Skip to content
2000
image of Current Understanding of Biomarkers for Pre-clinical Diagnosis of Alzheimer’s Disease and its Approaches

Abstract

Introduction

Alzheimer's Disease (AD) progresses pathophysiologically several years before noticeable symptoms emerge, indicating a pre-symptomatic or pre-clinical phase. Early identification of pre-clinical AD requires sensitive, specific, and reliable biomarkers. This review aimed to explore and evaluate radiological biomarkers and neurochemical biomarkers for pre-clinical AD and to emphasize advancements needed for diagnostic tools that allow early detection, comprehensive assessment, and continuous tracking of AD progression.

Methods

A comprehensive review of radiological and neurochemical markers in medical research. The analysis focused on their sensitivity, specificity, and reliability for detecting pre-clinical AD stages.

Results

Identified radiological biomarkers include advanced imaging techniques (., PET scans and MRI) that detect structural and functional changes in the brain. Neurochemical biomarkers, such as amyloid-beta and tau proteins, are promising indicators detectable in Cerebrospinal Fluid (CSF) and blood. Emerging technologies are improving biomarker detection accuracy, enabling the identification of AD even in asymptomatic individuals.

Discussion

Radiological biomarkers, including PET and MRI, offer insights into Alzheimer's-related brain changes, while neurochemical markers like amyloid-beta and tau proteins aid early detection through CSF and blood analysis. Advances in technology enhance diagnostic precision, enabling the identification of asymptomatic cases, crucial for early intervention and improved patient outcomes.

Conclusion

Biomarker discovery for pre-clinical AD is essential for early intervention and improved patient outcomes. Continued research is crucial to enhance diagnostic tools for early detection and to track disease progression comprehensively. Future investigations must prioritize the refinement and validation of these biomarkers for clinical application.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775376964250919070155
2025-09-24
2025-12-05
Loading full text...

Full text loading...

