Skip to content
2000
image of Combination Therapy in Experimental Chagas Disease: A Review

Abstract

Chagas disease is a neglected tropical disease caused by the protozoan . Current treatment options are limited to nifurtimox and benznidazole, which have long regimens, frequent adverse effects, and reduced efficacy, particularly in the chronic phase, when most patients are diagnosed. This review aims to analyze preclinical studies on combination therapy for experimental Chagas disease, evaluating their potential to improve treatment efficacy, safety, and duration. A systematic review was conducted following PRISMA guidelines, analyzing preclinical studies that assessed combination therapies against . Key factors considered included study design, drug combinations, efficacy outcomes, and translational potential. Over the past decade, combination therapy has been extensively investigated in experimental models of infection. Achieving a successful translation of findings from preclinical studies to clinical settings requires careful consideration of various factors, including study design, outcome measures, and the use of standard treatment. Combination therapy represents a promising strategy to optimize Chagas disease treatment. However, further research is needed to bridge the gap between preclinical findings and clinical application. This review provides a comprehensive synthesis of experimental data related to Chagas disease, highlighting key trends, limitations, and future research directions.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775358257250901043626
2025-09-15
2025-12-05
Loading full text...

Full text loading...

References

  1. Chagas C. New human trypanosomiasis: Studies on the morphology and evolutionary cycle of Schizotrypanum cruzi n. gen., n. sp., etiological entity of a new morbid entity in man. Mem. Inst. Oswaldo Cruz 1909 1 2 159 218 10.1590/S0074‑02761909000200008
    [Google Scholar]
  2. Gascon J. Bern C. Pinazo M.J. Chagas disease in Spain, the United States and other non-endemic countries. Acta Trop. 2010 115 1-2 22 27 10.1016/j.actatropica.2009.07.019 19646412
    [Google Scholar]
  3. Guhl F. Ramírez J.D. Poverty, migration, and chagas disease. Curr. Trop. Med. Rep. 2021 8 52 58 10.1007/s40475‑020‑00225‑y
    [Google Scholar]
  4. Lidani K.C.F. Andrade F.A. Bavia L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health 2019 7 166 10.3389/fpubh.2019.00166 31312626
    [Google Scholar]
  5. Chagas disease (also known as American trypanosomiasis) 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis).
  6. Brener Z. Biology of Trypanosoma cruzi. Annu. Rev. Microbiol. 1973 27 1 347 382 10.1146/annurev.mi.27.100173.002023 4201691
    [Google Scholar]
  7. Carlier Y. Torrico F. Congenital infection with Trypanosoma cruzi: From mechanisms of transmission to strategies for diagnosis and control. Rev. Soc. Bras. Med. Trop. 2003 36 6 767 771 10.1590/S0037‑86822003000600024 15143784
    [Google Scholar]
  8. Cevallos A.M. Hernández R. Chagas’ disease: Pregnancy and congenital transmission. BioMed Res. Int. 2014 2014 1 10 10.1155/2014/401864 24949443
    [Google Scholar]
  9. Howard J.E. Rios C. Ebensperger I. Olivos P. Congenital Chagas’ disease. Bol. Chil. Parasitol. 1957 12 3 42 45 [Congenital Chagas’ disease] 13471681
    [Google Scholar]
  10. Wanderley D.M.V. Camargo L.M.A. Carvalho M.E. Chagas’ Disease: An acute transfusional case report. Rev. Inst. Med. Trop. São Paulo 1988 30 6 437 440 10.1590/S0036‑46651988000600009 3150868
    [Google Scholar]
  11. Dias JCP Amato Neto V Prevention concerning the different alternative routes for transmission of Trypanosoma cruzi in Brazil. Rev Soc Bras Med Trop 2011 44 68 72.(Suppl. 2) 10.1590/S0037‑86822011000800011 21584360
    [Google Scholar]
  12. Dias J.C.P. Notes about of Trypanosoma cruzi and yours bio-ecology characteristics with agents of the transmission by meals. Rev. Soc. Bras. Med. Trop. 2006 39 4 370 375 10.1590/S0037‑86822006000400010 17119753
    [Google Scholar]
  13. Filigheddu M.T. Górgolas M. Ramos J.M. Oral transmission of Chagas disease. Med. Clin. 2017 148 3 125 131 10.1016/j.medcli.2016.10.038 27993415
    [Google Scholar]
  14. Pereira K.S. Schmidt F.L. Guaraldo A.M.A. Franco R.M.B. Dias V.L. Passos L.A.C. Chagas’ disease as a foodborne illness. J. Food Prot. 2009 72 2 441 446 10.4315/0362‑028X‑72.2.441 19350996
    [Google Scholar]
  15. Chapadeiro E. Clinical evolution and morbi-mortality in Chagas disease. Mem Inst Oswaldo Cruz 1999 94 309 10.(Suppl. 1) 10.1590/S0074‑02761999000700058 10677744
    [Google Scholar]
  16. Rassi A. Rassi A. Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect. Dis. Clin. North Am. 2012 26 2 275 291 10.1016/j.idc.2012.03.002 22632639
    [Google Scholar]
  17. Pérez-Molina J.A. Molina I. Chagas disease. Lancet 2018 391 10115 82 94 10.1016/S0140‑6736(17)31612‑4 28673423
    [Google Scholar]
  18. Patterson S. Fairlamb A.H. Current and future prospects of nitro-compounds as drugs for trypanosomiasis and leishmaniasis. Curr. Med. Chem. 2019 26 23 4454 4475 10.2174/0929867325666180426164352 29701144
    [Google Scholar]
  19. Wilkinson S.R. Kelly J.M. Trypanocidal drugs: Mechanisms, resistance and new targets. Expert Rev. Mol. Med. 2009 11 e31 10.1017/S1462399409001252 19863838
    [Google Scholar]
  20. Ribeiro V. Dias N. Paiva T. Current trends in the pharmacological management of Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2020 12 7 17 10.1016/j.ijpddr.2019.11.004 31862616
    [Google Scholar]
  21. Mazzeti A.L. Capelari-Oliveira P. Bahia M.T. Mosqueira V.C.F. Review on experimental treatment strategies against Trypanosoma cruzi. J. Exp. Pharmacol. 2021 13 409 432 10.2147/JEP.S267378 33833592
    [Google Scholar]
