. Food Chem. 2007 55 6 2438 2445 10.1021/jf063299z 17323972
    [Google Scholar]
  26. Cichon N. Saluk-Bijak J. Gorniak L. Przyslo L. Bijak M. Flavonoids as a natural enhancer of neuroplasticity—An overview of the mechanism of neurorestorative action. Antioxidants 2020 9 11 1035 10.3390/antiox9111035 33114058
    [Google Scholar]
  27. Minocha T. Birla H. Obaid A.A. Flavonoids as promising neuroprotectants and their therapeutic potential against Alzheimer’s disease. Oxid. Med. Cell. Longev. 2022 2022 1 6038996 10.1155/2022/6038996 36071869
    [Google Scholar]
  28. Hasan S. Khatri N. Rahman Z.N. Neuroprotective potential of flavonoids in brain disorders. Brain Sci. 2023 13 9 1258 10.3390/brainsci13091258 37759859
    [Google Scholar]
  29. Farooq M.U. Mumtaz M.W. Mukhtar H. UHPLC-QTOF-MS/MS based phytochemical characterization and anti-hyperglycemic prospective of hydro-ethanolic leaf extract of Butea monosperma. Sci. Rep. 2020 10 1 3530 10.1038/s41598‑020‑60076‑5 32103043
    [Google Scholar]
  30. Sutariya B. Saraf M. A comprehensive review on pharmacological profile of Butea monosperma (Lam.) Taub. J. Appl. Pharm. Sci. 2015 5 9 159 166 10.7324/JAPS.2015.50929
    [Google Scholar]
  31. Choedon T. Shukla S.K. Kumar V. Chemopreventive and anti-cancer properties of the aqueous extract of flowers of Butea monosperma. J. Ethnopharmacol. 2010 129 2 208 213 10.1016/j.jep.2010.03.011 20307637
    [Google Scholar]
  32. Methaniya D. Rathore R. Solanki H. Butea monosperma: Ethanomedicinal studies and pharmacology: A review. Int Assoc Biol Comput Dig 2023 2 1 222 229 10.56588/iabcd.v2i1.140
    [Google Scholar]
  33. Dhakad G.G. Ganjiwale S.V. Nawghare S.M. Shrirao A.V. Kochar N.I. Chandewar A.V. Review on Butea monosperma plant and its medicinal use. Res J Pharm Pharm 2023 15 2 69 72 10.52711/2321‑5836.2023.00014
    [Google Scholar]
  34. Rohit Y.S. Sonali S. Kumar P.A. Shubham P.P. Butea monosperma (PALASH): Plant review with their phytoconstituents and pharmacological applications. IOSR J. Pharm. Biol. Sci. 2020 15 18 23
    [Google Scholar]
  35. Hiremath K.Y. Veeranagoudar D.K. Bojja K.S. Butea monosperma as a collective phytomedicine and environmentally sustainable, conservative, and beneficial plant. Arch. Razi Inst. 2024 79 3 465 474 10.22092/ari.2024.362914.2412 39736959
    [Google Scholar]
  36. Pike A.F. Longhena F. Faustini G. Dopamine signaling modulates microglial NLRP3 inflammasome activation: implications for Parkinson’s disease. J. Neuroinflammation 2022 19 1 50 10.1186/s12974‑022‑02410‑4 35172843
    [Google Scholar]
  37. Cheng Z.Y. Xia Q.P. Hu Y.H. Wang C. He L. Dopamine D1 receptor agonist A-68930 ameliorates Aβ1-42-induced cognitive impairment and neuroinflammation in mice. Int. Immunopharmacol. 2020 88 106963 10.1016/j.intimp.2020.106963 33182028
    [Google Scholar]
  38. Tedford E. Badya N.B. Laing C. Infection-induced extracellular vesicles evoke neuronal transcriptional and epigenetic changes. Sci. Rep. 2023 13 1 6913 10.1038/s41598‑023‑34074‑2 37106020
    [Google Scholar]
  39. Mackie P Gopinath A Montas D Biology of the dopamine transporter on human macrophages. FASEB J 2021 35 S1 fasebj.2021.35.S1.03180 10.1096/fasebj.2021.35.S1.03180
    [Google Scholar]