References

  1. Amadoro G. Corsetti V. Atlante A. Interaction between NH2-tau fragment and Aβ in Alzheimer’s disease mitochondria contributes to the synaptic deterioration. Neurobiol. Aging 2012 33 4 833.e1 833.e25 10.1016/j.neurobiolaging.2011.08.001 21958963
    [Google Scholar]
  2. Armstrong R.A. Spatial patterns of β-amyloid (Aβ) deposits in familial and sporadic Alzheimer’s disease. Folia Neuropathol. 2011 49 3 153 161 22101948
    [Google Scholar]
  3. Tan C.C. Yu J.T. Wang H.F. Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2014 41 2 615 631 10.3233/JAD‑132690 24662102
    [Google Scholar]
  4. Hulette C.M. Welsh-Bohmer K.A. Murray M.G. Saunders A.M. Mash D.C. McIntyre L.M. Neuropathological and neuropsychological changes in “normal” aging: Evidence for preclinical Alzheimer disease in cognitively normal individuals. J. Neuropathol. Exp. Neurol. 1998 57 12 1168 1174 10.1097/00005072‑199812000‑00009 9862640
    [Google Scholar]
  5. Budelier M.M. Bateman R.J. Biomarkers of Alzheimer disease. J. Appl. Lab. Med. 2020 5 1 194 208 10.1373/jalm.2019.030080 31843944
    [Google Scholar]
  6. Jiang T. Yu J.T. Tian Y. Tan L. Epidemiology and etiology of Alzheimer’s disease: From genetic to non-genetic factors. Curr. Alzheimer Res. 2013 10 8 852 867 10.2174/15672050113109990155 23919770
    [Google Scholar]
  7. Morris J.C. Dementia update 2005. Alzheimer Dis. Assoc. Disord. 2005 19 2 100 117 10.1097/01.wad.0000167923.56275.d8 15942329
    [Google Scholar]
  8. Sperling R.A. Aisen P.S. Beckett L.A. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 280 292 10.1016/j.jalz.2011.03.003 21514248
    [Google Scholar]
  9. Knopman D.S. Jack C.R. Wiste H.J. Short-term clinical outcomes for stages of NIA-AA preclinical Alzheimer disease. Neurology 2012 78 20 1576 1582 10.1212/WNL.0b013e3182563bbe 22551733
    [Google Scholar]
  10. Salmon D.P. Neuropsychological features of mild cognitive impairment and preclinical Alzheimer’s disease. Curr. Top. Behav. Neurosci. 2011 10 187 212 10.1007/7854_2011_171 22042707
    [Google Scholar]
  11. Amariglio R.E. Becker J.A. Carmasin J. Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia 2012 50 12 2880 2886 10.1016/j.neuropsychologia.2012.08.011 22940426
    [Google Scholar]
  12. Lim Y.Y. Pietrzak R.H. Ellis K.A. Rapid decline in episodic memory in healthy older adults with high amyloid-β. J. Alzheimers Dis. 2013 33 3 675 679 10.3233/JAD‑2012‑121516 23001710
    [Google Scholar]
  13. Rentz D.M. Amariglio R.E. Becker J.A. Face-name associative memory performance is related to amyloid burden in normal elderly. Neuropsychologia 2011 49 9 2776 2783 10.1016/j.neuropsychologia.2011.06.006 21689670
    [Google Scholar]
  14. Stonnington C.M. Chen K. Lee W. Fibrillar amyloid correlates of preclinical cognitive decline. Alzheimers Dement. 2014 10 1 e1 e8 10.1016/j.jalz.2013.01.009 23583233
    [Google Scholar]
  15. Wolk D.A. Mancuso L. Kliot D. Arnold S.E. Dickerson B.C. Familiarity-based memory as an early cognitive marker of preclinical and prodromal AD. Neuropsychologia 2013 51 6 1094 1102 10.1016/j.neuropsychologia.2013.02.014 23474075
    [Google Scholar]
  16. Clark L.R. Schiehser D.M. Weissberger G.H. Salmon D.P. Delis D.C. Bondi M.W. Specific measures of executive function predict cognitive decline in older adults. J. Int. Neuropsychol. Soc. 2012 18 1 118 127 10.1017/S1355617711001524 22115028
    [Google Scholar]
  17. van Harten A.C. Smits L.L. Teunissen C.E. Preclinical AD predicts decline in memory and executive functions in subjective complaints. Neurology 2013 81 16 1409 1416 10.1212/WNL.0b013e3182a8418b 24049134
    [Google Scholar]
  18. Harrington M.G. Chiang J. Pogoda J.M. Executive function changes before memory in preclinical Alzheimer’s pathology: A prospective, cross-sectional, case control study. PLoS One 2013 8 11 79378 10.1371/journal.pone.0079378 24260210
    [Google Scholar]