  22. Molina J. Brener Z. Romanha A.J. Urbina J.A. In vivoactivity of the bis-triazole D0870 against drug-susceptible and drug-resistant strains of the protozoan parasite Trypanosoma cruzi. J. Antimicrob. Chemother. 2000 46 1 137 140 10.1093/jac/46.1.137 10882704
    [Google Scholar]
  23. Urbina J.A. Payares G. Sanoja C. Lira R. Romanha A.J. In vitroand in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of Chagas disease. Int. J. Antimicrob. Agents 2003 21 1 27 38 10.1016/S0924‑8579(02)00273‑X 12507835
    [Google Scholar]
  24. Guedes P.M da M. Activity of the new triazole derivative albaconazole against Trypanosoma (Schizotrypanum) cruzi in dog hosts. Antimicrob. Agents Chemother. 2004 48 11 4286 4292
    [Google Scholar]
  25. Diniz L de F. Caldas I.S. Effects of ravuconazole treatment on parasite load and immune response in dogs experimentally infected with Trypanosoma cruzi. Antimicrob. Agents Chemother. 2010 54 7 2979 2986
    [Google Scholar]
  26. Villalta F. Dobish M.C. Nde P.N. VNI cures acute and chronic experimental Chagas disease. J. Infect. Dis. 2013 208 3 504 511 10.1093/infdis/jit042 23372180
    [Google Scholar]
  27. Soeiro M.N.C. de Souza E.M. da Silva C.F. In vitroand in vivo studies of the antiparasitic activity of sterol 14α-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob. Agents Chemother. 2013 57 9 4151 4163 10.1128/AAC.00070‑13 23774435
    [Google Scholar]
  28. Hoekstra W.J. Hargrove T.Y. Wawrzak Z. Clinical candidate VT-1161's antiparasitic effect in vitro, activity in a murine model of chagas disease, and structural characterization in complex with the target enzyme CYP51 from Trypanosoma cruzi. Antimicrob. Agents Chemother. 2016 60 2 1058 1066 10.1128/AAC.02287‑15 26643331
    [Google Scholar]
  29. Guedes-da-Silva F.H. Batista D.G.J. Da Silva C.F. Successful aspects of the coadministration of sterol 14α-demethylase inhibitor VFV and benznidazole in experimental mouse models of chagas disease caused by the drug-resistant strain of Trypanosoma cruzi. ACS Infect. Dis. 2019 5 3 365 371 10.1021/acsinfecdis.8b00253 30625275
    [Google Scholar]
  30. Shang N. Li Q. Ko T.P. Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathog. 2014 10 5 e1004114 10.1371/journal.ppat.1004114 24789335
    [Google Scholar]
  31. Chen Y.T. Brinen L.S. Kerr I.D. In vitroand in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi. PLoS Negl. Trop. Dis. 2010 4 9 e825 10.1371/journal.pntd.0000825 20856868
    [Google Scholar]
  32. Engel J.C. Doyle P.S. Hsieh I. McKerrow J.H. Cysteine protease inhibitors cure an experimental Trypanosoma cruzi infection. J. Exp. Med. 1998 188 4 725 734 10.1084/jem.188.4.725 9705954
    [Google Scholar]
  33. Kaiser M. Maes L. Tadoori L.P. Spangenberg T. Ioset J.R. Repurposing of the open access malaria box for kinetoplastid diseases identifies novel active scaffolds against trypanosomatids. SLAS Discov. 2015 20 5 634 645 10.1177/1087057115569155 25690568
    [Google Scholar]
  34. Machado Motta M. Kinetoplast as a potential chemotherapeutic target of trypanosomatids. Curr. Pharm. Des. 2008 14 9 847 854 10.2174/138161208784041051 18473834
    [Google Scholar]
  35. Sbaraglini M.L. Bellera C.L. Fraccaroli L. Novel cruzipain inhibitors for the chemotherapy of chronic Chagas disease. Int. J. Antimicrob. Agents 2016 48 1 91 95 10.1016/j.ijantimicag.2016.02.018 27216381
    [Google Scholar]
  36. Bahia M.T. Nascimento A.F.S. Mazzeti A.L. Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for Chagas disease. Antimicrob. Agents Chemother. 2014 58 8 4362 4370 10.1128/AAC.02754‑13 24841257
    [Google Scholar]
  37. Bahia M.T. Andrade I.M. Martins T.A.F. Fexinidazole: A potential new drug candidate for Chagas disease. PLoS Negl. Trop. Dis. 2012 6 11 e1870 10.1371/journal.pntd.0001870 23133682
    [Google Scholar]
  38. Soeiro M.N.C. Werbovetz K. Boykin D.W. Wilson W.D. Wang M.Z. Hemphill A. Novel amidines and analogues as promising agents against intracellular parasites: A systematic review. Parasitology 2013 140 8 929 951 10.1017/S0031182013000292 23561006
    [Google Scholar]
  39. Blau L. Menegon R.F. Trossini G.H.G. Design, synthesis and biological evaluation of new aryl thiosemicarbazone as antichagasic candidates. Eur. J. Med. Chem. 2013 67 142 151 10.1016/j.ejmech.2013.04.022 23851115
    [Google Scholar]
  40. Fairlamb A.H. Blackburn P. Ulrich P. Chait B.T. Cerami A. Trypanothione: A novel bis(glutathionyl)spermidine cofactor for glutathione reductase in trypanosomatids. Science 1985 227 4693 1485 1487 10.1126/science.3883489 3883489
    [Google Scholar]
  41. Leroux A.E. Krauth-Siegel R.L. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol. Biochem. Parasitol. 2016 206 1-2 67 74 10.1016/j.molbiopara.2015.11.003 26592324
    [Google Scholar]
  42. Vázquez K. Paulino M. Salas C.O. Zarate-Ramos J.J. Vera B. Rivera G. Trypanothione reductase: A target for the development of anti-Trypanosoma cruzi drugs. Mol Res Microbiol Chem 2017 17 11 939 946 10.2174/1389557517666170315145410
    [Google Scholar]
  43. Silva J.J.N. Pavanelli W.R. Pereira J.C.M. Silva J.S. Franco D.W. Experimental chemotherapy against Trypanosoma cruzi infection using ruthenium nitric oxide donors. Antimicrob. Agents Chemother. 2009 53 10 4414 4421 10.1128/AAC.00104‑09 19581464
    [Google Scholar]
  44. Avila J. Avila A. Trypanosoma cruzi: Allopurinol in the treatment of mice with experimental acute Chagas disease. Exp. Parasitol. 1981 51 2 204 208 10.1016/0014‑4894(81)90109‑0 6781917
    [Google Scholar]
  45. Hulpia F. Van Hecke K. França da Silva C. Discovery of novel 7-aryl 7-deazapurine 3′-deoxy-ribofuranosyl nucleosides with potent activity against Trypanosoma cruzi. J. Med. Chem. 2018 61 20 9287 9300 10.1021/acs.jmedchem.8b00999 30234983
    [Google Scholar]