  40. Ashraf-Uz-Zaman M. Ji G. Tidwell D. Evaluation of urea-based inhibitors of the dopamine transporter using the experimental autoimmune encephalomyelitis model of multiple sclerosis. ACS Chem. Neurosci. 2022 13 2 217 228 10.1021/acschemneuro.1c00647 34978174
    [Google Scholar]
  41. Gonzalez-Lopez E. Vrana K.E. Dopamine beta‐hydroxylase and its genetic variants in human health and disease. J. Neurochem. 2020 152 2 157 181 10.1111/jnc.14893 31613389
    [Google Scholar]
  42. Nampoothiri M. Gurram P.C. Manandhar S. Satarker S. Mudgal J. Arora D. Dopaminergic signaling as a plausible modulator of astrocytic toll-like receptor 4: A crosstalk between neuroinflammation and cognition. CNS Neurol. Disord. Drug Targets 2023 22 4 539 557 10.2174/1871527321666220413090541 35422229
    [Google Scholar]
  43. Zou H.L. Li J. Zhou J.L. Yi X. Cao S. Effects of norepinephrine on microglial neuroinflammation and neuropathic pain. Ibrain 2021 7 4 309 317 10.1002/ibra.12001 37786561
    [Google Scholar]
  44. Kharat V. Shinde S. Phytochemical profiling of Butea monosperma (Lam.) flower extracts. Int J Bot Stud 2021 6 5 936 939
    [Google Scholar]
  45. Sehrawat A. Kumar V. Butein imparts free radical scavenging, anti-oxidative and proapoptotic properties in the flower extracts of Butea monosperma. Biocell 2012 36 2 63 71 10.32604/biocell.2012.36.063 23185781
    [Google Scholar]
  46. Sehrawat A. Sultana S. Chemoprevention by Butea monosperma of hepatic carcinogenesis and oxidative damage in male wistar rats. Asian Pac. J. Cancer Prev. 2006 7 1 140 148 [PMID: 16629533].
    [Google Scholar]
  47. Sehrawat A. Khan T.H. Prasad L. Sultana S. Butea monosperma and chemomodulation: Protective role against thioacetamide-mediated hepatic alterations in Wistar rats. Phytomedicine 2006 13 3 157 163 10.1016/j.phymed.2004.11.007 16428022
    [Google Scholar]
  48. Datta A. Alam M.J. Khaleda L. Al-Forkan M. Protective effects of Corchorus olitorius and Butea monosperma against Arsenic induced aberrant methylation and mitochondrial DNA damage in wistar rat model. Toxicol. Rep. 2021 8 30 37 10.1016/j.toxrep.2020.12.017 33391994
    [Google Scholar]
  49. Tiwari P. Dubey S.K. Sahu P.K. Butea monosperma reduces haloperidol and sulpiride induced hyperprolactinemia in rats. J Krishna Institut Med Sci 2019 8 2 1 7
    [Google Scholar]
  50. Rana F. Mazumder A. Anti-inflammatory activity of flower extract of Butea monosperma. Int J Pharmacogn 2015 2 5 266 268
    [Google Scholar]
  51. Olajide O.A. Sarker S.D. Alzheimer’s disease: Natural products as inhibitors of neuroinflammation. Inflammopharmacology 2020 28 6 1439 1455 10.1007/s10787‑020‑00751‑1 32930914
    [Google Scholar]
  52. Fomina A.F. Nguyen H.M. Wulff H. Kv1.3 inhibition attenuates neuroinflammation through disruption of microglial calcium signaling. Channels (Austin) 2021 15 1 67 78 10.1080/19336950.2020.1853943 33356832
    [Google Scholar]
  53. Prakash R Ramanathan M Protective effect of non-selective COX inhibitor on lipopolysaccharide-induced neuroinflammation in rats through NF-κB pathway. Curr Trends Biotechnol Pharm 2022 16 102 10 (Suppl. 1) 10.5530/ctbp.2022.1s.12
    [Google Scholar]
  54. Sundar R. Sundar G. John A. Abraham A. Butea monosperma bark extract: A natural boost for osteogenesis via Wnt/β-catenin pathway activation in adipose-derived mesenchymal stem cells. Biotechnol. Lett. 2025 47 1 3 10.1007/s10529‑024‑03545‑5 39585509
    [Google Scholar]
