Skip to content
2000
image of Advancements in TD-DFT: A Comprehensive Review

Abstract

Time-Dependent Density Functional Theory (TDDFT) has become a key computational technique for investigating the electronic excited states of molecules. Due to its high computational efficiency, it is used for a wide range of systems, including elucidating biological structures and small molecules. The approach strikes a balance between computing cost and precision, making it a flexible tool that can be used in many different scientific fields, such as materials science, physics, and chemistry. The technique is excellent at predicting electronic absorption spectra, which makes it easier to examine the optical characteristics of molecular systems. Nevertheless, TD-DFT has limits, most notably in its ability to adequately describe some excitation types, such as tightly coupled systems and charge transfer. In order to increase accuracy, especially in situations where ordinary functionals are insufficient, the need for hybrid functionals that combine DFT and Hartree-Fock exchange is underlined. TD-DFT is nevertheless an effective method for examining the energy and characteristics of electronic excitations, despite these difficulties. When using TD-DFT, researchers should be aware of its limitations and take into account supplementary techniques to gain a thorough understanding of molecular behavior. The benefits of TD-DFT are discussed in this paper, including its effectiveness, wide range of applications, and capability to incorporate solvent effects. With further developments, TD-DFT is expected to be an essential tool for deciphering electrical structural complexities and advancing theoretical chemistry and materials science.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775385222251001062232
2025-10-16
2025-12-05
Loading full text...

Full text loading...

References

  1. Kohn W. Density functional theory. Conference Proceedings–Italian Physical Society 1996; Vol.49: 561-72.
    [Google Scholar]
  2. Kohn W. Sham L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965 140 4A A1133 A1138 10.1103/PhysRev.140.A1133
    [Google Scholar]
  3. Kohn W. Density-functional theory for excited states in a quasi-local-density approximation. Phys. Rev. A Gen. Phys. 1986 34 2 737 741 10.1103/PhysRevA.34.737 9897330
    [Google Scholar]
  4. Van Gisbergen S.J. Baerends E.J. Time-dependent density functional resonance theory. Phys. Lett. A 2003 511 517
    [Google Scholar]
  5. Domagała M. Jabłoński M. Dubis A.T. Zabel M. Pfitzner A. Palusiak M. Testing of exchange-correlation functionals of DFT for a reliable description of the electron density distribution in organic molecules. Int. J. Mol. Sci. 2022 23 23 14719 10.3390/ijms232314719 36499046
    [Google Scholar]
  6. Sholl DS Steckel JA Density functional theory: A practical introduction. 2022 10.1002/9780470447710
    [Google Scholar]
  7. Yang Z. Li Y. Ullrich C.A. A minimal model for excitons within time-dependent density-functional theory. J. Chem. Phys. 2012 137 1 014513 10.1063/1.4730031 22779671
    [Google Scholar]
  8. Koch W. Holthausen M.C. A Chemist’s guide to density functional theory. Weinheim Wiley-VCH 2001 10.1002/3527600043
    [Google Scholar]
  9. Ullrich C.A. Time-dependent density-functional theory: Concepts and applications. Oxford Oxford University Press 2011 10.1093/acprof:oso/9780199563029.001.0001
    [Google Scholar]
  10. Ebner C. Saam W.F. Stroud D. Density-functional theory of simple classical fluids. I. Surfaces. Phys. Rev. A Gen. Phys. 1976 14 6 2264 2273 10.1103/PhysRevA.14.2264
    [Google Scholar]
  11. Evans R. Density functional in the theory of non-uniform fluids. Fundamentals of Inhomogeneous Fluids. Dordrecht Springer 1992 85 176
    [Google Scholar]
  12. Keith J.A. Vassilev-Galindo V. Cheng B. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 2021 121 16 9816 9872 10.1021/acs.chemrev.1c00107 34232033
    [Google Scholar]
  13. Filatov M. Ensemble DFT approach to excited states of strongly correlated molecular systems. Top. Curr. Chem. 2016 368 97 124 10.1007/128_2015_630
