Skip to content
2000
image of Applications of Nanoparticles in Antimicrobial Therapy: Current Status and Way Forward

Abstract

Antimicrobial resistance (AMR) has emerged as a critical public health challenge due to the overuse of antibiotics in clinical treatments, agriculture, animal healthcare, and the food industry. This issue has not only diminished the efficacy of existing therapies, but also impeded effective management of infectious diseases, underscoring the urgent need for innovative solutions. Nanoparticles (NPs) have garnered significant attention as a promising approach to combat AMR. Their unique properties, including a high surface area-to-volume ratio, excellent bioavailability, targeted drug delivery capabilities, prolonged circulation time in the bloodstream, and reduced antibiotic dosage and toxicity, have made them highly effective tools in antimicrobial therapies. This review involves an exploration of the mechanisms of action of antimicrobial NPs, followed by an analysis of the unique characteristics and advantages of various NP types in addressing AMR. Additionally, it examines the potential challenges associated with NP-based antimicrobial therapies and provides future perspectives on their applications. By offering comprehensive insights, this review aimed to enhance an understanding of NP applications in combating AMR and provide recommendations for advancing research to optimize their integration into the healthcare sector, ultimately mitigating AMR's global impact on public health.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775396624250905112212
2025-09-15
2025-12-05
Loading full text...

Full text loading...

References

  1. Hutchings M.I. Truman A.W. Wilkinson B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 2019 51 72 80 10.1016/j.mib.2019.10.008 31733401
    [Google Scholar]
  2. Kirchhelle C. Pharming animals: A global history of antibiotics in food production (1935–2017). Palgrave Commun. 2018 4 1 96 10.1057/s41599‑018‑0152‑2
    [Google Scholar]
  3. Klein E.Y. Impalli I. Poleon S. Global trends in antibiotic consumption during 2016–2023 and future projections through 2030. Proc. Natl. Acad. Sci. USA 2024 121 49 e2411919121 10.1073/pnas.2411919121 39556760
    [Google Scholar]
  4. Walsh T.R. Gales A.C. Laxminarayan R. Dodd P.C. Antimicrobial resistance: Addressing a global threat to humanity. PLoS Med. 2023 20 7 e1004264 10.1371/journal.pmed.1004264 37399216
    [Google Scholar]
  5. Llor C. Bjerrum L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014 5 6 229 241 10.1177/2042098614554919 25436105
    [Google Scholar]
  6. Ahmed S.K. Hussein S. Qurbani K. Antimicrobial resistance: Impacts, challenges, and future prospects. J Med Surg Public Health 2024 2 100081 10.1016/j.glmedi.2024.100081
    [Google Scholar]
  7. Naghavi M. Vollset S.E. Ikuta K.S. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024 404 10459 1199 1226 10.1016/S0140‑6736(24)01867‑1 39299261
    [Google Scholar]
  8. Aflakian F. Mirzavi F. Aiyelabegan H.T. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur. J. Pharm. Sci. 2023 188 106515 10.1016/j.ejps.2023.106515 37402428
    [Google Scholar]
  9. Cella E. Giovanetti M. Benedetti F. Joining forces against antibiotic resistance: The one health solution. Pathogens 2023 12 9 1074 10.3390/pathogens12091074 37764882
    [Google Scholar]
  10. Solanki R. Makwana N. Kumar R. Nanomedicines as a cutting-edge solution to combat antimicrobial resistance. RSC Advances 2024 14 45 33568 33586 10.1039/D4RA06117A 39439838
    [Google Scholar]
  11. Patra J.K. Das G. Fraceto L.F. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  12. Lee N.Y. Ko W.C. Hsueh P.R. Nanoparticles in the treatment of infections caused by multidrug-resistant organisms. Front. Pharmacol. 2019 10 1153 10.3389/fphar.2019.01153 31636564
    [Google Scholar]
  13. Nanomedicine Market Size, Share & Trends Analysis Report By Application (Drug Delivery), By Indication (Clinical Oncology, Infectious Diseases), By Molecule Type, By Region, And Segment Forecasts, 2023 - 2030. Available from: https://www.grandviewresearch.com/industry-analysis/nanomedicine-market
  14. Baptista P.V. McCusker M.P. Carvalho A. Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”. Front. Microbiol. 2018 9 1441 10.3389/fmicb.2018.01441 30013539
    [Google Scholar]
  15. Ozdal M. Gurkok S. A Recent advances in nanoparticles as antibacterial agent. ADMET DMPK 2022 10 2 115 129 10.5599/admet.1172 35350114
    [Google Scholar]
  16. Wang L. Hu C. Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine 2017 12 1227 1249 10.2147/IJN.S121956 28243086
    [Google Scholar]
  17. Makabenta J.M.V. Nabawy A. Li C.H. Schmidt-Malan S. Patel R. Rotello V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021 19 1 23 36 10.1038/s41579‑020‑0420‑1 32814862
    [Google Scholar]
  18. Yu Z. Li Q. Wang J. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res. Lett. 2020 15 1 115 10.1186/s11671‑020‑03344‑7 32436107
    [Google Scholar]
  19. Das B. Dash S.K. Mandal D. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017 10 6 862 876 10.1016/j.arabjc.2015.08.008
    [Google Scholar]
  20. Gao F. Shao T. Yu Y. Xiong Y. Yang L. Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nat. Commun. 2021 12 1 745 10.1038/s41467‑021‑20965‑3 33531505
    [Google Scholar]
  21. Fu P.P. Xia Q. Hwang H.M. Ray P.C. Yu H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J Food Drug Anal 2014 22 1 64 75 [PMID: 24673904].