  19. Fagan A.M. Xiong C. Jasielec M.S. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci. Transl. Med. 2014 6 226 226ra30 10.1126/scitranslmed.3007901 24598588
    [Google Scholar]
  20. Hayden K.M. Kuchibhatla M. Romero H.R. Pre-clinical cognitive phenotypes for Alzheimer disease: A latent profile approach. Am. J. Geriatr. Psychiatry 2014 22 11 1364 1374 10.1016/j.jagp.2013.07.008 24080384
    [Google Scholar]
  21. Sterniczuk R. Theou O. Rusak B. Rockwood K. Sleep disturbance is associated with incident dementia and mortality. Curr. Alzheimer Res. 2013 10 7 767 775 10.2174/15672050113109990134 23905991
    [Google Scholar]
  22. Roh J.H. Huang Y. Bero A.W. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci. Transl. Med. 2012 4 150 150ra122 10.1126/scitranslmed.3004291 22956200
    [Google Scholar]
  23. Ju Y.E.S. McLeland J.S. Toedebusch C.D. Sleep quality and preclinical Alzheimer disease. JAMA Neurol. 2013 70 5 587 593 10.1001/jamaneurol.2013.2334 23479184
    [Google Scholar]
  24. Potvin O. Lorrain D. Forget H. Sleep quality and 1-year incident cognitive impairment in community-dwelling older adults. Sleep 2012 35 4 491 499 10.5665/sleep.1732 22467987
    [Google Scholar]
  25. Suthana N.A. Krupa A. Donix M. Reduced hippocampal CA2, CA3, and dentate gyrus activity in asymptomatic people at genetic risk for Alzheimer’s disease. Neuroimage 2010 53 3 1077 1084 10.1016/j.neuroimage.2009.12.014 20005961
    [Google Scholar]
  26. Lim Y.Y. Ellis K.A. Harrington K. Cognitive decline in adults with amnestic mild cognitive impairment and high amyloid-β: Prodromal Alzheimer’s disease? J. Alzheimers Dis. 2013 33 4 1167 1176 10.3233/JAD‑121771 23160011
    [Google Scholar]
  27. Villemagne V.L. Pike K.E. Chételat G. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 2011 69 1 181 192 10.1002/ana.22248 21280088
    [Google Scholar]
  28. Kantarci K. Weigand S.D. Przybelski S.A. MRI and MRS predictors of mild cognitive impairment in a population-based sample. Neurology 2013 81 2 126 133 10.1212/WNL.0b013e31829a3329 23761624
    [Google Scholar]
  29. Ewers M. Sperling R.A. Klunk W.E. Weiner M.W. Hampel H. Neuroimaging markers for the prediction and early diagnosis of Alzheimer’s disease dementia. Trends Neurosci. 2011 34 8 430 442 10.1016/j.tins.2011.05.005 21696834
    [Google Scholar]
  30. Dickerson B.C. Stoub T.R. Shah R.C. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 2011 76 16 1395 1402 10.1212/WNL.0b013e3182166e96 21490323
    [Google Scholar]
  31. Du A.T. Schuff N. Amend D. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2001 71 4 441 447 10.1136/jnnp.71.4.441 11561025
    [Google Scholar]
  32. Tondelli M. Wilcock G.K. Nichelli P. De Jager C.A. Jenkinson M. Zamboni G. Structural MRI changes detectable up to ten years before clinical Alzheimer’s disease. Neurobiol. Aging 2012 33 4 825.e25 825.e36 10.1016/j.neurobiolaging.2011.05.018 21782287
    [Google Scholar]
  33. Morris J.C. Csernansky J. Price J.L. MRI measures of entorhinal cortex versus hippocampus in preclinical AD. Neurology 2002 59 9 1474 1475 10.1212/WNL.59.9.1474 12427916
    [Google Scholar]
  34. Berti V. Mosconi L. Glodzik L. Structural brain changes in normal individuals with a maternal history of Alzheimer’s. Neurobiol. Aging 2011 32 12 2325.e17 10.1016/j.neurobiolaging.2011.01.001 21316814
    [Google Scholar]
  35. Honea R.A. Swerdlow R.H. Vidoni E.D. Burns J.M. Progressive regional atrophy in normal adults with a maternal history of Alzheimer disease. Neurology 2011 76 9 822 829 10.1212/WNL.0b013e31820e7b74 21357834
    [Google Scholar]
  36. Fennema-Notestine C. Hagler D.J. McEvoy L.K. Structural MRI biomarkers for preclinical and mild Alzheimer’s disease. Hum. Brain Mapp. 2009 30 10 3238 3253 10.1002/hbm.20744 19277975
    [Google Scholar]
  37. Apostolova L.G. Mosconi L. Thompson P.M. Subregional hippocampal atrophy predicts Alzheimer’s dementia in the cognitively normal. Neurobiol. Aging 2010 31 7 1077 1088 10.1016/j.neurobiolaging.2008.08.008 18814937