    [Google Scholar]
  14. Lu Z. Computational discovery of energy materials in the era of big data and machine learning: A critical review. Materials Reports: Energy 2021 1 3 100047 10.1016/j.matre.2021.100047
    [Google Scholar]
  15. Isahak W.N. Al-Amiery A. Catalyst’s driving efficiency and innovation in thermal reactions: A comprehensive review. Green Technol Sustain 2024 100078 10.1016/j.gtsus.2024.100078
    [Google Scholar]
  16. Tandon H. Chakraborty T. Suhag V. A brief review on importance of DFT in drug design. Res Med Eng Stud 2019 39 46 55
    [Google Scholar]
  17. Kunduracioglu A.A. Computational (DFT) Study on the Anti-Malarial Drug: Lumefantrine. Appl. Sci. 2023 13 16 9219 10.3390/app13169219
    [Google Scholar]
  18. Guan H. Sun H. Zhao X. Application of density functional theory to molecular engineering of pharmaceutical formulations. Int. J. Mol. Sci. 2025 26 7 3262 10.3390/ijms26073262 40244098
    [Google Scholar]
  19. Rosales-López A. López-Castillo G. Sandoval-Ramírez J. Terán J. Carrasco-Carballo A. Correlation between molecular docking and the stabilizing interaction of homo-lumo: Spirostans in chk1 and chk2, an in silico cancer approach. Int. J. Mol. Sci. 2024 25 16 8588 10.3390/ijms25168588 39201276
    [Google Scholar]
  20. Verma S. Dubey A. Singh R. Tayade R. Mishra V.K. In‐Silico screening, molecular dynamics, and dft analysis of zinc and chembl library compounds for sars‐cov‐2 main protease inhibition. ChemistrySelect 2025 10 4 e202403269 10.1002/slct.202403269
    [Google Scholar]
  21. Gross A.E. Dobson J.F. Petersilka M. Density functional theory of time-dependent phenomena. Density Functional Theory II. Relativistic and Time-Dependent Extensions 2005 81 172
    [Google Scholar]
  22. Andrade X. Alberdi-Rodriguez J. Strubbe D.A. Time-dependent density-functional theory in massively parallel computer architectures: The octopus project. J. Phys. Condens. Matter 2012 24 23 233202 10.1088/0953‑8984/24/23/233202 22562950
    [Google Scholar]
  23. Shankar R. Principles of Quantum Mechanics. Berlin: Springer; 2012 Dec 6. Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Phys. Rev. 1964 136 3B B864 B871 10.1103/PhysRev.136.B864
    [Google Scholar]
  24. Mahan G.D. Many-Particle Physics. Cham 2013
    [Google Scholar]
  25. Casida M.E. Time-dependent density-functional theory for molecules and molecular solids. J. Mol. Struct. THEOCHEM 2009 914 1-3 3 18 10.1016/j.theochem.2009.08.018
    [Google Scholar]
  26. Altland A. Simons B.D. Condensed matter field theory. Cambridge University Press 2010 10.1017/CBO9780511789984
    [Google Scholar]
  27. Castro A. Appel H. Oliveira M. octopus: a tool for the application of time‐dependent density functional theory. Phys. Status Solidi, B Basic Res. 2006 243 11 2465 2488 10.1002/pssb.200642067
    [Google Scholar]
  28. Englisch H. Englisch R. Hohenberg-Kohn theorem and non-V-representable densities. Physica A 1983 121 1-2 253 268 10.1016/0378‑4371(83)90254‑6
    [Google Scholar]
  29. Van Leeuwen R. Dahlen N.E. An introduction to nonequilibrium green functions. Thesis, Radboud Universiteit 2005
    [Google Scholar]
  30. Baerends EJ Perspective on “Self consistent equations including exchange and correlation effects” Kohn W, Sham LJ (1965). TheoreticalChemistry Accounts 2001; New Century Issue: 265-9. 10.1007/s002140100260
    [Google Scholar]
  31. Perdew J.P. Schmidt K. Jacob’s ladder of density functional approximations for the exchange-correlation energy. AIP Conf Proc 2001 577 1 20 10.1063/1.1390175
    [Google Scholar]
  32. Nelson T.R. White A.J. Bjorgaard J.A. Non-adiabatic excited-state molecular dynamics: Theory and applications for modeling photophysics in extended molecular materials. Chem. Rev. 2020 120 4 2215 2287 10.1021/acs.chemrev.9b00447 32040312
    [Google Scholar]
  33. Posenitskiy E. Non-adiabatic molecular dynamics of PAH-related complexes. Thesis, Doctoral dissertation, University Paul Sabatier- Toulouse III 2021
    [Google Scholar]
