Skip to content
2000
image of Recent Trends of Kinase Inhibitors in Cancer Therapy

Abstract

Since 2000, significant changes have occurred in the cancer therapy landscape, and patient outcomes have also improved. Monoclonal antibodies and their derivatives, such as peptides and nanobodies, are examples of kinase-targeted strategies. Other novel approaches, such as the use of protein kinase interaction inhibitors and kinase degraders, have recently shown promise in treating resistance and have demonstrated encouraging results in clinical trials. Significant challenges confront kinase-targeted therapies, including drug resistance that severely reduces the clinical advantages for cancer patients and toxicity when paired with immunotherapy, which limits the full use of existing treatment modalities. The anti-angiogenic effect results in thrombotic microangiopathy-like lesions confined to the glomerulus through endothelial injury. Additionally, the glomerular tuft has segmental hyalinosis. By inhibiting VEGF receptors and the subsequent signaling, small compounds like Tyrosine Kinase Inhibitors (TKIs), such as pazopanib, can harm the endothelium and cause podocytopathy. A small modification of TKI-induced renal issues is linked to focal segmental glomerulosclerosis and nephrotic syndrome. A new kind of immunotherapy used against cancer is immune checkpoint inhibitors, which include PD-1, CTLA-4, and PD-L1. This review involves the study of recent advancements in potential novel targets and therapeutically relevant kinase inhibition techniques. This study focuses on the present issues and future prospects of kinase inhibitors in cancer therapy.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775405302250910114126
2025-09-23
2025-12-05
Loading full text...

Full text loading...

References

  1. Yoda S. Dagogo-Jack I. Hata A.N. Targeting oncogenic drivers in lung cancer: Recent progress, current challenges and future opportunities. Pharmacol. Ther. 2019 193 20 30 10.1016/j.pharmthera.2018.08.007 30121320
    [Google Scholar]
  2. Druker B.J. Talpaz M. Resta D.J. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 2001 344 14 1031 1037 10.1056/NEJM200104053441401 11287972
    [Google Scholar]
  3. Mok T.S. Wu Y.L. Ahn M.J. Osimertinib or Platinum–Pemetrexed in EGFR T790M–Positive Lung Cancer. N. Engl. J. Med. 2017 376 7 629 640 10.1056/NEJMoa1612674 27959700
    [Google Scholar]
  4. Pottier C. Fresnais M. Gilon M. Jérusalem G. Longuespée R. Sounni N.E. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers 2020 12 3 731 10.3390/cancers12030731 32244867
    [Google Scholar]
  5. Engelman J.A. Zejnullahu K. Mitsudomi T. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007 316 5827 1039 1043 10.1126/science.1141478 17463250
    [Google Scholar]
  6. Bramer W.M. De Jonge G.B. Rethlefsen M.L. Mast F. Kleijnen J. A systematic approach to searching: An efficient and complete method to develop literature searches. J. Med. Libr. Assoc. 2018 106 4 531 541 10.5195/jmla.2018.283 30271302
    [Google Scholar]
  7. Lynch T.J. Bell D.W. Sordella R. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2004 350 21 2129 2139 10.1056/NEJMoa040938 15118073
    [Google Scholar]
  8. Manning G. Whyte D.B. Martinez R. Hunter T. Sudarsanam S. The protein kinase complement of the human genome. Science 2002 298 5600 1912 1934 10.1126/science.1075762 12471243
    [Google Scholar]
  9. Wilhelm S.M. Adnane L. Newell P. Villanueva A. Llovet J.M. Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol. Cancer Ther. 2008 7 10 3129 3140 10.1158/1535‑7163.MCT‑08‑0013 18852116
    [Google Scholar]