    [Google Scholar]
  38. Brickman A.M. Provenzano F.A. Muraskin J. Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Arch. Neurol. 2012 69 12 1621 1627 10.1001/archneurol.2012.1527 22945686
    [Google Scholar]
  39. Carlson N.E. Moore M.M. Dame A. Trajectories of brain loss in aging and the development of cognitive impairment. Neurology 2008 70 11 828 833 10.1212/01.wnl.0000280577.43413.d9 18046010
    [Google Scholar]
  40. Drzezga A. Becker J.A. Van Dijk K.R.A. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 2011 134 6 1635 1646 10.1093/brain/awr066 21490054
    [Google Scholar]
  41. Dickerson B.C. Wolk D.A. MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology 2012 78 2 84 90 10.1212/WNL.0b013e31823efc6c 22189451
    [Google Scholar]
  42. Brier M.R. Thomas J.B. Fagan A.M. Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiol. Aging 2014 35 4 757 768 10.1016/j.neurobiolaging.2013.10.081 24216223
    [Google Scholar]
  43. Oh H. Mormino E.C. Madison C. Hayenga A. Smiljic A. Jagust W.J. β-Amyloid affects frontal and posterior brain networks in normal aging. Neuroimage 2011 54 3 1887 1895 10.1016/j.neuroimage.2010.10.027 20965254
    [Google Scholar]
  44. Sheline Y.I. Raichle M.E. Snyder A.Z. Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol. Psychiatry 2010 67 6 584 587 10.1016/j.biopsych.2009.08.024 19833321
    [Google Scholar]
  45. Mormino E.C. Smiljic A. Hayenga A.O. Relationships between β-amyloid and functional connectivity in different components of the default mode network in aging. Cereb. Cortex 2011 21 10 2399 2407 10.1093/cercor/bhr025 21383234
    [Google Scholar]
  46. Klunk W.E. Amyloid imaging as a biomarker for cerebral β-amyloidosis and risk prediction for Alzheimer dementia. Neurobiol. Aging 2011 32 Suppl. 1 S20 S36 10.1016/j.neurobiolaging.2011.09.006 22078170
    [Google Scholar]
  47. Chhatwal J.P. Sperling R.A. Functional MRI of mnemonic networks across the spectrum of normal aging, mild cognitive impairment, and Alzheimer’s disease. J. Alzheimers Dis. 2012 31 s3 S155 S167 10.3233/JAD‑2012‑120730 22890098
    [Google Scholar]
  48. Doraiswamy P.M. Sperling R.A. Coleman R.E. Amyloid-β assessed by florbetapir F 18 PET and 18-month cognitive decline. Neurology 2012 79 16 1636 1644 10.1212/WNL.0b013e3182661f74 22786606
    [Google Scholar]
  49. Sperling R. The potential of functional MRI as a biomarker in early Alzheimer’s disease. Neurobiol. Aging 2011 32 Suppl. 1 S37 S43 10.1016/j.neurobiolaging.2011.09.009 22078171
    [Google Scholar]
  50. Fleisher A.S. Chen K. Liu X. Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol. Aging 2013 34 1 1 12 10.1016/j.neurobiolaging.2012.04.017 22633529
    [Google Scholar]
  51. Chételat G. Villemagne V.L. Villain N. Accelerated cortical atrophy in cognitively normal elderly with high β-amyloid deposition. Neurology 2012 78 7 477 484 10.1212/WNL.0b013e318246d67a 22302548
    [Google Scholar]
  52. Rowe C.C. Ellis K.A. Rimajova M. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol. Aging 2010 31 8 1275 1283 10.1016/j.neurobiolaging.2010.04.007 20472326
    [Google Scholar]
  53. Mormino E.C. Kluth J.T. Madison C.M. Episodic memory loss is related to hippocampal-mediated -amyloid deposition in elderly subjects. Brain 2009 132 5 1310 1323 10.1093/brain/awn320 19042931
    [Google Scholar]
  54. de Leon M.J. Convit A. Wolf O.T. Prediction of cognitive decline in normal elderly subjects with 2-[ 18 F]fluoro-2-deoxy- d -glucose/positron-emission tomography (FDG/PET). Proc. Natl. Acad. Sci. USA 2001 98 19 10966 10971 10.1073/pnas.191044198 11526211
    [Google Scholar]
  55. Mohammadi H. Ariaei A. Ghobadi Z. Gorgich E.A.C. Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer’s disease? An umbrella review. IBRO Neurosci Rep 2024 16 403 417 10.1016/j.ibneur.2024.02.007 38497046
    [Google Scholar]