  46. Lin C. Hulpia F. da Silva C.F. Discovery of Pyrrolo[2,3- b]pyridine (1,7-Dideazapurine) Nucleoside Analogues as Anti- Trypanosoma cruzi Agents. J. Med. Chem. 2019 62 19 8847 8865 10.1021/acs.jmedchem.9b01275 31495177
    [Google Scholar]
  47. Soeiro M.N.C. Perspectives for a new drug candidate for Chagas disease therapy. Mem. Inst. Oswaldo Cruz 2022 117 e220004 10.1590/0074‑02760220004 35293439
    [Google Scholar]
  48. Soeiro M.N.C. de Castro S.L. Trypanosoma cruzi targets for new chemotherapeutic approaches. Expert Opin. Ther. Targets 2009 13 1 105 121 10.1517/14728220802623881 19063710
    [Google Scholar]
  49. Vannier-Santos M.A. Parasite, compartments, and molecules: Trick versus treatment on chagas disease. In: Biology of Trypanosoma cruzi. IntechOpen 2019 10.5772/intechopen.84472
    [Google Scholar]
  50. Ferreira L.G. Andricopulo A.D. Drug repositioning approaches to parasitic diseases: A medicinal chemistry perspective. Drug Discov. Today 2016 21 10 1699 1710 10.1016/j.drudis.2016.06.021 27365271
    [Google Scholar]
  51. Leon L. Different aspects on chemotherapy of trypanosomatids. New York Nova Biomedical 2017
    [Google Scholar]
  52. Mosqueira V.C.F. Mazzeti A.L. Bahia M.T. Nanomedicines against Chagas disease. In: Applications of Nanobiotechnology for Neglected Tropical Diseases. Elsevier 2021 169 189 10.1016/B978‑0‑12‑821100‑7.00008‑X
    [Google Scholar]
  53. Torchelsen F.K.V.S. Mazzeti A.L. Mosqueira V.C.F. Drugs in preclinical and early clinical development for the treatment of Chagas’s disease: The current status. Expert Opin. Investig. Drugs 2024 33 6 575 590 10.1080/13543784.2024.2349289 38686546
    [Google Scholar]
  54. Rassi A. Rassi A. Marin-Neto J.A. Posaconazole versus benznidazole for chronic Chagas’ disease. N. Engl. J. Med. 2014 371 10 965 966 10.1056/NEJMc1407914 25184872
    [Google Scholar]
  55. Torrico F. Gascon J. Ortiz L. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: A proof-of-concept, randomised, placebo-controlled trial. Lancet Infect. Dis. 2018 18 4 419 430 10.1016/S1473‑3099(17)30538‑8 29352704
    [Google Scholar]
  56. Torrico F. Gascón J. Ortiz L. A phase 2, randomized, multicenter, placebo-controlled, proof-of-concept trial of oral fexinidazole in adults with chronic indeterminate chagas disease. Clin. Infect. Dis. 2023 76 3 e1186 e1194 10.1093/cid/ciac579 35925555
    [Google Scholar]
  57. Pinazo M.J. Forsyth C. Losada I. Efficacy and safety of fexinidazole for treatment of chronic indeterminate Chagas disease (FEXI-12): A multicentre, randomised, double-blind, phase 2 trial. Lancet Infect. Dis. 2024 24 4 395 403 10.1016/S1473‑3099(23)00651‑5 38218194
    [Google Scholar]
  58. Altcheh J. Castro L. Dib J.C. Prospective, historically controlled study to evaluate the efficacy and safety of a new paediatric formulation of nifurtimox in children aged 0 to 17 years with Chagas disease one year after treatment (CHICO). PLoS Negl. Trop. Dis. 2021 15 1 e0008912 10.1371/journal.pntd.0008912 33412557
    [Google Scholar]
  59. Molina-Morant D. Fernández M.L. Bosch-Nicolau P. Efficacy and safety assessment of different dosage of benznidazol for the treatment of Chagas disease in chronic phase in adults (MULTIBENZ study): Study protocol for a multicenter randomized Phase II superiority clinical trial. Trials 2020 21 1 328 10.1186/s13063‑020‑4226‑2 32293523
    [Google Scholar]
  60. Torrico F. Gascón J. Barreira F. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): A phase 2, double-blind, randomised trial. Lancet Infect. Dis. 2021 21 8 1129 1140 10.1016/S1473‑3099(20)30844‑6 33836161
    [Google Scholar]
  61. Sun W. Sanderson P.E. Zheng W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today 2016 21 7 1189 1195 10.1016/j.drudis.2016.05.015 27240777
    [Google Scholar]
  62. Araújo M.S.S. Martins-Filho O.A. Pereira M.E.S. Brener Z. A combination of benznidazole and ketoconazole enhances efficacy of chemotherapy of experimental Chagas’ disease. J. Antimicrob. Chemother. 2000 45 6 819 824 10.1093/jac/45.6.819 10837436
    [Google Scholar]
  63. Bustamante J.M. Craft J.M. Crowe B.D. Ketchie S.A. Tarleton R.L. New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice. J. Infect. Dis. 2014 209 1 150 162 10.1093/infdis/jit420 23945371
    [Google Scholar]
  64. Cencig S. Coltel N. Truyens C. Carlier Y. Evaluation of benznidazole treatment combined with nifurtimox, posaconazole or AmBisome® in mice infected with Trypanosoma cruzi strains. Int. J. Antimicrob. Agents 2012 40 6 527 532 10.1016/j.ijantimicag.2012.08.002 23063742
    [Google Scholar]
  65. Diniz L.F. Urbina J.A. de Andrade I.M. Benznidazole and posaconazole in experimental Chagas disease: Positive interaction in concomitant and sequential treatments. PLoS Negl. Trop. Dis. 2013 7 8 e2367 10.1371/journal.pntd.0002367 23967360
    [Google Scholar]
  66. Echeverría L.E. González C.I. Hernandez J.C.M. Efficacy of the Benznidazole+Posaconazole combination therapy in parasitemia reduction: An experimental murine model of acute Chagas. Rev. Soc. Bras. Med. Trop. 2020 53 e20190477 10.1590/0037‑8682‑0477‑2019 32049205
    [Google Scholar]
  67. Molina I. Gómez i Prat J. Salvador F. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N. Engl. J. Med. 2014 370 20 1899 1908 10.1056/NEJMoa1313122 24827034
    [Google Scholar]
  68. Assíria Fontes Martins T. de Figueiredo Diniz L. Mazzeti A.L. Benznidazole/itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease. PLoS One 2015 10 6 e0128707 10.1371/journal.pone.0128707 26076455
    [Google Scholar]
  69. Cunha E.L.A. Torchelsen F.K.V.S. Cunha L.M. Benznidazole, itraconazole and their combination in the treatment of acute experimental chagas disease in dogs. Exp. Parasitol. 2019 204 107711 10.1016/j.exppara.2019.05.005 31254494