  10. Riegel K. Vijayarangakannan P. Kechagioglou P. Bogucka K. Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front. Cell Dev. Biol. 2022 10 942500 10.3389/fcell.2022.942500 35938171
    [Google Scholar]
  11. Fasano M. Della Corte C.M. Califano R. Type III or allosteric kinase inhibitors for the treatment of non-small cell lung cancer. Expert Opin. Investig. Drugs 2014 23 6 809 821 10.1517/13543784.2014.902934 24673358
    [Google Scholar]
  12. Anthony C.J. DiPerna J.C. Amato P.R. Divorce, approaches to learning, and children’s academic achievement: A longitudinal analysis of mediated and moderated effects. J. Sch. Psychol. 2014 52 3 249 261 10.1016/j.jsp.2014.03.003 24930818
    [Google Scholar]
  13. Herbert C. Schieborr U. Saxena K. Molecular mechanism of SSR128129E, an extracellularly acting, small-molecule, allosteric inhibitor of FGF receptor signaling. Cancer Cell 2013 23 4 489 501 10.1016/j.ccr.2013.02.018 23597563
    [Google Scholar]
  14. Hochhaus A. Saglio G. Hughes T.P. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016 30 5 1044 1054 10.1038/leu.2016.5 26837842
    [Google Scholar]
  15. Druker B.J. Guilhot F. O’Brien S.G. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N. Engl. J. Med. 2006 355 23 2408 2417 10.1056/NEJMoa062867 17151364
    [Google Scholar]
  16. Geyer C.E. Forster J. Lindquist D. Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N. Engl. J. Med. 2006 355 26 2733 2743 10.1056/NEJMoa064320 17192538
    [Google Scholar]
  17. Llovet J.M. Ricci S. Mazzaferro V. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008 359 4 378 390 10.1056/NEJMoa0708857 18650514
    [Google Scholar]
  18. Chapman P.B. Hauschild A. Robert C. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 2011 364 26 2507 2516 10.1056/NEJMoa1103782 21639808
    [Google Scholar]
  19. Long G.V. Hauschild A. Santinami M. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF -Mutated Melanoma. N. Engl. J. Med. 2017 377 19 1813 1823 10.1056/NEJMoa1708539 28891408
    [Google Scholar]
  20. Wilhelm S. Carter C. Lynch M. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer. Nat. Rev. Drug Discov. 2006 5 10 835 844 10.1038/nrd2130 17016424
    [Google Scholar]
  21. Kumar R. Goel H. Solanki R. Recent developments in receptor tyrosine kinase inhibitors: A promising mainstay in targeted cancer therapy. Med Drug Discov 2024 23 100195 10.1016/j.medidd.2024.100195 39281823
    [Google Scholar]
  22. Hassan B. Akcakanat A. Holder A.M. Meric-Bernstam F. Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surg. Oncol. Clin. N. Am. 2013 22 4 641 664 10.1016/j.soc.2013.06.008 24012393
    [Google Scholar]
  23. Powell K. Prasad V. Concerning FDA approval of trilaciclib (Cosela) in extensive-stage small-cell lung cancer. Transl. Oncol. 2021 14 11 101206 10.1016/j.tranon.2021.101206 34419683
    [Google Scholar]
  24. Kannaiyan R. Mahadevan D. A comprehensive review of protein kinase inhibitors for cancer therapy. Expert Rev. Anticancer Ther. 2018 18 12 1249 1270 10.1080/14737140.2018.1527688 30259761
    [Google Scholar]
  25. Jung T. Haist M. Kuske M. Grabbe S. Bros M. Immunomodulatory properties of braf and MEK inhibitors used for melanoma therapy-paradoxical ERK activation and beyond. Int. J. Mol. Sci. 2021 22 18 9890 10.3390/ijms22189890 34576054
    [Google Scholar]
  26. Defnet A.E. Hasday J.D. Shapiro P. Kinase inhibitors in the treatment of obstructive pulmonary diseases. Curr. Opin. Pharmacol. 2020 51 11 18 10.1016/j.coph.2020.03.005 32361678
    [Google Scholar]
  27. Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol. Res. 2024 200 107059 10.1016/j.phrs.2024.107059 38216005
    [Google Scholar]