  56. Langbaum J.B.S. Chen K. Caselli R.J. Hypometabolism in Alzheimer-affected brain regions in cognitively healthy Latino individuals carrying the apolipoprotein E ε4 allele. Arch. Neurol. 2010 67 4 462 468 10.1001/archneurol.2010.30 20385913
    [Google Scholar]
  57. Vlassenko A.G. Mintun M.A. Xiong C. Amyloid‐beta plaque growth in cognitively normal adults: Longitudinal [ 11 C]Pittsburgh compound B data. Ann. Neurol. 2011 70 5 857 861 10.1002/ana.22608 22162065
    [Google Scholar]
  58. Ewers M. Brendel M. Rizk-Jackson A. Reduced FDG-PET brain metabolism and executive function predict clinical progression in elderly healthy subjects. Neuroimage Clin. 2014 4 45 52 10.1016/j.nicl.2013.10.018 24286024
    [Google Scholar]
  59. Sperling R.A. Johnson K.A. Doraiswamy P.M. Amyloid deposition detected with florbetapir F 18 (18F-AV-45) is related to lower episodic memory performance in clinically normal older individuals. Neurobiol. Aging 2013 34 3 822 831 10.1016/j.neurobiolaging.2012.06.014 22878163
    [Google Scholar]
  60. Mosconi L. De Santi S. Li J. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol. Aging 2008 29 5 676 692 10.1016/j.neurobiolaging.2006.12.008 17222480
    [Google Scholar]
  61. Chen K. Langbaum J.B.S. Fleisher A.S. Twelve-month metabolic declines in probable Alzheimer’s disease and amnestic mild cognitive impairment assessed using an empirically pre-defined statistical region-of-interest: Findings from the Alzheimer’s Disease Neuroimaging Initiative. Neuroimage 2010 51 2 654 664 10.1016/j.neuroimage.2010.02.064 20202480
    [Google Scholar]
  62. Roe C.M. Fagan A.M. Grant E.A. Amyloid imaging and CSF biomarkers in predicting cognitive impairment up to 7.5 years later. Neurology 2013 80 19 1784 1791 10.1212/WNL.0b013e3182918ca6 23576620
    [Google Scholar]
  63. Moghekar A. Li S. Lu Y. CSF biomarker changes precede symptom onset of mild cognitive impairment. Neurology 2013 81 20 1753 1758 10.1212/01.wnl.0000435558.98447.17 24132375
    [Google Scholar]
  64. Hedden T. Oh H. Younger A.P. Patel T.A. Meta-analysis of amyloid-cognition relations in cognitively normal older adults. Neurology 2013 80 14 1341 1348 10.1212/WNL.0b013e31828ab35d 23547267
    [Google Scholar]
  65. Sunderland T. Linker G. Mirza N. Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA 2003 289 16 2094 2103 10.1001/jama.289.16.2094 12709467
    [Google Scholar]
  66. Fagan A.M. Head D. Shah A.R. Decreased cerebrospinal fluid Aβ 42 correlates with brain atrophy in cognitively normal elderly. Ann. Neurol. 2009 65 2 176 183 10.1002/ana.21559 19260027
    [Google Scholar]
  67. Ringman J.M. Coppola G. Elashoff D. Cerebrospinal fluid biomarkers and proximity to diagnosis in preclinical familial Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2012 33 1 1 5 10.1159/000335729 22343824
    [Google Scholar]
  68. Schmand B. Huizenga H.M. van Gool W.A. Meta-analysis of CSF and MRI biomarkers for detecting preclinical Alzheimer’s disease. Psychol. Med. 2010 40 1 135 145 10.1017/S0033291709991516 19863841
    [Google Scholar]
  69. Stomrud E. Hansson O. Blennow K. Minthon L. Londos E. Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement. Geriatr. Cogn. Disord. 2007 24 2 118 124 10.1159/000105017 17622715
    [Google Scholar]
  70. Buerger K. Zinkowski R. Teipel S.J. Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch. Neurol. 2002 59 8 1267 1272 10.1001/archneur.59.8.1267 12164722
    [Google Scholar]
  71. Fagan A.M. Mintun M.A. Shah A.R. Cerebrospinal fluid tau and ptau 181 increase with cortical amyloid deposition in cognitively normal individuals: Implications for future clinical trials of Alzheimer’s disease. EMBO Mol. Med. 2009 1 8-9 371 380 10.1002/emmm.200900048 20049742
    [Google Scholar]
  72. Olichney J.M. Van Petten C. Paller K.A. Salmon D.P. Iragui V.J. Kutas M. Word repetition in amnesia: Electrophysiological measures of impaired and spared memory. Brain 2000 123 9 1948 1963 10.1093/brain/123.9.1948 10960058
    [Google Scholar]