    [Google Scholar]
  70. Cunha E.L.A. Torchelsen F.K.V.S. Cunha L.M. Benznidazole, itraconazole and their combination in the treatment of acute experimental Chagas disease in dogs. MethodsX 2019 6 2544 2552 10.1016/j.mex.2019.10.007 31908981
    [Google Scholar]
  71. Moreira da Silva R. Oliveira L.T. Silva Barcellos N.M. de Souza J. de Lana M. Preclinical monitoring of drug association in experimental chemotherapy of Chagas’ disease by a new HPLC-UV method. Antimicrob. Agents Chemother. 2012 56 6 3344 3348 10.1128/AAC.05785‑11 22450981
    [Google Scholar]
  72. Diniz L.F. Mazzeti A.L. Caldas I.S. Ribeiro I. Bahia M.T. Outcome of E1224-benznidazole combination treatment for infection with a multidrug-resistant Trypanosoma cruzi strain in mice. Antimicrob. Agents Chemother. 2018 62 6 e00401 e00418 10.1128/AAC.00401‑18 29555633
    [Google Scholar]
  73. Gulin J.E.N. Eagleson M.A. López-Muñoz R.A. Solana M.E. Altcheh J. García-Bournissen F. In vitro and in vivo activity of voriconazole and benznidazole combination on Trypanosoma cruzi infection models. Acta Trop. 2020 211 105606 10.1016/j.actatropica.2020.105606 32598923
    [Google Scholar]
  74. Carneiro A.C.A. Costa G.P. Ferreira C.S. Combination therapy with benznidazole and doxycycline shows no additive effect to monotherapy with benznidazole in mice infected with the VL-10 strain of the Trypanosoma cruzi. Int. J. Cardiol. 2020 299 243 248 10.1016/j.ijcard.2019.07.047 31353153
    [Google Scholar]
  75. Mazzeti A.L. Gonçalves K.R. Mota S.L.A. Pereira D.E. Diniz L.F. Bahia M.T. Combination therapy using nitro compounds improves the efficacy of experimental Chagas disease treatment. Parasitology 2021 148 11 1320 1327 10.1017/S0031182021001001 34247670
    [Google Scholar]
  76. Rolon M. Hanna E. Vega C. Solid nanomedicines of nifurtimox and benznidazole for the oral treatment of Chagas disease. Pharmaceutics 2022 14 9 1822 10.3390/pharmaceutics14091822 36145570
    [Google Scholar]
  77. Santos E.C. Novaes R.D. Cupertino M.C. Concomitant benznidazole and suramin chemotherapy in mice infected with a virulent strain of Trypanosoma cruzi. Antimicrob. Agents Chemother. 2015 59 10 5999 6006 10.1128/AAC.00779‑15 26169419
    [Google Scholar]
  78. Seguel V. Castro L. Reigada C. Pentamidine antagonizes the benznidazole’s effect in vitro, and lacks of synergy in vivo: Implications about the polyamine transport as an anti-Trypanosoma cruzi target. Exp. Parasitol. 2016 171 23 32 10.1016/j.exppara.2016.10.007 27729250
    [Google Scholar]
  79. Rocha Simões-Silva M. Brandão Peres R. Britto C. Impact of levamisole in co-administration with benznidazole on experimental Chagas disease. Parasitology 2019 146 8 1055 1062 10.1017/S0031182019000374 31046850
    [Google Scholar]
  80. Simões-Silva M.R. De Araújo J.S. Oliveira G.M. Drug repurposing strategy against Trypanosoma cruzi infection: In vitro and in vivo assessment of the activity of metronidazole in mono- and combined therapy. Biochem. Pharmacol. 2017 145 46 53 10.1016/j.bcp.2017.08.025 28870526
    [Google Scholar]
  81. Martínez I. Rivera-Santiago L. Rodríguez-Hernández K.D. A promising amphotericin B derivative induces morphological alterations, mitochondrial damage, and oxidative stress in vitro and prevents mice from death produced by a virulent strain of Trypanosoma cruzi. Microorganisms 2024 12 6 1064 10.3390/microorganisms12061064 38930447
    [Google Scholar]
  82. Pandey R.P. Nascimento M.S. Franco C.H. Drug repurposing in Chagas disease: Chloroquine potentiates benznidazole activity against Trypanosoma cruziin vitro and in vivo. Antimicrob. Agents Chemother. 2022 66 11 e00284 e22 10.1128/aac.00284‑22 36314800
    [Google Scholar]
  83. Siqueira-Neto J.L. Lane T.R. Bernatchez J.A. Oral pyronaridine tetraphosphate reduces tissue presence of parasites in a mouse model of Chagas disease. ACS Omega 2024 9 35 37288 37298 10.1021/acsomega.4c05060 39246496
    [Google Scholar]
  84. Gulin J.E.N. Bisio M.M.C. Rocco D. Altcheh J. Solana M.E. García-Bournissen F. Miltefosine and benznidazole combination improve anti- Trypanosoma cruzi in vitro and in vivo efficacy. Front. Cell. Infect. Microbiol. 2022 12 855119 10.3389/fcimb.2022.855119 35865815
    [Google Scholar]
  85. Fraccaroli L. Ruiz M.D. Perdomo V.G. Broadening the spectrum of ivermectin: Its effect on Trypanosoma cruzi and related trypanosomatids. Front. Cell. Infect. Microbiol. 2022 12 885268 10.3389/fcimb.2022.885268 35967842
    [Google Scholar]
  86. Leite A.L.J. Paula Costa G. Lopes L.R. Reis Mota L.W. Vieira P.M.A. Talvani A. The immunomodulatory effects of the Enalapril in combination with Benznidazole during acute and chronic phases of the experimental infection with Trypanosoma cruzi. Acta Trop. 2017 174 136 145 10.1016/j.actatropica.2017.07.005 28720491
    [Google Scholar]
  87. Penitente A.R. Leite A.L.J. de Paula Costa G. Enalapril in combination with benznidazole reduces cardiac inflammation and creatine kinases in mice chronically infected with Trypanosoma cruzi. Am. J. Trop. Med. Hyg. 2015 93 5 976 982 10.4269/ajtmh.15‑0237 26350447
    [Google Scholar]
  88. Horta A.L. Figueiredo V.P. Leite A.L.J. The β-blocker carvedilol and the benznidazole modulate the cardiac immune response in the acute infection induced by Colombian strain of the Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz 2018 113 11 180271 10.1590/0074‑02760180271 30365644
    [Google Scholar]
  89. Barbosa J.M.C. Pedra-Rezende Y. Mata-Santos H.A. Preclinical evaluation of combined therapy with amiodarone and low-dose benznidazole in a mouse model of chronic Trypanosoma cruzi infection. Biomed. Pharmacother. 2024 175 116742 10.1016/j.biopha.2024.116742 38754265
    [Google Scholar]