    [Google Scholar]
  22. Moradi F. Ghaedi A. Fooladfar Z. Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon 2023 9 11 e22105 10.1016/j.heliyon.2023.e22105 38034786
    [Google Scholar]
  23. Varma A. Warghane A. Dhiman N.K. Shabana The role of nanocomposites against biofilm infections in humans. Front. Cell. Infect. Microbiol. 2023 13 1104615 10.3389/fcimb.2023.1104615 36926513
    [Google Scholar]
  24. Hayat S Muzammil S Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol. 2019 14 1 61 72 10.2217/fmb‑2018‑0257 30539663
    [Google Scholar]
  25. Rambaran N. Naidoo Y. Mohamed F. Chenia H.Y. Baijnath H. Antibacterial and Anti-Quorum Sensing Properties of Silver Nanoparticles Phytosynthesized Using Embelia ruminata. Plants 2024 13 2 168 10.3390/plants13020168 38256722
    [Google Scholar]
  26. Wu J. Li F. Hu X. Responsive assembly of silver nanoclusters with a biofilm locally amplified bactericidal effect to enhance treatments against multi-drug-resistant bacterial infections. ACS Cent. Sci. 2019 5 8 1366 1376 10.1021/acscentsci.9b00359 31482119
    [Google Scholar]
  27. Bruna T. Maldonado-Bravo F. Jara P. Caro N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021 22 13 7202 10.3390/ijms22137202 34281254
    [Google Scholar]
  28. Khan S. Shujah S. Nishan U. Nannorrhops ritchiana leaf-based biomolecular extract-mediated silver nanoparticles as a platform for mercury(II) sensing, antimicrobial activity, and DNA interaction. Arab. J. Sci. Eng. 2023 48 6 7673 7684 10.1007/s13369‑023‑07682‑3
    [Google Scholar]
  29. Dakal T.C. Kumar A. Majumdar R.S. Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016 7 1831 10.3389/fmicb.2016.01831 27899918
    [Google Scholar]
  30. Girma A. Alternative mechanisms of action of metallic nanoparticles to mitigate the global spread of antibiotic-resistant bacteria. Cell Surf. 2023 10 100112 10.1016/j.tcsw.2023.100112 37920217
    [Google Scholar]
  31. Wahab S. Salman A. Khan Z. Khan S. Krishnaraj C. Yun S.I. Metallic nanoparticles: A promising arsenal against antimicrobial resistance—Unraveling mechanisms and enhancing medication efficacy. Int. J. Mol. Sci. 2023 24 19 14897 10.3390/ijms241914897 37834344
    [Google Scholar]
  32. Duman H. Eker F. Akdaşçi E. Witkowska A.M. Bechelany M. Karav S. Silver nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials 2024 14 18 1527 10.3390/nano14181527 39330683
    [Google Scholar]
  33. Raza S. Wdowiak M. Grotek M. Enhancing the antimicrobial activity of silver nanoparticles against ESKAPE bacteria and emerging fungal pathogens by using tea extracts. Nanoscale Adv. 2023 5 21 5786 5798 10.1039/D3NA00220A 37881701
    [Google Scholar]
  34. Xu L. Wang Y.Y. Huang J. Chen C.Y. Wang Z.X. Xie H. Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 2020 10 20 8996 9031 10.7150/thno.45413 32802176
    [Google Scholar]
  35. Piktel E. Suprewicz Ł. Depciuch J. Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Sci. Rep. 2021 11 1 12546 10.1038/s41598‑021‑91847‑3 34131207
    [Google Scholar]
  36. Sadeghi S. Agharazi F. Hosseinzadeh S.A. Gold nanoparticle conjugation enhances berberine’s antibacterial activity against methicillin-resistant staphylococcus aureus (MRSA). Talanta 2024 268 Pt 1 125358 10.1016/j.talanta.2023.125358 37918244
    [Google Scholar]
  37. Aly S.M. Eissa A.E. Abdel-Razek N. El-Ramlawy A.O. Chitosan nanoparticles and green synthesized silver nanoparticles as novel alternatives to antibiotics for preventing A. hydrophila subsp. hydrophila infection in Nile tilapia, Oreochromis niloticus. Int. J. Vet. Sci. Med. 2023 11 1 38 54 10.1080/23144599.2023.2205338 37179529