  55. Tiwari P. Butea Monosperma: Phytochemistry and pharmacology. Acta Sci Pharm Sci 2019 3 4 19 26
    [Google Scholar]
  56. Gao L. Zhang Y. Sterling K. Song W. Brain-derived neurotrophic factor in Alzheimer’s disease and its pharmaceutical potential. Transl. Neurodegener. 2022 11 1 4 10.1186/s40035‑022‑00279‑0 35090576
    [Google Scholar]
  57. Chauhan S.S. Mahish P.K. Flavonoids of the flame of forest—Butea monosperma. Res J Pharm Technol 2020 13 11 5647 5653 10.5958/0974‑360X.2020.00987.0
    [Google Scholar]
  58. Shaikh A. Bhandirge S. Khan A. Gawande A. Evaluation of hepatoprotective activity of ethanolic extract of Butea monosperma against thioacetamide-induced hepatotoxicity in rats. Int. J. Herb. Med. 2023 11 5 187 190
    [Google Scholar]
  59. Andersen J.V. Markussen K.H. Jakobsen E. Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology 2021 196 108719 10.1016/j.neuropharm.2021.108719 34273389
    [Google Scholar]
  60. Iovino L. Tremblay M.E. Civiero L. Glutamate-induced excitotoxicity in Parkinson’s disease: The role of glial cells. J. Pharmacol. Sci. 2020 144 3 151 164 10.1016/j.jphs.2020.07.011 32807662
    [Google Scholar]
  61. Kaur V. Kumar M. Kaur P. Kaur S. Singh A.P. Kaur S. Hepatoprotective activity of Butea monosperma bark against thioacetamide-induced liver injury in rats. Biomed. Pharmacother. 2017 89 332 341 10.1016/j.biopha.2017.01.165 28237915
    [Google Scholar]
  62. Shahavi V.M. Desai S.K. Anti-inflammatory activity of Butea monosperma flowers. Fitoterapia 2008 79 2 82 85 10.1016/j.fitote.2007.06.014 17904309
    [Google Scholar]
  63. Wang J. Jia R. Wan W. Drug delivery targeting neuroinflammation to treat brain diseases. Bioconjug. Chem. 2024 35 11 1687 1698 10.1021/acs.bioconjchem.4c00414 39377704
    [Google Scholar]
  64. Fornari Laurindo L. Aparecido Dias J. Cressoni Araújo A. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Front. Immunol. 2024 14 1305933 10.3389/fimmu.2023.1305933 38259497
    [Google Scholar]
  65. Kopp K.O. Greer M.E. Glotfelty E.J. A new generation of IMiDs as treatments for neuroinflammatory and neurodegenerative disorders. Biomolecules 2023 13 5 747 10.3390/biom13050747 37238617
    [Google Scholar]
  66. Duarte G.M. de Araújo F.E.A. da Rocha J.M.C. Neuroprotective potential of seed extracts: Review of in vitro and in vivo studies. Nutrients 2023 15 11 2502 10.3390/nu15112502 37299465
    [Google Scholar]
  67. Park S.A. Seo Y.J. Kim L.K. Kim H.J. Yoon K.D. Heo T.H. Butein inhibits cell growth by blocking the IL-6/IL-6Rα interaction in human ovarian cancer and by regulation of the IL-6/STAT3/FoxO3a pathway. Int. J. Mol. Sci. 2023 24 7 6038 10.3390/ijms24076038 37047012
    [Google Scholar]
  68. Gromova O.A. Torshin I.Y. Putilina M.V. Semenov V.A. Rudakov K.V. Choice of neuroprotective therapy regimens in patients with chronic cerebral ischemia, taking into account the synergy of drug interactions. Zh. Nevrol. Psikhiatr. Im. S. S. Korsakova 2020 120 8 42 50 10.17116/jnevro202012008142 32929923
    [Google Scholar]
  69. Putilina M.V. Teplova N.V. Drug synergism as the basis of rational neuroprotection. Neurosci. Behav. Physiol. 2022 52 8 1207 1211 10.1007/s11055‑023‑01349‑0 36748019
    [Google Scholar]
  70. Barreiro S. Silva B. Long S. Fiscalin derivatives as potential neuroprotective agents. Pharmaceutics 2022 14 7 1456 10.3390/pharmaceutics14071456 35890350