  90. Lourenço A.M. Faccini C.C. Costa C.A.J. Mendes G.B. Fragata Filho A.A. Evaluation of in vitro anti-Trypanosoma cruzi activity of medications benznidazole, amiodarone hydrochloride, and their combination. Rev. Soc. Bras. Med. Trop. 2018 51 1 52 56 10.1590/0037‑8682‑0285‑2017 29513842
    [Google Scholar]
  91. Silva Grijó Farani P. Iandra da Silva Ferreira B. Begum K. Treatment with benznidazole and pentoxifylline regulates microRNA transcriptomic profile in a murine model of Chagas chronic cardiomyopathy. PLoS Negl. Trop. Dis. 2023 17 3 e0011223 10.1371/journal.pntd.0011223 36972298
    [Google Scholar]
  92. Vilar-Pereira G. Resende Pereira I. de Souza Ruivo L.A. Combination chemotherapy with suboptimal doses of benznidazole and pentoxifylline sustains partial reversion of experimental Chagas’ heart disease. Antimicrob. Agents Chemother. 2016 60 7 4297 4309 10.1128/AAC.02123‑15 27161638
    [Google Scholar]
  93. Pereira R.S. Malvezi A.D. Lovo-Martins M.I. Combination therapy using benznidazole and aspirin during the acute phase of experimental Chagas disease prevents cardiovascular dysfunction and decreases typical cardiac lesions in the chronic phase. Antimicrob. Agents Chemother. 2020 64 7 e00069 e20 10.1128/AAC.00069‑20 32366719
    [Google Scholar]
  94. Carrillo I. Rabelo R.A.N. Barbosa C. Aspirin-triggered resolvin D1 reduces parasitic cardiac load by decreasing inflammation in a murine model of early chronic Chagas disease. PLoS Negl. Trop. Dis. 2021 15 11 e0009978 10.1371/journal.pntd.0009978 34784372
    [Google Scholar]
  95. García M.C. Ponce N.E. Sanmarco L.M. Manzo R.H. Jimenez-Kairuz A.F. Aoki M.P. Clomipramine and benznidazole act synergistically and ameliorate the outcome of experimental Chagas disease. Antimicrob. Agents Chemother. 2016 60 6 3700 3708 10.1128/AAC.00404‑16 27067322
    [Google Scholar]
  96. Strauss M. Rodrigues J.H.S. Lo Presti M.S. In vitro and in vivo drug combination for the treatment of Trypanosoma cruzi infection: A multivariate approach. Exp. Parasitol. 2018 189 19 27 10.1016/j.exppara.2018.04.016 29726395
    [Google Scholar]
  97. Strauss M. Lo Presti M.S. Bazán P.C. Clomipramine and benznidazole association for the treatment of acute experimental Trypanosoma cruzi infection. Parasitol. Int. 2013 62 3 293 299 10.1016/j.parint.2013.02.004 23500720
    [Google Scholar]
  98. Mendonça A.A.S. Gonçalves-Santos E. Souza-Silva T.G. Could phenothiazine-benznidazole combined chemotherapy be effective in controlling heart parasitism and acute infectious myocarditis? Pharmacol. Res. 2020 158 104907 10.1016/j.phrs.2020.104907 32416214
    [Google Scholar]
  99. Mendonça A.A.S. Gonçalves-Santos E. Souza-Silva T.G. Thioridazine aggravates skeletal myositis, systemic and liver inflammation in Trypanosoma cruzi-infected and benznidazole-treated mice. Int. Immunopharmacol. 2020 85 106611 10.1016/j.intimp.2020.106611 32447223
    [Google Scholar]
  100. Cevey Á.C. Mirkin G.A. Donato M. Treatment with Fenofibrate plus a low dose of Benznidazole attenuates cardiac dysfunction in experimental Chagas disease. Int. J. Parasitol. Drugs Drug Resist. 2017 7 3 378 387 10.1016/j.ijpddr.2017.10.003 29040909
    [Google Scholar]
  101. Grosso N.L. Alarcon M.L. Bua J. Laucella S.A. Riarte A. Fichera L. Combined treatment with benznidazole and allopurinol in mice infected with a virulent Trypanosoma cruzi isolate from Nicaragua. Parasitology 2013 140 10 1225 1233 10.1017/S0031182013000176 23507037
    [Google Scholar]
  102. Mazzeti A.L. Diniz L.F. Gonçalves K.R. Synergic effect of allopurinol in combination with nitroheterocyclic compounds against Trypanosoma cruzi. Antimicrob. Agents Chemother. 2019 63 6 e02264 e18 10.1128/AAC.02264‑18 30962342
    [Google Scholar]
  103. Rial M.S. Scalise M.L. López Alarcón M. Experimental combination therapy using low doses of benznidazole and allopurinol in mouse models of Trypanosoma cruzi chronic infection. Parasitology 2019 146 3 305 313 10.1017/S0031182018001567 30301480
    [Google Scholar]
  104. González-Herrera F. Cramer A. Pimentel P. Simvastatin attenuates endothelial activation through 15-Epi-Lipoxin A4 production in murine chronic Chagas cardiomyopathy. Antimicrob. Agents Chemother. 2017 61 3 e02137 e16 10.1128/AAC.02137‑16 27993857
    [Google Scholar]
  105. Simões-Silva M.R. De Araújo J.S. Peres R.B. Repurposing strategies for Chagas disease therapy: The effect of imatinib and derivatives against Trypanosoma cruzi. Parasitology 2019 146 8 1006 1012 10.1017/S0031182019000234 30859917
    [Google Scholar]
  106. Faúndez M. López-Muñoz R. Torres G. Buthionine sulfoximine has anti- Trypanosoma cruzi activity in a murine model of acute Chagas’ disease and enhances the efficacy of nifurtimox. Antimicrob. Agents Chemother. 2008 52 5 1837 1839 10.1128/AAC.01454‑07 18332173
    [Google Scholar]
  107. Faundez M. Pino L. Letelier P. Buthionine sulfoximine increases the toxicity of nifurtimox and benznidazole to Trypanosoma cruzi. Antimicrob. Agents Chemother. 2005 49 1 126 130 10.1128/AAC.49.1.126‑130.2005 15616285
    [Google Scholar]
  108. Domingues Santos C. Loria R.M. Rodrigues Oliveira L.G. Effects of dehydroepiandrosterone-sulfate (DHEA-S) and benznidazole treatments during acute infection of two different Trypanosoma cruzi strains. Immunobiology 2010 215 12 980 986 10.1016/j.imbio.2009.11.002 20163889
    [Google Scholar]
  109. Providello M.V. Carneiro Z.A. Portapilla G.B. Benefits of ascorbic acid in association with low-dose benznidazole in treatment of chagas disease. Antimicrob. Agents Chemother. 2018 62 9 e00514 e00518 10.1128/AAC.00514‑18 29987143
    [Google Scholar]