  28. Chikhoune L. Poggi C. Moreau J. JAK inhibitors (JAKi): Mechanisms of action and perspectives in systemic and autoimmune diseases. Rev. Med. Interne 2025 46 2 89 106 10.1016/j.revmed.2024.10.452 39550233
    [Google Scholar]
  29. Shawky A.M. Almalki F.A. Abdalla A.N. Abdelazeem A.H. Gouda A.M. A comprehensive overview of globally approved JAK inhibitors. Pharmaceutics 2022 14 5 1001 10.3390/pharmaceutics14051001 35631587
    [Google Scholar]
  30. Halder S. Basu S. Lall S.P. Ganti A.K. Batra S.K. Seshacharyulu P. Targeting the EGFR signaling pathway in cancer therapy: What’s new in 2023? Expert Opin. Ther. Targets 2023 27 4-5 305 324 10.1080/14728222.2023.2218613 37243489
    [Google Scholar]
  31. Iqbal N. Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications. Mol. Biol. Int. 2014 2014 1 9 10.1155/2014/852748 25276427
    [Google Scholar]
  32. El-Tanani M. Nsairat H. Matalka I.I. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol. Res. Pract. 2024 254 155161 10.1016/j.prp.2024.155161 38280275
    [Google Scholar]
  33. Sullivan I. Planchard D. ALK inhibitors in non-small cell lung cancer: The latest evidence and developments. Ther. Adv. Med. Oncol. 2016 8 1 32 47 10.1177/1758834015617355 26753004
    [Google Scholar]
  34. Mittal K. Wood L.S. Rini B.I. Axitinib in metastatic renal cell carcinoma. Biol. Ther. 2012 2 1 5 10.1007/s13554‑012‑0005‑2 24392298
    [Google Scholar]
  35. Brazel D. Zhang S. Nagasaka M. Spotlight on Tepotinib and Capmatinib for Non-Small Cell Lung Cancer with MET Exon 14 Skipping Mutation. Lung Cancer 2022 13 33 45 10.2147/LCTT.S360574 35592355
    [Google Scholar]
  36. Fricke J. Wang J. Gallego N. Selpercatinib and pralsetinib induced chylous ascites in ret-rearranged lung adenocarcinoma: A case series. Clin. Lung Cancer 2023 24 7 666 671 10.1016/j.cllc.2023.08.006 37580188
    [Google Scholar]
  37. Bauer S. George S. von Mehren M. Heinrich M.C. Early and next-generation kit/pdgfra kinase inhibitors and the future of treatment for advanced gastrointestinal stromal tumor. Front. Oncol. 2021 11 672500 10.3389/fonc.2021.672500 34322383
    [Google Scholar]
  38. Porta C. Paglino C. Mosca A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol. 2014 4 64 10.3389/fonc.2014.00064 24782981
    [Google Scholar]
  39. Huang L. Jiang S. Shi Y. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). J. Hematol. Oncol. 2020 13 1 143 10.1186/s13045‑020‑00977‑0 33109256
    [Google Scholar]
  40. Kawano T. Inokuchi J. Eto M. Murata M. Kang J.H. Activators and inhibitors of protein kinase c (pkc): Their applications in clinical trials. Pharmaceutics 2021 13 11 1748 10.3390/pharmaceutics13111748 34834162
    [Google Scholar]
  41. Liu L. Cao Y. Chen C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006 66 24 11851 11858 10.1158/0008‑5472.CAN‑06‑1377 17178882
    [Google Scholar]
  42. Havasi A. Sur D. Cainap S.S. Current and new challenges in the management of pancreatic neuroendocrine tumors: The role of miRNA-based approaches as new reliable biomarkers. Int. J. Mol. Sci. 2022 23 3 1109 10.3390/ijms23031109 35163032
    [Google Scholar]
  43. He S.J. Shu L.P. Zhou Z.W. Inhibition of Aurora kinases induces apoptosis and autophagy via AURKB/p70S6K/RPL15 axis in human leukemia cells. Cancer Lett. 2016 382 2 215 230 10.1016/j.canlet.2016.08.016 27612557
    [Google Scholar]
  44. Wu X. Xu Y. Liang Q. Recent advances in dual PI3K/mTOR inhibitors for tumour treatment. Front. Pharmacol. 2022 13 875372 10.3389/fphar.2022.875372 35614940
    [Google Scholar]
  45. Hussain S. Mursal M. Verma G. Hasan S.M. Khan M.F. Targeting oncogenic kinases: Insights on FDA approved tyrosine kinase inhibitors. Eur. J. Pharmacol. 2024 970 176484 10.1016/j.ejphar.2024.176484 38467235
    [Google Scholar]