    [Google Scholar]
  38. Abdallah Y. Liu M. Ogunyemi S.O. Bioinspired green synthesis of chitosan and zinc oxide nanoparticles with strong antibacterial activity against rice pathogen Xanthomonas oryzae pv. oryzae. Molecules 2020 25 20 4795 10.3390/molecules25204795 33086640
    [Google Scholar]
  39. Xing Y. Wang X. Guo X. Comparison of antimicrobial activity of chitosan nanoparticles against bacteria and fungi. Coatings 2021 11 7 769 10.3390/coatings11070769
    [Google Scholar]
  40. Ali Alharbi A. Alghamdi A.M. Talal Al-Goul S. Valorizing pomegranate wastes by producing functional silver nanoparticles with antioxidant, anticancer, antiviral, and antimicrobial activities and its potential in food preservation. Saudi J. Biol. Sci. 2024 31 1 103880 10.1016/j.sjbs.2023.103880 38161386
    [Google Scholar]
  41. Wolny-Koładka K. Malina D. Suder A. Pluta K. Wzorek Z. Bio-based synthesis of silver nanoparticles from waste agricultural biomass and its antimicrobial activity. Processes 2022 10 2 389 10.3390/pr10020389
    [Google Scholar]
  42. Adnan M. Obyedul Kalam Azad M. Madhusudhan A. Simple and cleaner system of silver nanoparticle synthesis using kenaf seed and revealing its anticancer and antimicrobial potential. Nanotechnology 2020 31 26 265101 10.1088/1361‑6528/ab7d72 32143194
    [Google Scholar]
  43. Vishwasrao C. Momin B. Ananthanarayan L. Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valoriz. 2019 10 8 2353 2363 10.1007/s12649‑018‑0230‑0
    [Google Scholar]
  44. Azmy L. Al-Olayan E. Abdelhamid M.A.A. Antimicrobial activity of Arthrospira platensis-mediated gold nanoparticles against Streptococcus pneumoniae: A metabolomic and docking study. Int. J. Mol. Sci. 2024 25 18 10090 10.3390/ijms251810090 39337576
    [Google Scholar]
  45. Namasivayam S.K.R. Srinivasan S. Kavisri M. Methylene blue biosorption and antibacterial active gold nanoparticle synthesis using microwave-treated structurally modified water hyacinth biomass. Biomass Convers. Biorefin. 2022 10.1007/s13399‑022‑03216‑3
    [Google Scholar]
  46. Harby A.G. El-Borady O.M. El-Kemary M. The exploitation of rice husk biomass for the bio-inspired synthesis of gold nanoparticles as a multifunctional material for various biological and photocatalytic applications. Bioprocess Biosyst. Eng. 2022 45 1 61 74 10.1007/s00449‑021‑02639‑y 34559304
    [Google Scholar]
  47. Sathiyaraj S. Suriyakala G. Dhanesh Gandhi A. Biosynthesis, characterization, and antibacterial activity of gold nanoparticles. J. Infect. Public Health 2021 14 12 1842 1847 10.1016/j.jiph.2021.10.007 34690096
    [Google Scholar]
  48. Elegbede J.A. Lateef A. Azeez M.A. Biofabrication of gold nanoparticles using xylanases through valorization of corncob by aspergillus niger and Trichoderma longibrachiatum: Antimicrobial, antioxidant, anticoagulant and thrombolytic activities. Waste Biomass Valoriz. 2020 11 3 781 791 10.1007/s12649‑018‑0540‑2
    [Google Scholar]
  49. Sathiyabama M. Boomija R.V. Muthukumar S. Green synthesis of chitosan nanoparticles using tea extract and its antimicrobial activity against economically important phytopathogens of rice. Sci. Rep. 2024 14 1 7381 10.1038/s41598‑024‑58066‑y 38548964
    [Google Scholar]