  34. Huix-Rotllant M. Time-dependent density functional theory. Quantum Chemistry and Dynamics of Excited States: Methods and Applications. Wiley-VCH Hoboken, New Jersey González L. Lindh R. 2020 15 46 10.1002/9781119417774.ch2
    [Google Scholar]
  35. Huix-Rotllant M. Casida M.E. Many-Body Perturbation Theory and Time-Dependent Density-Functional Theory: MBPT Insights about what is Missing in, and Corrections to, the TD-DFT Adiabatic Approximation. Chem. Phys. 2010 1008 14 78
    [Google Scholar]
  36. Omar K.A. Hasnaoui K. de la Lande A. First-principles simulations of biological molecules subjected to ionizing radiation. Annu. Rev. Phys. Chem. 2021 72 1 445 465 10.1146/annurev‑physchem‑101419‑013639 33878897
    [Google Scholar]
  37. Iqbal M.A. Ashraf N. Shahid W. Afzal D. Idrees F. Ahmad R. Fundamentals of density functional theory: Recent developments, challenges and future horizons. Density Functional Theory-Recent Advances, New Perspectives and Applications. London, UK IntechOpen 2021
    [Google Scholar]
  38. Runge E. Gross E.K.U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 1984 52 12 997 1000 10.1103/PhysRevLett.52.997
    [Google Scholar]
  39. Dreizler R.M. Gross E.K. Density functional theory: An approach to the quantum many-body problem. Cham Springer 2012
    [Google Scholar]
  40. Marques M.A.L. Gross E.K.U. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 2004 55 1 427 455 10.1146/annurev.physchem.55.091602.094449 15117259
    [Google Scholar]
  41. Cardeynaels T. Paredis S. Deckers J. Finding the optimal exchange–correlation functional to describe the excited state properties of push–pull organic dyes designed for thermally activated delayed fluorescence. Phys. Chem. Chem. Phys. 2020 22 28 16387 16399 10.1039/D0CP02409K 32657285
    [Google Scholar]
  42. Smith J.C. Sagredo F. Burke K. Warming up density functional theory. Frontiers of Quantum Chemistry. Singapore Springer 2018 249 271 10.1007/978‑981‑10‑5651‑2_11
    [Google Scholar]
  43. Casida M.E. Wesołowski T.A. Generalization of the Kohn–Sham equations with constrained electron density formalism and its time‐dependent response theory formulation. Int. J. Quantum Chem. 2004 96 6 577 588 10.1002/qua.10744
    [Google Scholar]
  44. Ullrich C.A. Kohn W. Kohn-Sham theory for ground-state ensembles. Phys. Rev. Lett. 2001 87 9 093001 10.1103/PhysRevLett.87.093001 11531563
    [Google Scholar]
  45. Maitra N.T. Perspective: Fundamental aspects of time-dependent density functional theory. J. Chem. Phys. 2016 144 22 220901 10.1063/1.4953039 27305987
    [Google Scholar]
  46. Schirmer J. Dreuw A. Critique of the foundations of time-dependent density-functional theory. Phys. Rev. A 2007 75 2 022513 10.1103/PhysRevA.75.022513
    [Google Scholar]
  47. Vignale G. Time-dependent current density functional theory. Fundamentals of Time-Dependent Density Functional Theory. Marques M. Maitra N. Nogueira F. Gross E. Rubio A. 2012 101 124 10.1007/978‑3‑642‑23518‑4_24
    [Google Scholar]
  48. Maitra N.T. van Leeuwen R. Burke K. Comment on “Critique of the foundations of time-dependent density-functional theory”. Phys. Rev. A 2008 78 5 056501 10.1103/PhysRevA.78.056501
    [Google Scholar]
  49. Marques M.A. Marques M. Time-dependent density functional theory. Berlin Springer 2006 10.1007/b11767107
    [Google Scholar]
  50. Marques M.A. Gross E.K. Time-dependent density functional theory. A Primer in Density Functional Theory. Berlin, Heidelberg Springer 2003 144 184 10.1007/3‑540‑37072‑2_4
    [Google Scholar]
  51. Marques M.A. Maitra N.T. Nogueira F.M. Gross E.K. Rubio A. Fundamentals of Time-Dependent Density Functional Theory. Berlin, Heidelberg Springer 2012 10.1007/978‑3‑642‑23518‑4
    [Google Scholar]
  52. Ziegler T. Krykunov M. Cullen J. The implementation of a self-consistent constricted variational density functional theory for the description of excited states. J. Chem. Phys. 2012 136 12 124107 10.1063/1.3696967 22462835
    [Google Scholar]
  53. Nottoli M. Bondanza M. Mazzeo P. QM/AMOEBA description of properties and dynamics of embedded molecules. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2023 13 6 e1674 10.1002/wcms.1674