  46. Segovia-Mendoza M. González-González M.E. Barrera D. Díaz L. García-Becerra R. Efficacy and mechanism of action of the tyrosine kinase inhibitors gefitinib, lapatinib and neratinib in the treatment of HER2-positive breast cancer: Preclinical and clinical evidence. Am. J. Cancer Res. 2015 5 9 2531 2561 26609467
    [Google Scholar]
  47. Clark J.W. Camidge D.R. Kwak E.L. Dose-escalation trial of the ALK, MET & ROS1 inhibitor, crizotinib, in patients with advanced cancer. Future Oncol. 2020 16 1 4289 4301 10.2217/fon‑2019‑0653 31778074
    [Google Scholar]
  48. Højer Wang L. Wehland M. Wise P.M. Infanger M. Grimm D. Kreissl M.C. Cabozantinib, Vandetanib, Pralsetinib and Selpercatinib as Treatment for Progressed Medullary Thyroid Cancer with a Main Focus on Hypertension as Adverse Effect. Int. J. Mol. Sci. 2023 24 3 2312 10.3390/ijms24032312 36768635
    [Google Scholar]
  49. Huang C. Zhang C. Li J. Duan Y. Tang Q. Bi F. Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma. Cell Biol. Toxicol. 2025 41 1 35 10.1007/s10565‑024‑09979‑x 39871031
    [Google Scholar]
  50. Delbaldo C. Faivre S. Dreyer C. Raymond E. Sunitinib in advanced pancreatic neuroendocrine tumors: Latest evidence and clinical potential. Ther. Adv. Med. Oncol. 2012 4 1 9 18 10.1177/1758834011428147 22229044
    [Google Scholar]
  51. Chen H. Liu H. Zhang X. Diversified applications of hepatocellular carcinoma medications: Molecular-targeted, immunotherapeutic, and combined approaches. Front. Pharmacol. 2024 15 1422033 10.3389/fphar.2024.1422033 39399471
    [Google Scholar]
  52. Wang L. Liu W.Q. Broussy S. Han B. Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2024 14 1307860 10.3389/fphar.2023.1307860 38239196
    [Google Scholar]
  53. Yamamoto Y. Matsui J. Matsushima T. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage. Vasc. Cell 2014 6 1 18 10.1186/2045‑824X‑6‑18 25197551
    [Google Scholar]
  54. Sahai V. Rothe M. Mangat P.K. Regorafenib in Patients With Solid Tumors With BRAF Alterations: Results From the Targeted Agent and Profiling Utilization Registry (TAPUR) Study. JCO Precis. Oncol. 2024 8 8 e2300527 10.1200/PO.23.00527 38603652
    [Google Scholar]
  55. Gomez J.A. Vascular endothelial growth factor-tyrosine kinase inhibitors: Novel mechanisms, predictors of hypertension and management strategies. Am Heart J Plus 2022 17 100144 10.1016/j.ahjo.2022.100144 38559889
    [Google Scholar]
  56. Modi S.J. Kulkarni V.M. Vascular endothelial growth factor receptor (vegfr-2)/kdr inhibitors: Medicinal chemistry perspective. Med Drug Discov 2019 2 100009 10.1016/j.medidd.2019.100009
    [Google Scholar]
  57. Zheng J. Zhang W. Li L. Signaling pathway and small-molecule drug discovery of FGFR: A comprehensive review. Front Chem. 2022 10 860985 10.3389/fchem.2022.860985 35494629
    [Google Scholar]
  58. Byrne M. Savani B. Savona M.R. Leveraging JAK-STAT regulation in myelofibrosis to improve outcomes with allogeneic hematopoietic stem-cell transplant. Ther. Adv. Hematol. 2018 9 9 251 259 10.1177/2040620718786437 30210754
    [Google Scholar]
  59. Thaw K. Harrison C.N. Sriskandarajah P. JAK inhibitors for myelofibrosis: Strengths and limitations. Curr. Hematol. Malig. Rep. 2024 19 6 264 275 10.1007/s11899‑024‑00744‑9 39400853
    [Google Scholar]
  60. Rah B. Rather R.A. Bhat G.R. JAK/STAT signaling: Molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front. Pharmacol. 2022 13 821344 10.3389/fphar.2022.821344 35401182
    [Google Scholar]
  61. Banerjee S. Biehl A. Gadina M. Hasni S. Schwartz D.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs 2017 77 5 521 546 10.1007/s40265‑017‑0701‑9 28255960
    [Google Scholar]