  110. Sayé M. Gauna L. Valera-Vera E. Reigada C. Miranda M.R. Pereira C.A. Crystal violet structural analogues identified by in silico drug repositioning present anti-Trypanosoma cruzi activity through inhibition of proline transporter TcAAAP069. PLoS Negl. Trop. Dis. 2020 14 1 e0007481 10.1371/journal.pntd.0007481 31961864
    [Google Scholar]
  111. Timm J. Bateson A. Solanki P. Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS Global Public Health 2023 3 10 e0002283 10.1371/journal.pgph.0002283 37851685
    [Google Scholar]
  112. Batista D.G.J. Batista M.M. Oliveira G.M. Combined treatment of heterocyclic analogues and benznidazole upon Trypanosoma cruziin vivo. PLoS One 2011 6 7 e22155 10.1371/journal.pone.0022155 21814568
    [Google Scholar]
  113. da Silva C.F. Batista D.G.J. Oliveira G.M. In vitro and in vivo investigation of the efficacy of arylimidamide DB1831 and its mesylated salt form--DB1965--against Trypanosoma cruzi infection. PLoS One 2012 7 1 e30356 10.1371/journal.pone.0030356 22291940
    [Google Scholar]
  114. Guedes-da-Silva F.H. Batista D.G.J. Meuser M.B. In vitro and in vivo trypanosomicidal action of novel arylimidamides against Trypanosoma cruzi. Antimicrob. Agents Chemother. 2016 60 4 2425 2434 10.1128/AAC.01667‑15 26856830
    [Google Scholar]
  115. Valdez R.H. Tonin L.T.D. Ueda-Nakamura T. In vitroand in vivo trypanocidal synergistic activity of N -butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxamide associated with benznidazole. Antimicrob. Agents Chemother. 2012 56 1 507 512 10.1128/AAC.05575‑11 22037851
    [Google Scholar]
  116. Fonseca-Berzal C. da Silva C.F. Batista D.G.J. Activity profile of two 5-nitroindazole derivatives over the moderately drug-resistant Trypanosoma cruzi Y strain (DTU TcII): In vitro and in vivo studies. Parasitology 2020 147 11 1216 1228 10.1017/S0031182020000955 32530391
    [Google Scholar]
  117. Vilas-Boas D.F. Oliveira R.R.G. Gonçalves-Santos E. 4-nitrobenzoylcoumarin potentiates the antiparasitic, anti-inflammatory and cardioprotective effects of benznidazole in a murine model of acute Trypanosoma cruzi infection. Acta Trop. 2022 228 106314 10.1016/j.actatropica.2022.106314 35038424
    [Google Scholar]
  118. Peron F. Lazarin-Bidóia D. Ud Din Z. Effects of (1 E, 4 E)-2-Methyl-1,5-bis(4-nitrophenyl)penta-1,4-dien-3-one on Trypanosoma cruzi and its combinational effect with benznidazole, ketoconazole, or fluconazole. BioMed Res. Int. 2017 2017 1 11 10.1155/2017/7254193 28620619
    [Google Scholar]
  119. Rodrigues J.H.S. Ueda-Nakamura T. Corrêa A.G. Sangi D.P. Nakamura C.V. A quinoxaline derivative as a potent chemotherapeutic agent, alone or in combination with benznidazole, against Trypanosoma cruzi. PLoS One 2014 9 1 e85706 10.1371/journal.pone.0085706 24465654
    [Google Scholar]
  120. Sesti-Costa R. Carneiro Z.A. Silva M.C. Ruthenium complex with benznidazole and nitric oxide as a new candidate for the treatment of chagas disease. PLoS Negl. Trop. Dis. 2014 8 10 e3207 10.1371/journal.pntd.0003207 25275456
    [Google Scholar]
  121. Aguilera E. Varela J. Serna E. Looking for combination of benznidazole and Trypanosoma cruzi-triosephosphate isomerase inhibitors for Chagas disease treatment. Mem. Inst. Oswaldo Cruz 2018 113 3 153 160 10.1590/0074‑02760170267 29412353
    [Google Scholar]
  122. De Araújo J.S. da Silva P.B. Batista M.M. Evaluation of phthalazinone phosphodiesterase inhibitors with improved activity and selectivity against Trypanosoma cruzi. J. Antimicrob. Chemother. 2020 75 4 958 967 10.1093/jac/dkz516 31860098
    [Google Scholar]
  123. González S. Wall R.J. Thomas J. Short-course combination treatment for experimental chronic Chagas disease. Sci. Transl. Med. 2023 15 726 eadg8105 10.1126/scitranslmed.adg8105 38091410
    [Google Scholar]
  124. Kim K.J. Liu X. Komabayashi T. Jeong S.I. Selli S. Natural products for infectious diseases. Evid. Based Complement. Alternat. Med. 2016 2016 1 9459047 10.1155/2016/9459047 27738448
    [Google Scholar]
  125. Upadhyay H.C. Srivastava S.K. Natural products inspired drug discovery for infectious diseases. Med. Chem. 2024 20 6 555 556 10.2174/157340642006240507100418
    [Google Scholar]
  126. Hemaiswarya S. Kruthiventi A.K. Doble M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008 15 8 639 652 10.1016/j.phymed.2008.06.008 18599280
    [Google Scholar]
  127. Imperador C.H.L. Scarim C.B. Bosquesi P.L. Resveratrol and curcumin for Chagas disease treatment—A systematic review. Pharmaceuticals 2022 15 5 609 10.3390/ph15050609 35631435
    [Google Scholar]
  128. Rani R. Sethi K. Kumar S. Varma R.S. Kumar R. Natural naphthoquinones and their derivatives as potential drug molecules against trypanosome parasites. Chem. Biol. Drug Des. 2022 100 6 786 817 10.1111/cbdd.14122 35852920
    [Google Scholar]
  129. Tarleton R.L. Effective drug discovery in Chagas disease. Trends Parasitol. 2023 39 6 423 431 10.1016/j.pt.2023.03.015 37024318
    [Google Scholar]
  130. Teixeira V.L. Lima J.C.R. Lechuga G.C. Natural products from marine red and brown algae against Trypanosoma cruzi. Rev. Bras. Farmacogn. 2019 29 6 735 738 10.1016/j.bjp.2019.08.003
    [Google Scholar]
  131. Tullius Scotti M. Scotti L. Ishiki H. Natural products as a source for antileishmanial and antitrypanosomal agents. Comb. Chem. High Throughput Screen. 2016 19 7 537 553 10.2174/1386207319666160506123921 27682867
    [Google Scholar]
  132. Izumi E. Ueda-Nakamura T. Dias Filho B.P. Veiga Júnior V.F. Nakamura C.V. Natural products and Chagas’ disease: A review of plant compounds studied for activity against Trypanosoma cruzi. Nat. Prod. Rep. 2011 28 4 809 823 10.1039/c0np00069h 21290079
    [Google Scholar]
  133. Branquinho R.T. de Mello C.G.C. Oliveira M.T. Lychnopholide in poly(d, l -Lactide)- Block -polyethylene glycol nanocapsules cures infection with a drug-resistant Trypanosoma cruzi strain at acute and chronic phases. Antimicrob. Agents Chemother. 2020 64 4 e01937 e19 10.1128/AAC.01937‑19 31988096