  50. El-Naggar N.E.A. Eltarahony M. Hafez E.E. Bashir S.I. Green fabrication of chitosan nanoparticles using Lavendula angustifolia, optimization, characterization and in-vitro antibiofilm activity. Sci. Rep. 2023 13 1 11127 10.1038/s41598‑023‑37660‑6 37429892
    [Google Scholar]
  51. Yahya R. Al-Rajhi A.M.H. Alzaid S.Z. Molecular docking and efficacy of aloe vera gel based on chitosan nanoparticles against Helicobacter pylori and its antioxidant and anti-inflammatory activities. Polymers 2022 14 15 2994 10.3390/polym14152994 35893958
    [Google Scholar]
  52. Bagheri R. Ariaii P. Motamedzadegan A. Characterization, antioxidant and antibacterial activities of chitosan nanoparticles loaded with nettle essential oil. J. Food Meas. Charact. 2021 15 2 1395 1402 10.1007/s11694‑020‑00738‑0
    [Google Scholar]
  53. Hadidi M. Pouramin S. Adinepour F. Haghani S. Jafari S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020 236 116075 10.1016/j.carbpol.2020.116075 32172888
    [Google Scholar]
  54. Bin Liew K. Kumar Janakiraman A. Sundarapandian R. A review and revisit of nanoparticles for antimicrobial drug delivery. J. Med. Life 2022 15 3 328 335 10.25122/jml‑2021‑0097 35449993
    [Google Scholar]
  55. Scriboni A.B. Couto V.M. Ribeiro L.N.M. Fusogenic liposomes increase the antimicrobial activity of vancomycin against staphylococcus aureus biofilm. Front. Pharmacol. 2019 10 1401 10.3389/fphar.2019.01401 31849660
    [Google Scholar]
  56. Haggag M.G. Shafaa M.W. Kareem H.S. El-Gamil A.M. El-Hendawy H.H. Screening and enhancement of the antimicrobial activity of some plant oils using liposomes as nanoscale carrier. Bull. Natl. Res. Cent. 2021 45 1 38 10.1186/s42269‑021‑00497‑y
    [Google Scholar]
  57. Prevete G. Carvalho L.G. del Carmen Razola-Diaz M. Ultrasound assisted extraction and liposome encapsulation of olive leaves and orange peels: How to transform biomass waste into valuable resources with antimicrobial activity. Ultrason. Sonochem. 2024 102 106765 10.1016/j.ultsonch.2024.106765 38232412
    [Google Scholar]
  58. Le H. Karakasyan C. Jouenne T. Le Cerf D. Dé E. Application of polymeric nanocarriers for enhancing the bioavailability of antibiotics at the target site and overcoming antimicrobial resistance. Appl. Sci. 2021 11 22 10695 10.3390/app112210695
    [Google Scholar]
  59. Yegin Y. Perez-Lewis K.L. Zhang M. Akbulut M. Taylor T.M. Development and characterization of geraniol-loaded polymeric nanoparticles with antimicrobial activity against foodborne bacterial pathogens. J. Food Eng. 2016 170 64 71 10.1016/j.jfoodeng.2015.09.017
    [Google Scholar]
  60. Dewangan H.K. Singh N. Kumar Megh S. Singh S. Lakshmi. Optimisation and evaluation of gymnema sylvestre extract loaded polymeric nanoparticles for enhancement of in vivo efficacy and reduction of toxicity. J. Microencapsul. 2022 39 2 125 135 10.1080/02652048.2022.2051625 35282781
    [Google Scholar]
  61. Anbari H. Maghsoudi A. Hosseinpour M. Yazdian F. Acceleration of antibacterial activity of curcumin loaded biopolymers against methicillin‐resistant Staphylococcus aureus: Synthesis, optimization, and evaluation. Eng. Life Sci. 2022 22 2 58 69 10.1002/elsc.202100050 35140554
    [Google Scholar]
  62. Li B. Liao Y. Su X. Powering mesoporous silica nanoparticles into bioactive nanoplatforms for antibacterial therapies: Strategies and challenges. J. Nanobiotechnology 2023 21 1 325 10.1186/s12951‑023‑02093‑w 37684605
    [Google Scholar]