  62. Assumpção A.L.F.V. Jark P.C. Hong C.C. STAT3 expression and activity are up‐regulated in diffuse large b cell lymphoma of dogs. J. Vet. Intern. Med. 2018 32 1 361 369 10.1111/jvim.14860 29119628
    [Google Scholar]
  63. Dervisis N. Klahn S. Therapeutic innovations: Tyrosine kinase inhibitors in cancer. Vet. Sci. 2016 3 1 4 10.3390/vetsci3010004 29056714
    [Google Scholar]
  64. Dulucq S. Bouchet S. Turcq B. Multidrug resistance gene (MDR1) polymorphisms are associated with major molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 2008 112 5 2024 2027 10.1182/blood‑2008‑03‑147744 18524988
    [Google Scholar]
  65. Shepherd F.A. Rodrigues Pereira J. Ciuleanu T. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 2005 353 2 123 132 10.1056/NEJMoa050753 16014882
    [Google Scholar]
  66. Galle P.R. Sorafenib in advanced hepatocellular carcinoma – We have won a battle not the war. J. Hepatol. 2008 49 5 871 873 10.1016/j.jhep.2008.09.001 18817997
    [Google Scholar]
  67. Roskoski R. Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes. Pharmacol. Res. 2016 103 26 48 10.1016/j.phrs.2015.10.021 26529477
    [Google Scholar]
  68. Li M. Rehman A.U. Liu Y. Chen K. Lu S. Dual roles of ATP-binding site in protein kinases: Orthosteric inhibition and allosteric regulation. Adv. Protein Chem. Struct. Biol. 2021 124 87 119 10.1016/bs.apcsb.2020.09.005 33632471
    [Google Scholar]
  69. Fang Z. Song Y. Zhan P. Zhang Q. Liu X. Conformational restriction: An effective tactic in ‘follow-on’-based drug discovery. Future Med. Chem. 2014 6 8 885 901 10.4155/fmc.14.50 24962281
    [Google Scholar]
  70. Han B. Salituro F.G. Blanco M.J. Impact of allosteric modulation in drug discovery: Innovation in emerging chemical modalities. ACS Med. Chem. Lett. 2020 11 10 1810 1819 10.1021/acsmedchemlett.9b00655 33062158
    [Google Scholar]
  71. Zhang H. Zhu M. Li M. Mechanistic insights into co-administration of allosteric and orthosteric drugs to overcome Drug-Resistance in T315I BCR-ABL1. Front. Pharmacol. 2022 13 862504 10.3389/fphar.2022.862504 35370687
    [Google Scholar]
  72. Qi C. Gong J. Li J. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat. Med. 2022 28 6 1189 1198 10.1038/s41591‑022‑01800‑8 35534566
    [Google Scholar]
  73. Bhullar K.S. Lagarón N.O. McGowan E.M. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018 17 1 48 10.1186/s12943‑018‑0804‑2 29455673
    [Google Scholar]
  74. Han X. Li Y. Wang E. Exploring origin-dependent susceptibility of smooth muscle cells to aortic diseases through intersectional genetics. Circulation 2025 151 17 1248 1267 10.1161/CIRCULATIONAHA.124.070782 39925267
    [Google Scholar]
  75. Zhao Z. Bourne P.E. Advances in reversible covalent kinase inhibitors. Med. Res. Rev. 2025 45 2 629 653 10.1002/med.22084 39287197
    [Google Scholar]
  76. Papadakos S.P. Tsagkaris C. Papadakis M. Angiogenesis in gastrointestinal stromal tumors: From bench to bedside. World J. Gastrointest. Oncol. 2022 14 8 1469 10.4251/wjgo.v14.i8.1469
    [Google Scholar]
  77. Choueiri T.K. Heng D.Y.C. Lee J.L. Efficacy of Savolitinib vs Sunitinib in Patients With MET -Driven Papillary Renal Cell Carcinoma. JAMA Oncol. 2020 6 8 1247 1255 10.1001/jamaoncol.2020.2218 32469384
    [Google Scholar]
  78. Goebel G.L. Qiu X. Wu P. Kinase-targeting small-molecule inhibitors and emerging bifunctional molecules. Trends Pharmacol. Sci. 2022 43 10 866 881 10.1016/j.tips.2022.04.006 35589447
    [Google Scholar]
  79. Bouabdallah S. Enzyme inhibitors: Design of kinase inhibitors as anticancer drugs Biochemical and Molecular Pharmacology in Drug Discovery. Elsevier 2024 283 296 10.1016/B978‑0‑443‑16013‑4.00013‑0
    [Google Scholar]
