Skip to content
2000
image of Exploring the Therapeutic Potential of SGLT-2 Inhibitors in Managing Metabolic Syndrome: A Narrative Review

Abstract

Metabolic syndrome, a cluster of interconnected metabolic risk factors such as central obesity, insulin resistance, hypertension, and dyslipidemia, significantly increases the risk of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Despite its rising prevalence and serious health consequences, metabolic syndrome remains underdiagnosed and undertreated. Sodium-glucose co-transporter-2 (SGLT-2) inhibitors, initially developed for T2DM management, have demonstrated promising therapeutic potential for addressing multiple components of metabolic syndrome. These drugs lower blood glucose levels by promoting glycosuria and exhibit additional benefits, including weight loss, reduced blood pressure, improved lipid profiles, and cardioprotective effects. The impact of SGLT-2 inhibitors on the five metabolic syndrome criteria listed by the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III)—central obesity, triglycerides, HDL cholesterol, blood pressure, and fasting glucose levels-is evaluated in this narrative review, which combines results from meta-analyses and clinical trials. Reduced waist circumference, better lipid profiles, lower blood pressure, and improved glycaemic management are some of the main outcomes. Diuresis, natriuresis, enhanced insulin sensitivity, and AMP-activated protein kinase (AMPK) activation are the processes that underlie these effects. Although SGLT-2 inhibitors have a good safety record, they can cause uncommon diabetic ketoacidosis and urinary tract infections, which can be avoided with careful management. The study highlights that more research is necessary to understand long-term effects, optimize dosing regimens, and assess real-world applicability. According to these findings, SGLT-2 inhibitors are essential therapies for managing metabolic syndrome holistically, and they hold great promise for lowering the disease's worldwide burden and related health hazards.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775382225250811111859
2025-08-22
2025-10-19
Loading full text...

Full text loading...