  63. Namdar N. Nayeri Fasaei B. Shariati P. Joghataei S.M. Arpanaei A. Mesoporous silica nanoparticles co-loaded with lysozyme and vancomycin for synergistic antimicrobial action. Sci. Rep. 2024 14 1 29242 10.1038/s41598‑024‑78922‑1 39587211
    [Google Scholar]
  64. Abbasi M. Gholizadeh R. Kasaee S.R. An intriguing approach toward antibacterial activity of green synthesized rutin-templated mesoporous silica nanoparticles decorated with nanosilver. Sci. Rep. 2023 13 1 5987 10.1038/s41598‑023‑33095‑1 37046068
    [Google Scholar]
  65. Dong J. Chen F. Yao Y. Bioactive mesoporous silica nanoparticle-functionalized titanium implants with controllable antimicrobial peptide release potentiate the regulation of inflammation and osseointegration. Biomaterials 2024 305 122465 10.1016/j.biomaterials.2023.122465 38190768
    [Google Scholar]
  66. Chis A.A. Dobrea C. Morgovan C. Applications and limitations of dendrimers in biomedicine. Molecules 2020 25 17 3982 10.3390/molecules25173982 32882920
    [Google Scholar]
  67. Hernando-Gozalo M. Aguilera-Correa J.J. Rescalvo-Casas C. Study of the antimicrobial activity of cationic carbosilane dendrimers against clinical strains of multidrug-resistant bacteria and their biofilms. Front. Cell. Infect. Microbiol. 2023 13 1203991 10.3389/fcimb.2023.1203991 37886663
    [Google Scholar]
  68. Svenningsen S.W. Frederiksen R.F. Counil C. Ficker M. Leisner J.J. Christensen J.B. Synthesis and antimicrobial properties of a ciprofloxacin and PAMAM-dendrimer conjugate. Molecules 2020 25 6 1389 10.3390/molecules25061389 32197523
    [Google Scholar]
  69. Schito A.M. Alfei S. Antibacterial activity of non-cytotoxic, amino acid-modified polycationic dendrimers against Pseudomonas aeruginosa and other non-fermenting Gram-negative bacteria. Polymers 2020 12 8 1818 10.3390/polym12081818 32823557
    [Google Scholar]
  70. Gustafson H.H. Holt-Casper D. Grainger D.W. Ghandehari H. Nanoparticle uptake: The phagocyte problem. Nano Today 2015 10 4 487 510 10.1016/j.nantod.2015.06.006 26640510
    [Google Scholar]
  71. Behzadi S. Serpooshan V. Tao W. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017 46 14 4218 4244 10.1039/C6CS00636A 28585944
    [Google Scholar]
  72. Pondman K. Le Gac S. Kishore U. Nanoparticle-induced immune response: Health risk versus treatment opportunity? Immunobiology 2023 228 2 152317 10.1016/j.imbio.2022.152317 36592542
    [Google Scholar]
  73. Hoshyar N. Gray S. Han H. Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.) 2016 11 6 673 692 10.2217/nnm.16.5 27003448
    [Google Scholar]
  74. Blanco E. Shen H. Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015 33 9 941 951 10.1038/nbt.3330 26348965
    [Google Scholar]
  75. Prevete G. Carvalho L.G. Verardo V. Ultrasound assisted extraction and liposome encapsulation of olive leaves and orange peels: How to transform biomass waste into valuable resources with antimicrobial activity. Ultrason. Sonochem. 2017 102 10.1016/j.ultsonch.2024.106765
    [Google Scholar]
  76. Silva N.C. Silva S. Sarmento B. Pintado M. Chitosan nanoparticles for daptomycin delivery in ocular treatment of bacterial endophthalmitis. Drug Deliv. 2015 22 7 885 893 10.3109/10717544.2013.858195 24266551
    [Google Scholar]
  77. Singla A. Simbassa S.B. Chirra B. Hetero-multivalent targeted liposomal drug delivery to treat pseudomonas aeruginosa infections. ACS Appl. Mater. Interfaces 2022 14 36 40724 40737 10.1021/acsami.2c12943 36018830
    [Google Scholar]