    [Google Scholar]
  54. Dreuw A. Head-Gordon M. Single-reference ab initio methods for the calculation of excited states of large molecules. Chem. Rev. 2005 105 11 4009 4037 10.1021/cr0505627 16277369
    [Google Scholar]
  55. de Wergifosse M. Grimme S. Perspective on simplified quantum chemistry methods for excited states and response properties. J. Phys. Chem. A 2021 125 18 3841 3851 10.1021/acs.jpca.1c02362 33928774
    [Google Scholar]
  56. Krykunov M. Grimme S. Ziegler T. Accurate theoretical description of the 1La and 1Lb excited states in acenes using the all-order constricted variational density functional theory method and the local density approximation. J. Chem. Theory Comput. 2012 8 11 4434 4440 10.1021/ct300372x 26605603
    [Google Scholar]
  57. Casida M.E. Huix-Rotllant M. Progress in time-dependent density-functional theory. Annu. Rev. Phys. Chem. 2012 63 1 287 323 10.1146/annurev‑physchem‑032511‑143803 22242728
    [Google Scholar]
  58. Conti I. Cerullo G. Nenov A. Garavelli M. Ultrafast spectroscopy of photoactive molecular systems from first principles: Where we stand today and where we are going. J. Am. Chem. Soc. 2020 142 38 16117 16139 10.1021/jacs.0c04952 32841559
    [Google Scholar]
  59. Spiegelman F. Tarrat N. Cuny J. Density-functional tight-binding: Basic concepts and applications to molecules and clusters. Adv. Phys. X 2020 5 1 1710252 10.1080/23746149.2019.1710252 33154977
    [Google Scholar]
  60. Guido C.A. Cortona P. Mennucci B. Adamo C. On the metric of charge transfer molecular excitations: A simple chemical descriptor. J. Chem. Theory Comput. 2013 9 7 3118 3126 10.1021/ct400337e 26583991
    [Google Scholar]
  61. Bowman D.N. Asher J.C. Fischer S.A. Cramer C.J. Govind N. Excited-state absorption in tetrapyridyl porphyrins: Comparing real-time and quadratic-response time-dependent density functional theory. Phys. Chem. Chem. Phys. 2017 19 40 27452 27462 10.1039/C7CP04567K 28975162
    [Google Scholar]
  62. Chen J. Brooks C.L. Khandogin J. Recent advances in implicit solvent-based methods for biomolecular simulations. Curr. Opin. Struct. Biol. 2008 18 2 140 148 10.1016/j.sbi.2008.01.003 18304802
    [Google Scholar]
  63. Kleinjung J. Fraternali F. Design and application of implicit solvent models in biomolecular simulations. Curr. Opin. Struct. Biol. 2014 25 100 126 134 10.1016/j.sbi.2014.04.003 24841242
    [Google Scholar]
  64. Barbault F. Maurel F. Simulation with quantum mechanics/molecular mechanics for drug discovery. Expert Opin. Drug Discov. 2015 10 10 1047 1057 10.1517/17460441.2015.1076389 26289577
    [Google Scholar]
  65. Guo H. Gresh N. Roques B.P. Salahub D.R. Many-body effects in systems of peptide hydrogen-bonded networks and their contributions to ligand binding: A comparison of the performances of DFT and polarizable molecular mechanics. J. Phys. Chem. B 2000 104 41 9746 9754 10.1021/jp0012247
    [Google Scholar]
  66. Cramer C.J. Truhlar D.G. Continuum solvation models: Classical and quantum mechanical implementations. Reviews in Computational Chemistry. Wiley 1995 Vol. 6 1 91 10.1002/9780470125830.ch1
    [Google Scholar]
  67. Patel S. Brooks C.L. Fluctuating charge force fields: Recent developments and applications from small molecules to macromolecular biological systems. Mol. Simul. 2006 32 3-4 231 249 10.1080/08927020600726708
    [Google Scholar]
  68. van Leeuwen R. Causality and symmetry in time-dependent density-functional theory. Phys. Rev. Lett. 1998 80 6 1280 1283 10.1103/PhysRevLett.80.1280
    [Google Scholar]
  69. Vignale G. Real-time resolution of the causality paradox of time-dependent density-functional theory. Phys. Rev. A 2008 77 6 062511 10.1103/PhysRevA.77.062511
    [Google Scholar]
  70. Schirmer J. Dreuw A. Reply to “Comment on ‘Critique of the foundations of time-dependent density-functional theory’ ”. Phys. Rev. A 2008 78 5 056502 10.1103/PhysRevA.78.056502
    [Google Scholar]