    [Google Scholar]
  71. Meloni B.P. Mastaglia F.L. Knuckey N.W. Cationic arginine-rich peptides (CARPs): A novel class of neuroprotective agents with a multimodal mechanism of action. Front. Neurol. 2020 11 108 10.3389/fneur.2020.00108 32158425
    [Google Scholar]
  72. Peng X. Zhang X. Sharma G. Dai C. Thymol as a potential neuroprotective agent: Mechanisms, efficacy, and future prospects. J. Agric. Food Chem. 2024 72 13 6803 6814 10.1021/acs.jafc.3c06461 38507708
    [Google Scholar]
  73. Zhao M. Wang B. Zhang C. The DJ1-Nrf2-STING axis mediates the neuroprotective effects of Withaferin A in Parkinson’s disease. Cell Death Differ. 2021 28 8 2517 2535 10.1038/s41418‑021‑00767‑2 33762743
    [Google Scholar]
  74. Sulaiman S. Arafat K. Al-Azawi A.M. AlMarzooqi N.A. Lootah S.N.A.H. Attoub S. Butein and frondoside-A combination exhibits additive anti-cancer effects on tumor cell viability, colony growth, and invasion and synergism on endothelial cell migration. Int. J. Mol. Sci. 2021 23 1 431 10.3390/ijms23010431 35008855
    [Google Scholar]
  75. Chen Z.X. Breitman T.R. Tributyrin: A prodrug of butyric acid for potential clinical application in differentiation therapy. Cancer Res. 1994 54 13 3494 3499 [PMID: 8012972].
    [Google Scholar]
  76. Alzarea S.I. Alasmari A.F. Alanazi A.S. Butin attenuates arthritis in complete Freund’s adjuvant-treated arthritic rats: Possibly mediated by its antioxidant and anti-inflammatory actions. Front. Pharmacol. 2022 13 810052 10.3389/fphar.2022.810052 35242033
    [Google Scholar]
  77. Fukuta T. Hirai S. Yoshida T. Maoka T. Kogure K. Protective effect of antioxidative liposomes co-encapsulating astaxanthin and capsaicin on CCl4-induced liver injury. Biol. Pharm. Bull. 2020 43 8 1272 1274 10.1248/bpb.b20‑00116 32741949
    [Google Scholar]
  78. Morén C. deSouza R.M. Giraldo D.M. Uff C. Antioxidant therapeutic strategies in neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 16 9328 10.3390/ijms23169328 36012599
    [Google Scholar]
  79. Ashok A. Andrabi S.S. Mansoor S. Kuang Y. Kwon B.K. Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: Role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022 11 2 408 10.3390/antiox11020408 35204290
    [Google Scholar]
  80. Agnes JP Santos VW das Neves RN Antioxidants improve oxaliplatin-induced peripheral neuropathy in tumor-bearing mice model: Role of spinal cord oxidative stress and inflammation. J. Pain 2021 22 8 996 1013 10.1016/j.jpain.2021.03.142 33774154
    [Google Scholar]
  81. Putilina M. Teplova N. Possible prospects for the combined administration of antidepressants and antioxidants in neurological patients. Med Sovet 2023 21 80 87 10.21518/ms2023‑376
    [Google Scholar]
  82. Farbood Y. Sarkaki A. Mahdavinia M. Protective effects of co-administration of zinc and selenium against streptozotocin-induced Alzheimer’s disease: Behavioral, mitochondrial oxidative stress, and GPR39 expression alterations in rats. Neurotox. Res. 2020 38 2 398 407 10.1007/s12640‑020‑00226‑9 32504391
    [Google Scholar]
  83. Er A. Coskun D. Bahcivan E. Dik B. Effect of doxycycline and meloxicam on cytokines, brain-derived neurotrophic factor, matrix metalloproteinase-3, tissue inhibitor of metalloproteinase-3 and cyclooxygenase-2 in brain. Iran. J. Basic Med. Sci. 2020 23 10 1328 1334 [PMID: 33149866].