    [Google Scholar]
  134. Milagre M.M. Branquinho R.T. Gonçalves M.F. Activity of the sesquiterpene lactone goyazensolide against Trypanosoma cruzi in vitro and in vivo. Parasitology 2020 147 1 108 119 10.1017/S0031182019001276 31455451
    [Google Scholar]
  135. Mishina Y.V. Krishna S. Haynes R.K. Meade J.C. Artemisinins inhibit Trypanosoma cruzi and Trypanosoma brucei rhodesiense in vitro growth. Antimicrob. Agents Chemother. 2007 51 5 1852 1854 10.1128/AAC.01544‑06 17339374
    [Google Scholar]
  136. Varela J. Cerecetto H. González M. Slowed development of natural products for Chagas disease, how to move forward? In: Chagas Disease - Basic Investigations and Challenges. InTech 2018 10.5772/intechopen.77234
    [Google Scholar]
  137. Meira C.S. Guimarães E.T. dos Santos J.A.F. In vitro and in vivo antiparasitic activity of Physalis angulata L. concentrated ethanolic extract against Trypanosoma cruzi. Phytomedicine 2015 22 11 969 974 10.1016/j.phymed.2015.07.004 26407938
    [Google Scholar]
  138. Selener M.G. Borgo J. Sarratea M.B. Trypanocidal and anti-inflammatory effects of three ent-kaurane diterpenoids from Gymnocoronis spilanthoides var. subcordata (Asteraceae). Pharmaceutics 2024 16 3 415 10.3390/pharmaceutics16030415 38543309
    [Google Scholar]
  139. Novaes R.D. Sartini M.V.P. Rodrigues J.P.F. Curcumin enhances the anti-trypanosoma cruzi activity of benznidazole-based chemotherapy in acute experimental chagas disease. Antimicrob. Agents Chemother. 2016 60 6 3355 3364 10.1128/AAC.00343‑16 27001816
    [Google Scholar]
  140. Hernández M. Wicz S. Pérez Caballero E. Santamaría M.H. Corral R.S. Dual chemotherapy with benznidazole at suboptimal dose plus curcumin nanoparticles mitigates Trypanosoma cruzi-elicited chronic cardiomyopathy. Parasitol. Int. 2021 81 102248 10.1016/j.parint.2020.102248 33238215
    [Google Scholar]
  141. Meira C.S. Barbosa-Filho J.M. Lanfredi-Rangel A. Guimarães E.T. Moreira D.R.M. Soares M.B.P. Antiparasitic evaluation of betulinic acid derivatives reveals effective and selective anti-Trypanosoma cruzi inhibitors. Exp. Parasitol. 2016 166 108 115 10.1016/j.exppara.2016.04.007 27080160
    [Google Scholar]
  142. Peres R.B. Batista M.M. Bérenger A.L.R. Camillo F.C. Figueiredo M.R. Soeiro M.N.C. Antiparasitic Activity of Plumbago auriculata Extracts and Its Naphthoquinone Plumbagin against Trypanosoma cruzi. Pharmaceutics 2023 15 5 1535 10.3390/pharmaceutics15051535 37242777
    [Google Scholar]
  143. Piñeiro M. Ortiz J.E. Spina Zapata R.M. Antiparasitic activity of Hippeastrum species and synergistic interaction between montanine and benznidazole against Trypanosoma cruzi. Microorganisms 2023 11 1 144 10.3390/microorganisms11010144 36677436
    [Google Scholar]
  144. Sarto M.P.M. Lucas da Silva H.F. de Souza Fernandes N. de Abreu A.P. G. Zanusso Junior de Ornelas Toledo M.J. Essential oils from Syzygium aromaticum and Zingiber officinale, administered alone or in combination with benznidazole, reduce the parasite load in mice orally inoculated with Trypanosoma cruzi II. BMC Complement Med Ther 2021 21 1 77 10.1186/s12906‑021‑03248‑8 33632196
    [Google Scholar]
  145. G. Zanusso Junior Massago M. Kian D. Toledo M.J.O. Efficacy of essential oil of Syzygium aromaticum alone and in combination with benznidazole on murine oral infection with Trypanosoma cruzi IV. Exp. Parasitol. 2018 185 92 97 10.1016/j.exppara.2018.01.002 29305891
    [Google Scholar]
  146. Fracasso M. Reichert K. Bottari N.B. Involvement of ectonucleotidases and purinergic receptor expression during acute Chagas disease in the cortex of mice treated with resveratrol and benznidazole. Purinergic Signal. 2021 17 3 493 502 10.1007/s11302‑021‑09803‑9 34302569
    [Google Scholar]
  147. Ortiz J.E. Piñeiro M. Martinez-Peinado N. Candimine from Hippeastrum escoipense (Amaryllidaceae): Anti-Trypanosoma cruzi activity and synergistic effect with benznidazole. Phytomedicine 2023 114 154788 10.1016/j.phymed.2023.154788 37037085
    [Google Scholar]
  148. Jones K.M. Mangin E.N. Reynolds C.L. Vaccine-linked chemotherapy improves cardiac structure and function in a mouse model of chronic Chagas disease. Front. Cell. Infect. Microbiol. 2023 13 1106315 10.3389/fcimb.2023.1106315 36844399
    [Google Scholar]
  149. Liu Z. Ulrich vonBargen R. Kendricks A.L. Localized cardiac small molecule trajectories and persistent chemical sequelae in experimental Chagas disease. Nat. Commun. 2023 14 1 6769 10.1038/s41467‑023‑42247‑w 37880260
    [Google Scholar]
  150. Wen J.J. Gupta S. Guan Z. Phenyl-alpha-tert-butyl-nitrone and benzonidazole treatment controlled the mitochondrial oxidative stress and evolution of cardiomyopathy in chronic chagasic Rats. J. Am. Coll. Cardiol. 2010 55 22 2499 2508 10.1016/j.jacc.2010.02.030 20510218
    [Google Scholar]
  151. Morillo C.A. Waskin H. Sosa-Estani S. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzi carriers. J. Am. Coll. Cardiol. 2017 69 8 939 947 10.1016/j.jacc.2016.12.023 28231946
    [Google Scholar]
  152. Perez-Mazliah D.E. Alvarez M.G. Cooley G. Sequential combined treatment with allopurinol and benznidazole in the chronic phase of Trypanosoma cruzi infection: A pilot study. J. Antimicrob. Chemother. 2013 68 2 424 437 10.1093/jac/dks390 23104493
    [Google Scholar]
  153. Strauss M. Lo Presti M.S. Ramírez J.C. Differential tissue distribution of discrete typing units after drug combination therapy in experimental Trypanosoma cruzi mixed infection. Parasitology 2021 148 13 1595 1601 10.1017/S0031182021001281 35060468
    [Google Scholar]
  154. de Oliveira Filho G.B. Cardoso M.V.O. Espíndola J.W.P. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur. J. Med. Chem. 2017 141 346 361 10.1016/j.ejmech.2017.09.047 29031078