  73. de Souza L.C. Chupin M. Lamari F. CSF tau markers are correlated with hippocampal volume in Alzheimer’s disease. Neurobiol. Aging 2012 33 7 1253 1257 10.1016/j.neurobiolaging.2011.02.022 21489655
    [Google Scholar]
  74. Wang L. Brier M.R. Snyder A.Z. Cerebrospinal fluid Aβ42, phosphorylated Tau181, and resting-state functional connectivity. JAMA Neurol. 2013 70 10 1242 1248 10.1001/jamaneurol.2013.3253 23959173
    [Google Scholar]
  75. Buchhave P. Minthon L. Zetterberg H. Wallin Å.K. Blennow K. Hansson O. Cerebrospinal fluid levels of β-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch. Gen. Psychiatry 2012 69 1 98 106 10.1001/archgenpsychiatry.2011.155 22213792
    [Google Scholar]
  76. Jones D.T. Machulda M.M. Vemuri P. Age-related changes in the default mode network are more advanced in Alzheimer disease. Neurology 2011 77 16 1524 1531 10.1212/WNL.0b013e318233b33d 21975202
    [Google Scholar]
  77. Hu Y.Y. He S.S. Wang X. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: An ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am. J. Pathol. 2002 160 4 1269 1278 10.1016/S0002‑9440(10)62554‑0 11943712
    [Google Scholar]
  78. Harrington K.D. Dang C. Lim Y.Y. The effect of preclinical Alzheimer’s disease on age-related changes in intelligence in cognitively normal older adults. Intelligence 2018 70 22 29 10.1016/j.intell.2018.07.004
    [Google Scholar]
  79. Hampel H. Buerger K. Zinkowski R. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: A comparative cerebrospinal fluid study. Arch. Gen. Psychiatry 2004 61 1 95 102 10.1001/archpsyc.61.1.95 14706948
    [Google Scholar]
  80. Paternicò D. Galluzzi S. Drago V. Cerebrospinal fluid markers for Alzheimer’s disease in a cognitively healthy cohort of young and old adults. Alzheimers Dement. 2012 8 6 520 527 10.1016/j.jalz.2011.10.003 22677492
    [Google Scholar]
  81. Fagan A.M. Shaw L.M. Xiong C. Comparison of analytical platforms for cerebrospinal fluid measures of β-amyloid 1-42, total tau, and p-tau181 for identifying Alzheimer disease amyloid plaque pathology. Arch. Neurol. 2011 68 9 1137 1144 10.1001/archneurol.2011.105 21555603
    [Google Scholar]
  82. Coskun P. Wyrembak J. Schriner S.E. A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta, Gen. Subj. 2012 1820 5 553 564 10.1016/j.bbagen.2011.08.008 21871538
    [Google Scholar]
  83. Hamzeiy H. Aberrant global dna methylation in neurodegeneration: ALS and trinucleotide repeat disorders. Thesis, Master's thesis, Fen Bilimleri Enstitüsü 2024 10.3389/fnagi.2013.0000
    [Google Scholar]
  84. Swerdlow R.H. Burns J.M. Khan S.M. The Alzheimer’s disease mitochondrial cascade hypothesis. J. Alzheimers Dis. 2010 20 s2 S265 S279 10.3233/JAD‑2010‑100339 20442494
    [Google Scholar]
  85. Mrak R.E. Griffin W.S.T. Potential inflammatory biomarkers in Alzheimer’s disease. J. Alzheimers Dis. 2006 8 4 369 375 10.3233/JAD‑2005‑8406 16556968
    [Google Scholar]
  86. Ferretti M.T. Cuello A.C. Does a pro-inflammatory process precede Alzheimer’s disease and mild cognitive impairment? Curr. Alzheimer Res. 2011 8 2 164 174 10.2174/156720511795255982 21345170
    [Google Scholar]
  87. Podlesniy P. Figueiro-Silva J. Llado A. Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Ann. Neurol. 2013 74 5 655 668 10.1002/ana.23955 23794434
    [Google Scholar]
  88. Emmerson J.T. Do Carmo S. Lavagna A. Paradoxical attenuation of early amyloid-induced cognitive impairment and synaptic plasticity in an aged APP/Tau bigenic rat model. Acta Neuropathol. Commun. 2024 12 1 193 10.1186/s40478‑024‑01901‑0 39707506
    [Google Scholar]
  89. Ringman J.M. Younkin S.G. Pratico D. Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 2008 71 2 85 92 10.1212/01.wnl.0000303973.71803.81 18509095
    [Google Scholar]
  90. Lewczuk P. Kornhuber J. Vanmechelen E. Amyloid β peptides in plasma in early diagnosis of Alzheimer’s disease: A multicenter study with multiplexing. Exp. Neurol. 2010 223 2 366 370 10.1016/j.expneurol.2009.07.024 19664622