  78. Wang Z. Tiruppathi C. Cho J. Minshall R.D. Malik A.B. Delivery of nanoparticle‐complexed drugs across the vascular endothelial barrier via caveolae. IUBMB Life 2011 63 8 659 667 10.1002/iub.485 21766412
    [Google Scholar]
  79. Zou W. McAdorey A. Yan H. Chen W. Nanomedicine to overcome antimicrobial resistance: Challenges and prospects. Nanomedicine (Lond.) 2023 18 5 471 484 10.2217/nnm‑2023‑0022 37170884
    [Google Scholar]
  80. Wang S. Gao Y. Jin Q. Ji J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater. Sci. 2020 8 24 6825 6839 10.1039/D0BM00974A 32996490
    [Google Scholar]
  81. Sheth V. Wang L. Bhattacharya R. Mukherjee P. Wilhelm S. Strategies for delivering nanoparticles across tumor blood vessels. Adv. Funct. Mater. 2021 31 8 2007363 10.1002/adfm.202007363 37197212
    [Google Scholar]
  82. Kalita M. Payne M.M. Bossmann S.H. Glyco-nanotechnology: A biomedical perspective. Nanomedicine 2022 42 102542 10.1016/j.nano.2022.102542 35189393
    [Google Scholar]
  83. Sharma D. Misba L. Khan A.U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019 8 1 76 10.1186/s13756‑019‑0533‑3 31131107
    [Google Scholar]
  84. Panda S.K. Buroni S. Swain S.S. Recent advances to combat ESKAPE pathogens with special reference to essential oils. Front. Microbiol. 2022 13 1029098 10.3389/fmicb.2022.1029098 36560948
    [Google Scholar]
  85. Li X. Chen D. Xie S. Current progress and prospects of organic nanoparticles against bacterial biofilm. Adv. Colloid Interface Sci. 2021 294 102475 10.1016/j.cis.2021.102475 34280601
    [Google Scholar]
  86. Thambirajoo M. Maarof M. Lokanathan Y. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics 2021 10 11 1338 10.3390/antibiotics10111338 34827276
    [Google Scholar]
  87. Bahrami A. Delshadi R. Jafari S.M. Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends Food Sci. Technol. 2020 99 217 228 10.1016/j.tifs.2020.03.008
    [Google Scholar]
  88. Wang X. Shan M. Zhang S. Stimuli-responsive antibacterial materials: Molecular structures, design principles, and biomedical applications. Adv. Sci. (Weinh.) 2022 9 13 2104843 10.1002/advs.202104843 35224893
    [Google Scholar]
  89. Hetta H.F. Ramadan Y.N. Al-Harbi A.I. Nanotechnology as a promising approach to combat multidrug resistant bacteria: A comprehensive review and future perspectives. Biomedicines 2023 11 2 413 10.3390/biomedicines11020413 36830949
    [Google Scholar]
  90. Desai N. Rana D. Salave S. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics 2023 15 4 1313 10.3390/pharmaceutics15041313 37111795
    [Google Scholar]
  91. Petrovici A.R. Pinteala M. Simionescu N. Dextran formulations as effective delivery systems of therapeutic agents. Molecules 2023 28 3 1086 10.3390/molecules28031086 36770753
    [Google Scholar]
  92. Das K.P. J C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Frontiers in Medical Technology 2023 4 1067144 10.3389/fmedt.2022.1067144 36688144
    [Google Scholar]
  93. Deng T. Hasan I. Roy S. Liu Y. Zhang B. Guo B. Advances in mRNA nanomedicines for malignant brain tumor therapy. Smart Materials in Medicine 2023 4 257 265 10.1016/j.smaim.2022.11.001
    [Google Scholar]
  94. Zhou C. Liu Y. Li Y. Shi L. Recent advances and prospects in nanomaterials for bacterial sepsis management. J. Mater. Chem. B Mater. Biol. Med. 2023 11 45 10778 10792 10.1039/D3TB02220J 37901894
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775396624250905112212
Loading
/content/journals/cdrr/10.2174/0125899775396624250905112212
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test