    [Google Scholar]
  84. He J. Huang Y. Liu H. Bexarotene promotes microglia/macrophages - Specific brain - Derived Neurotrophic factor expression and axon sprouting after traumatic brain injury. Exp. Neurol. 2020 334 113462 10.1016/j.expneurol.2020.113462 32916173
    [Google Scholar]
  85. He Z. Zang H. Zhu L. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury. Int. J. Nanomedicine 2019 14 721 732 10.2147/IJN.S187854 30705588
    [Google Scholar]
  86. Guo Q. Mizuno K. Okuyama K. Antineuropathic pain actions of Wu-tou decoction resulted from the increase of neurotrophic factor and decrease of CCR5 expression in primary rat glial cells. Biomed. Pharmacother. 2020 123 109812 10.1016/j.biopha.2020.109812 31945696
    [Google Scholar]
  87. Zloh M Štofková A Brain‐derived neurotrophic factor alleviates clinical symptoms of experimental autoimmune uveoretinitis and supports retinal regeneration. Acta Ophthalmol 2024 102 S279 aos.16250 10.1111/aos.1625
    [Google Scholar]
  88. Semita I.N. Utomo D.N. Suroto H. Sudiana I.K. Gandi P. The mechanism of human neural stem cell secretomes improves neuropathic pain and locomotor function in spinal cord injury rat models: through antioxidant, anti-inflammatory, anti-matrix degradation, and neurotrophic activities. Korean J. Pain 2023 36 1 72 83 10.3344/kjp.22279 36549874
    [Google Scholar]
  89. Saleh M. Markovic M. Olson K.E. Gendelman H.E. Mosley R.L. Therapeutic strategies for immune transformation in Parkinson’s disease. J. Parkinsons Dis. 2022 12 s1 S201 S222 10.3233/JPD‑223278 35871362
    [Google Scholar]
  90. Mosiołek A. Pięta A. Jakima S. Zborowska N. Mosiołek J. Szulc A. Effects of antidepressant treatment on peripheral biomarkers in patients with major depressive disorder (MDD). J. Clin. Med. 2021 10 8 1706 10.3390/jcm10081706 33920992
    [Google Scholar]
  91. Liu J. van Beusekom H. Bu X.L. Preserving cognitive function in patients with Alzheimer’s disease: The Alzheimer’s disease neuroprotection research initiative (ADNRI). Neuroprotection 2023 1 2 84 98 10.1002/nep3.23 38223913
    [Google Scholar]
  92. Chuang W.H. Chou Y.T. Chen Y.H. Neuroprotective effect of NO-delivery dinitrosyl iron complexes (DNICs) on amyloid pathology in the Alzheimer’s disease cell model. ACS Chem. Neurosci. 2023 14 16 2922 2934 10.1021/acschemneuro.3c00348 37533298
    [Google Scholar]
  93. Passeri E. Elkhoury K. Morsink M. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  94. Vishwas S. Bashir B. Birla D. Neuroprotective role of phytoconstituents-based nanoemulsion for the treatment of Alzheimer’s disease. Curr. Top. Med. Chem. 2024 24 19 1683 1698 10.2174/0115680266296001240327090111 38676489
    [Google Scholar]
  95. Azzini E. Peña-Corona S.I. Hernández-Parra H. Neuroprotective and anti‐inflammatory effects of curcumin in Alzheimer’s disease: Targeting neuroinflammation strategies. Phytother. Res. 2024 38 6 3169 3189 10.1002/ptr.8200 38616356
    [Google Scholar]
  96. Batool Z. Chen J.H. Gao Y. Natural carotenoids as neuroprotective agents for Alzheimer’s disease: An evidence-based comprehensive review. J. Agric. Food Chem. 2022 70 50 15631 15646 10.1021/acs.jafc.2c06206 36480951
    [Google Scholar]
  97. Mohapatra T.K. Nayak R.R. Ganeshpurkar A. Tiwari P. Kumar D. Navigating the treatment landscape of Alzheimer’s disease: Current strategies and future directions. Ibrain 2025 11 2 162 184 10.1002/ibra.12197 40546882
    [Google Scholar]
  98. Chen X. Drew J. Berney W. Lei W. Neuroprotective natural products for Alzheimer’s disease. Cells 2021 10 6 1309 10.3390/cells10061309 34070275
    [Google Scholar]
  99. Gülcan H.O. Orhan I.E. The main targets involved in neuroprotection for the treatment of Alzheimer’s disease and Parkinson disease. Curr. Pharm. Des. 2020 26 4 509 516 10.2174/1381612826666200131103524 32003681
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775398736250911114640
Loading
/content/journals/cdrr/10.2174/0125899775398736250911114640
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test