    [Google Scholar]
  91. Koyama A. Okereke O.I. Yang T. Blacker D. Selkoe D.J. Grodstein F. Plasma amyloid-β as a predictor of dementia and cognitive decline: A systematic review and meta-analysis. Arch. Neurol. 2012 69 7 824 831 10.1001/archneurol.2011.1841 22451159
    [Google Scholar]
  92. Hansson O. Zetterberg H. Vanmechelen E. Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neurobiol. Aging 2010 31 3 357 367 10.1016/j.neurobiolaging.2008.03.027 18486992
    [Google Scholar]
  93. Rembach A. Faux N.G. Watt A.D. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement. 2014 10 1 53 61 10.1016/j.jalz.2012.12.006 23491263
    [Google Scholar]
  94. Laske C. Sopova K. Gkotsis C. Amyloid-β peptides in plasma and cognitive decline after 1 year follow-up in Alzheimer’s disease patients. J. Alzheimers Dis. 2010 21 4 1263 1269 10.3233/JAD‑2010‑100510 21504122
    [Google Scholar]
  95. Tan L. Yu J.T. Hu N. Tan L. Non-coding RNAs in Alzheimer’s disease. Mol. Neurobiol. 2013 47 1 382 393 10.1007/s12035‑012‑8359‑5 23054683
    [Google Scholar]
  96. Cosentino S.A. Stern Y. Sokolov E. Plasma ß-amyloid and cognitive decline. Arch. Neurol. 2010 67 12 1485 1490 10.1001/archneurol.2010.189 20697031
    [Google Scholar]
  97. Lui J.K. Laws S.M. Li Q.X. Plasma amyloid-β as a biomarker in Alzheimer’s disease: The AIBL study of aging. J. Alzheimers Dis. 2010 20 4 1233 1242 10.3233/JAD‑2010‑090249 20413897
    [Google Scholar]
  98. Burnham S.C. Faux N.G. Wilson W. A blood-based predictor for neocortical Aβ burden in Alzheimer’s disease: Results from the AIBL study. Mol. Psychiatry 2014 19 4 519 526 10.1038/mp.2013.40 23628985
    [Google Scholar]
  99. Tan L. Yu J.T. Liu Q.Y. Circulating miR-125b as a biomarker of Alzheimer’s disease. J. Neurol. Sci. 2014 336 1-2 52 56 10.1016/j.jns.2013.10.002 24139697
    [Google Scholar]
  100. Wang C. Yu J.T. Wang H.F. Meta-analysis of peripheral blood apolipoprotein E levels in Alzheimer’s disease. PLoS One 2014 9 2 89041 10.1371/journal.pone.0089041 24558469
    [Google Scholar]
  101. Tan L. Yu J.T. Tan M.S. Genome-wide serum microRNA expression profiling identifies serum biomarkers for Alzheimer’s disease. J. Alzheimers Dis. 2014 40 4 1017 1027 10.3233/JAD‑132144 24577456
    [Google Scholar]
  102. Lahiri D. Maloney B. Riyaz Basha M. Wen Ge Y. Zawia N. How and when environmental agents and dietary factors affect the course of Alzheimer’s disease: The “LEARn” model (latent early-life associated regulation) may explain the triggering of AD. Curr. Alzheimer Res. 2007 4 2 219 228 10.2174/156720507780362164 17430250
    [Google Scholar]
  103. Wu J. Basha M.R. Brock B. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): Evidence for a developmental origin and environmental link for AD. J. Neurosci. 2008 28 1 3 9 10.1523/JNEUROSCI.4405‑07.2008 18171917
    [Google Scholar]
  104. Lahiri D.K. Maloney B. Zawia N.H. The LEARn model: An epigenetic explanation for idiopathic neurobiological diseases. Mol. Psychiatry 2009 14 11 992 1003 10.1038/mp.2009.82 19851280
    [Google Scholar]
  105. Coppieters N. Dieriks B.V. Lill C. Faull R.L.M. Curtis M.A. Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer’s disease human brain. Neurobiol. Aging 2014 35 6 1334 1344 10.1016/j.neurobiolaging.2013.11.031 24387984
    [Google Scholar]
  106. Gustafson D.R. Clare Morris M. Scarmeas N. New perspectives on Alzheimer’s disease and nutrition. J. Alzheimers Dis. 2015 46 4 1111 1127 10.3233/JAD‑150084 26402637
    [Google Scholar]
  107. Douaud G. Refsum H. de Jager C.A. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc. Natl. Acad. Sci. USA 2013 110 23 9523 9528 10.1073/pnas.1301816110 23690582
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775376964250919070155
Loading
/content/journals/cdrr/10.2174/0125899775376964250919070155
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test