  71. Maitra N.T. Burke K. Demonstration of initial-state dependence in time-dependent density-functional theory. Phys. Rev. A 2001 63 4 042501 10.1103/PhysRevA.63.042501
    [Google Scholar]
  72. Schirmer J. Reply to "Comment on 'Modifying the variational principle in the action-integral-functional derivation of timedependent density functional theory'". arXiv 2011 1105.2718 10.48550/arXiv.1105.2718
    [Google Scholar]
  73. Borrelli W.R. Liu X. Schwartz B.J. How the choice of exchange–correlation functional affects DFT-based simulations of the hydrated electron. J. Chem. Phys. 2025 162 11 110901 10.1063/5.0253369 40105130
    [Google Scholar]
  74. Kresse G. Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996 6 1 15 50 10.1016/0927‑0256(96)00008‑0
    [Google Scholar]
  75. Frisch M.E. Trucks G.W. Schlegel H.B. Gaussian 16, Revision C. 01. Wallingford CT 2016 3
    [Google Scholar]
  76. Frisch M.J. Trucks G.W. Schlegel H.B. Gaussian 16, Revision C. 01. Wallingford CT 2016 3 2016
    [Google Scholar]
  77. Gonze X. Ghosez P. Godby R.W. Density-polarization functional theory of the response of a periodic insulating solid to an electric field. Phys. Rev. Lett. 1995 74 20 4035 4038 10.1103/PhysRevLett.74.4035 10058396
    [Google Scholar]
  78. Vignale G. Kohn W. Current-dependent exchange-correlation potential for dynamical linear response theory. Phys. Rev. Lett. 1996 77 10 2037 2040 10.1103/PhysRevLett.77.2037 10061841
    [Google Scholar]
  79. Hirata S. Ivanov S. Grabowski I. Bartlett R.J. Time-dependent density functional theory employing optimized effective potentials. J. Chem. Phys. 2002 116 15 6468 6481 10.1063/1.1460869
    [Google Scholar]
  80. van Leeuwen R. The Sham-Schlüter equation in time-dependent density-functional theory. Phys. Rev. Lett. 1996 76 19 3610 3613 10.1103/PhysRevLett.76.3610 10061011
    [Google Scholar]
  81. Görling A. Exact exchange kernel for time-dependent density-functional theory. Int. J. Quantum Chem. 1998 69 3 265 277 10.1002/(SICI)1097‑461X(1998)69:3<265:AID‑QUA6>3.0.CO;2‑T
    [Google Scholar]
  82. Maitra N.T. Zhang F. Cave R.J. Burke K. Double excitations within time-dependent density functional theory linear response. J. Chem. Phys. 2004 120 13 5932 5937 10.1063/1.1651060 15267474
    [Google Scholar]
  83. Li X. Govind N. Isborn C. DePrince A.E. Lopata K. Real-time time-dependent electronic structure theory. Chem. Rev. 2020 120 18 9951 9993 10.1021/acs.chemrev.0c00223 32813506
    [Google Scholar]
  84. Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012 2 1 73 78 10.1002/wcms.81
    [Google Scholar]
  85. Valiev M. Bylaska E.J. Govind N. NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 2010 181 9 1477 1489 10.1016/j.cpc.2010.04.018
    [Google Scholar]
  86. Ahlrichs R. Bär M. Häser M. Horn H. Kölmel C. Electronic structure calculations on workstation computers: The program system turbomole. Chem. Phys. Lett. 1989 162 3 165 169 10.1016/0009‑2614(89)85118‑8
    [Google Scholar]
  87. Schmidt M.W. Baldridge K.K. Boatz J.A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993 14 11 1347 1363 10.1002/jcc.540141112
    [Google Scholar]
  88. Shao Y. Molnar L.F. Jung Y. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 2006 8 27 3172 3191 10.1039/B517914A 16902710
    [Google Scholar]
  89. Morton S.M. Silverstein D.W. Jensen L. Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 2011 111 6 3962 3994 10.1021/cr100265f 21344862
    [Google Scholar]
  90. Goh G.B. Hodas N.O. Vishnu A. Deep learning for computational chemistry. J. Comput. Chem. 2017 38 16 1291 1307 10.1002/jcc.24764 28272810
    [Google Scholar]
  91. Kilina S. Kilin D. Tretiak S. Light-driven and phonon-assisted dynamics in organic and semiconductor nanostructures. Chem. Rev. 2015 115 12 5929 5978 10.1021/acs.chemrev.5b00012 25993511
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775385222251001062232
Loading
/content/journals/cdrr/10.2174/0125899775385222251001062232
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: DFT ; QM/MM ; TD-DFT ; simulations ; theorem ; HOMO-LUMO
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test