    [Google Scholar]
  155. Gonçalves-Santos E. Vilas-Boas D.F. Diniz L.F. Sesquiterpene lactone potentiates the immunomodulatory, antiparasitic and cardioprotective effects on anti-Trypanosoma cruzi specific chemotherapy. Int. Immunopharmacol. 2019 77 105961 10.1016/j.intimp.2019.105961 31685438
    [Google Scholar]
  156. Sbaraglini M.L. Bellera C.L. Quarroz Braghini J. Combined therapy with Benznidazole and repurposed drugs Clofazimine and Benidipine for chronic Chagas disease. Eur. J. Med. Chem. 2019 184 111778 10.1016/j.ejmech.2019.111778 31630056
    [Google Scholar]
  157. Cardoso-Santos C Ferreira De Almeida Fiuza L França Da Silva C Mazzeti AL Donola Girão R Melo De Oliveira G 7-Aryl-7- deazapurine 3′-deoxyribonucleoside derivative as a novel lead for Chagas’ disease therapy: In vitro and in vivo pharmacology JACAntimicrobial Resistance 2021 3 5 dlab168 10.1093/jacamr/dlab168 34806007
    [Google Scholar]
  158. Urbina J.A. Lazardi K. Marchan E. Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: In vitro and in vivo studies. Antimicrob. Agents Chemother. 1993 37 3 580 591 10.1128/AAC.37.3.580 8460926
    [Google Scholar]
  159. Maldonado R.A. Molina J. Payares G. Urbina J.A. Experimental chemotherapy with combinations of ergosterol biosynthesis inhibitors in murine models of Chagas’ disease. Antimicrob. Agents Chemother. 1993 37 6 1353 1359 10.1128/AAC.37.6.1353 8328786
    [Google Scholar]
  160. Benaim G. Sanders J.M. Garcia-Marchán Y. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J. Med. Chem. 2006 49 3 892 899 10.1021/jm050691f 16451055
    [Google Scholar]
  161. Veiga-Santos P. Barrias E.S. Santos J.F.C. Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. Int. J. Antimicrob. Agents 2012 40 1 61 71 10.1016/j.ijantimicag.2012.03.009 22591838
    [Google Scholar]
  162. Sass G. Madigan R.T. Joubert L.M. A combination of itraconazole and amiodarone is highly effective against Trypanosoma cruzi infection of human stem cell–derived cardiomyocytes. Am. J. Trop. Med. Hyg. 2019 101 2 383 391 10.4269/ajtmh.19‑0023 31219005
    [Google Scholar]
  163. Madigan R. Majoy S. Ritter K. Investigation of a combination of amiodarone and itraconazole for treatment of American trypanosomiasis (Chagas disease) in dogs. J. Am. Vet. Med. Assoc. 2019 255 3 317 329 10.2460/javma.255.3.317 31298647
    [Google Scholar]
  164. Machado Y.A. Bahia M.T. Caldas I.S. Amlodipine increases the therapeutic potential of ravuconazole upon Trypanosoma cruzi infection. Antimicrob. Agents Chemother. 2020 64 8 e02497 e19 10.1128/AAC.02497‑19 32423960
    [Google Scholar]
  165. Rocha-Hasler M. de Oliveira G.M. da Gama A.N. Combination with tomatidine improves the potency of posaconazole against Trypanosoma cruzi. Front. Cell. Infect. Microbiol. 2021 11 617917 10.3389/fcimb.2021.617917 33747979
    [Google Scholar]
  166. Bailly C. The steroidal alkaloids α-tomatine and tomatidine: Panorama of their mode of action and pharmacological properties. Steroids 2021 176 108933 10.1016/j.steroids.2021.108933 34695457
    [Google Scholar]
  167. Kuehn C.C. Rodrigues Oliveira L.G. Santos C.D. Melatonin and dehydroepiandrosterone combination: Does this treatment exert a synergistic effect during experimental Trypanosoma cruzi infection? J. Pineal Res. 2009 47 3 253 259 10.1111/j.1600‑079X.2009.00708.x 19732300
    [Google Scholar]
  168. Nenezic N. Kostic S. Strac D.S. Dehydroepiandrosterone (DHEA): Pharmacological effects and potential therapeutic application. Mini Rev. Med. Chem. 2023 23 8 941 952 10.2174/1389557522666220919125817 36121077
    [Google Scholar]
  169. Brazão V. Filipin M.D.V. Santello F.H. Immunomodulatory properties and anti-apoptotic effects of zinc and melatonin in an experimental model of chronic Chagas disease. Immunobiology 2015 220 5 626 633 10.1016/j.imbio.2014.11.018 25604665
    [Google Scholar]
  170. Santello F.H. Frare E.O. Dos Santos C.D. Melatonin treatment reduces the severity of experimental Trypanosoma cruzi infection. J. Pineal Res. 2007 42 4 359 363 10.1111/j.1600‑079X.2007.00427.x 17439552
    [Google Scholar]
  171. Oliveira L.G.R. Kuehn C.C. Santos C.D. Toldo M.P.A. do PRADO JC. Enhanced protection by melatonin and meloxicam combination in experimental infection by Trypanosoma cruzi. Parasite Immunol. 2010 32 4 245 251 10.1111/j.1365‑3024.2009.01185.x 20398224
    [Google Scholar]
  172. Cristina Desoti V. Lazarin-Bidóia D. Martins Ribeiro F. The combination of vitamin K3 and vitamin C has synergic activity against forms of trypanosoma cruzi through a redox imbalance process. PLoS One 2015 10 12 e0144033 10.1371/journal.pone.0144033 26641473
    [Google Scholar]
  173. Rottenberg M.E. Masocha W. Ferella M. Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. J. Infect. Dis. 2005 192 9 1658 1665 10.1086/496896 16206083
    [Google Scholar]
  174. do Carmo G.M. Doleski P.H. de Sá M.F. Treatment with 3′-deoxyadenosine and deoxycoformycin in mice infected by Trypanosoma cruzi and its side effect on purinergic enzymes. Microb. Pathog. 2017 113 51 56 10.1016/j.micpath.2017.10.030 29051060
    [Google Scholar]
  175. Aguilera E. Sánchez C. Cruces M.E. Preclinical studies and drug combination of low-cost molecules for Chagas disease. Pharmaceuticals 2022 16 1 20 10.3390/ph16010020 36678516
    [Google Scholar]
  176. Morillo C.A. Marin-Neto J.A. Avezum A. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N. Engl. J. Med. 2015 373 14 1295 1306 10.1056/NEJMoa1507574 26323937
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775358257250901043626
Loading
/content/journals/cdrr/10.2174/0125899775358257250901043626
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test