  80. Monies D. Goljan E. Binmanee A.M. The clinical utility of rapid exome sequencing in a consanguineous population. Genome Med. 2023 15 1 44 10.1186/s13073‑023‑01192‑5 37344829
    [Google Scholar]
  81. Bansal N. Blanco J.G. Sharma U.C. Pokharel S. Shisler S. Lipshultz S.E. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastasis Rev. 2020 39 1 55 68 10.1007/s10555‑020‑09859‑w 32026204
    [Google Scholar]
  82. Cerny-Reiterer S. Meyer R.A. Herrmann H. Identification of heat shock protein 32 (Hsp32) as a novel target in acute lymphoblastic leukemia. Oncotarget 2014 5 5 1198 1211 10.18632/oncotarget.1805 24681707
    [Google Scholar]
  83. Pyare R. Shaikh N. Sen A. JAK-STAT inhibitors in noninfectious uveitis – A review. Indian J. Ophthalmol. 2025 73 6 807 815 10.4103/IJO.IJO_61_25 40434456
    [Google Scholar]
  84. Kucine N. Levine R.L. JAK inhibitors and other novel agents in myeloproliferative neoplasms: Are we hitting the target? Ther. Adv. Hematol. 2011 2 4 203 211 10.1177/2040620711410095 23556090
    [Google Scholar]
  85. Ohanian M. Kantarjian H.M. Quintas-Cardama A. Tyrosine kinase inhibitors as initial therapy for patients with chronic myeloid leukemia in accelerated phase. Clin. Lymphoma Myeloma Leuk. 2014 14 2 155 162.e1 10.1016/j.clml.2013.08.008 24332214
    [Google Scholar]
  86. Li J. Gong C. Zhou H. Kinase inhibitors and kinase-targeted cancer therapies: Recent advances and future perspectives. Int. J. Mol. Sci. 2024 25 10 5489 10.3390/ijms25105489 38791529
    [Google Scholar]
  87. Zhao G. Li Y. Li H. Integrating single-cell sequencing and clinical insights to explore malignant transformation in odontogenic keratocyst. Comput. Struct. Biotechnol. J. 2025 27 1158 1172 10.1016/j.csbj.2025.03.027 40206344
    [Google Scholar]
  88. Zhu C. Ma X. Hu Y. Safety and efficacy profile of lenvatinib in cancer therapy: A systematic review and meta-analysis. Oncotarget 2016 7 28 44545 44557 10.18632/oncotarget.10019 27329593
    [Google Scholar]
  89. Gnant M. Dueck A.C. Frantal S. Adjuvant Palbociclib for Early Breast Cancer: The PALLAS Trial Results (ABCSG-42/AFT-05/BIG-14-03). J. Clin. Oncol. 2022 40 3 282 293 10.1200/JCO.21.02554 34874182
    [Google Scholar]
  90. Blume-Jensen P. Hunter T. Oncogenic kinase signalling. Nature 2001 411 6835 355 365 10.1038/35077225 11357143
    [Google Scholar]
  91. Raphael J. Lefebvre C. Allan A. Everolimus in advanced breast cancer: A systematic review and meta-analysis. Target. Oncol. 2020 15 6 723 732 10.1007/s11523‑020‑00770‑6 33151471
    [Google Scholar]
  92. Kumar KLA Huang CH Lenvatinib mesylate. Drugs Future 2014 39 2 0113 10.1358/dof.2014.39.2.2095258
    [Google Scholar]
  93. Doostmohammadi A. Jooya H. Ghorbanian K. Gohari S. Dadashpour M. Potentials and future perspectives of multi-target drugs in cancer treatment: The next generation anti-cancer agents. Cell Commun. Signal. 2024 22 1 228 10.1186/s12964‑024‑01607‑9 38622735
    [Google Scholar]
  94. Li R. Liu M. Yang Z. Li J. Gao Y. Tan R. Proteolysis-targeting chimeras (protacs) in cancer therapy: Present and future. Molecules 2022 27 24 8828 10.3390/molecules27248828 36557960
    [Google Scholar]
  95. Lv M. Hu W. Zhang S. He L. Hu C. Yang S. Proteolysis-targeting chimeras: A promising technique in cancer therapy for gaining insights into tumor development. Cancer Lett. 2022 539 215716 10.1016/j.canlet.2022.215716 35500825
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775405302250910114126
Loading
/content/journals/cdrr/10.2174/0125899775405302250910114126
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: targeted therapy ; inhibitors ; treatment ; tyrosine kinase ; Cancer ; resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test