References

  1. Grundy S.M. Hansen B. Smith S.C. Cleeman J.I. Kahn R.A. Clinical management of metabolic syndrome: Report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 2004 109 4 551 556 10.1161/01.CIR.0000112379.88385.67 14757684
    [Google Scholar]
  2. Aguilar M. Bhuket T. Torres S. Liu B. Wong R.J. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA 2015 313 19 1973 1974 10.1001/jama.2015.4260 25988468
    [Google Scholar]
  3. Saklayen M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018 20 2 12 10.1007/s11906‑018‑0812‑z 29480368
    [Google Scholar]
  4. Kolovou G.D. Anagnostopoulou K.K. Salpea K.D. Mikhailidis D.P. The prevalence of metabolic syndrome in various populations. Am. J. Med. Sci. 2007 333 6 362 371 10.1097/MAJ.0b013e318065c3a1 17570989
    [Google Scholar]
  5. Schultz A.B. Edington D.W. Metabolic syndrome in a workplace: Prevalence, co-morbidities, and economic impact. Metab. Syndr. Relat. Disord. 2009 7 5 459 468 10.1089/met.2009.0008 19450154
    [Google Scholar]
  6. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001 285 19 2486 2497 10.1001/jama.285.19.2486 11368702
    [Google Scholar]
  7. Huang P.L. A comprehensive definition for metabolic syndrome. Dis. Model. Mech. 2009 2 5-6 231 237 10.1242/dmm.001180 19407331
    [Google Scholar]
  8. Lingli X. Wenfang X. Characteristics and molecular mechanisms through which SGLT2 inhibitors improve metabolic diseases: A mechanism review. Life Sci. 2022 300 120543 10.1016/j.lfs.2022.120543 35421452
    [Google Scholar]
  9. Song Y. Choi J.E. Kwon Y.J. Identification of susceptibility loci for cardiovascular disease in adults with hypertension, diabetes, and dyslipidemia. J. Transl. Med. 2021 19 1 85 10.1186/s12967‑021‑02751‑3 33632238
    [Google Scholar]
  10. Rolek B. Haber M. Gajewska M. Rogula S. Pietrasik A. Gąsecka A. SGLT2 inhibitors vs. GLP-1 agonists to treat the heart, the kidneys and the brain. J. Cardiovasc. Dev. Dis. 2023 10 8 322 10.3390/jcdd10080322 37623335
    [Google Scholar]
  11. Sherling D.H. Perumareddi P. Hennekens C.H. Metabolic syndrome. J. Cardiovasc. Pharmacol. Ther. 2017 22 4 365 367 10.1177/1074248416686187 28587579
    [Google Scholar]
  12. Jeffers B.W. Robbins J. Bhambri R. Wajsbrot D. A systematic review on the efficacy of amlodipine in the treatment of patients with hypertension with concomitant diabetes mellitus and/or renal dysfunction, when compared with other classes of antihypertensive medication. Am. J. Ther. 2015 22 5 322 341 10.1097/MJT.0000000000000202 25738570
    [Google Scholar]
  13. Hennekens C.H. Lieberman E.H. Rubenstein M.H. Hebert P.R. DeMets D.L. Pfeffer M.A. Statins in the treatment and prevention of cardiovascular diseases: Current and emerging clinical and public health challenges. Handbook of Cholesterol. The Netherlands Wageningen Academic Publishers 2016 155 180 10.3920/978‑90‑8686‑821‑6_9
    [Google Scholar]
  14. Mavrakanas T.A. Tsoukas M.A. Brophy J.M. Sharma A. Gariani K. SGLT-2 inhibitors improve cardiovascular and renal outcomes in patients with CKD: A systematic review and meta-analysis. Sci. Rep. 2023 13 1 15922 10.1038/s41598‑023‑42989‑z 37741858
    [Google Scholar]
  15. Olagunju A. Yamani N. Kenny D. Mookadam M. Mookadam F. Unzek S. Potential for sodium-glucose cotransporter-2 inhibitors in the management of metabolic syndrome: A systematic review and meta-analysis. World J. Cardiol. 2022 14 11 599 616 10.4330/wjc.v14.i11.599 36483765
    [Google Scholar]
  16. Liew A. Lydia A. Matawaran B.J. Susantitaphong P. Tran H.T.B. Lim L.L. Practical considerations for the use of SGLT ‐2 inhibitors in the A sia– P acific countries—An expert consensus statement. Nephrology 2023 28 8 415 424 10.1111/nep.14167 37153973
    [Google Scholar]
  17. Kelli H.M. Kassas I. Lattouf O.M. Cardio metabolic syndrome: A global epidemic. J. Diabetes Metab. 2015 6 3 2 14
    [Google Scholar]
  18. Vesa C.M. Popa L. Popa A.R. Current data regarding the relationship between type 2 diabetes mellitus and cardiovascular risk factors. Diagnostics 2020 10 5 314 10.3390/diagnostics10050314 32429441
    [Google Scholar]
  19. Rochlani Y. Pothineni N.V. Kovelamudi S. Mehta J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017 11 8 215 225 10.1177/1753944717711379 28639538
    [Google Scholar]
  20. Al Rashid S Madar IH Misbah I Dhanabalan K Balasubramanian R Maideen NMP Sodium-Glucose cotransporter-2 (SGLT2) inhibitors as a dual therapeutic target for cardiovascular and renal health: A narrative review. Ibnosina J Med Biomed Sci 2025 17 1 004 012 10.1055/s‑0045‑1805026
    [Google Scholar]
  21. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes - 2022. Diabetes Care 2022 45 Suppl. 1 S111 S124
    [Google Scholar]
  22. Neal B. Perkovic V. Mahaffey K.W. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017 377 7 644 657 10.1056/NEJMoa1611925 28605608
    [Google Scholar]
  23. Wiviott S.D. Raz I. Bonaca M.P. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 2019 380 4 347 357 10.1056/NEJMoa1812389 30415602
    [Google Scholar]
  24. Cannon C.P. Pratley R. Dagogo-Jack S. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N. Engl. J. Med. 2020 383 15 1425 1435 10.1056/NEJMoa2004967 32966714
    [Google Scholar]
  25. Pakkir Maideen D.N.M. Drug interactions of SGLT2 inhibitors (gliflozins) involving UGT enzymes. Arch Diabetes Endocrine Syst 2019 2 2 13 16 10.22259/2638‑4981.0202003
    [Google Scholar]
  26. Dandona P. Chaudhuri A. Sodium-glucose co-transporter 2 inhibitors for type 2 diabetes mellitus: An overview for the primary care physician. Int. J. Clin. Pract. 2017 71 5 e12937 10.1111/ijcp.12937 28440009
    [Google Scholar]
  27. Zinman B. Wanner C. Lachin J.M. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015 373 22 2117 2128 10.1056/NEJMoa1504720 26378978
    [Google Scholar]
  28. Neal B. Perkovic V. de Zeeuw D. Rationale, design, and baseline characteristics of the Canagliflozin Cardiovascular Assessment Study (CANVAS)—A randomized placebo-controlled trial. Am. Heart J. 2013 166 2 217 223.e11 10.1016/j.ahj.2013.05.007 23895803
    [Google Scholar]
  29. Wiviott S.D. Raz I. Bonaca M.P. The design and rationale for the dapagliflozin effect on cardiovascular events (DECLARE)–TIMI 58 trial. Am. Heart J. 2018 200 83 89 10.1016/j.ahj.2018.01.012 29898853
    [Google Scholar]
  30. Brown E. Wilding J.P.H. Alam U. Barber T.M. Karalliedde J. Cuthbertson D.J. The expanding role of SGLT2 inhibitors beyond glucose-lowering to cardiorenal protection. Ann. Med. 2021 53 1 2072 2089 10.1080/07853890.2020.1841281 33107349
    [Google Scholar]
  31. Bailey C.J. Day C. Bellary S. Renal protection with SGLT2 inhibitors: Effects in acute and chronic kidney disease. Curr. Diab. Rep. 2022 22 1 39 52 10.1007/s11892‑021‑01442‑z 35113333
    [Google Scholar]
  32. Tentolouris A. Vlachakis P. Tzeravini E. Eleftheriadou I. Tentolouris N. SGLT2 inhibitors: A review of their antidiabetic and cardioprotective effects. Int. J. Environ. Res. Public Health 2019 16 16 2965 10.3390/ijerph16162965 31426529
    [Google Scholar]
  33. Roberts C.K. Hevener A.L. Barnard R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013 3 1 1 58 10.1002/j.2040‑4603.2013.tb00484.x 23720280
    [Google Scholar]
  34. Paley C.A. Johnson M.I. Abdominal obesity and metabolic syndrome: Exercise as medicine? BMC Sports Sci. Med. Rehabil. 2018 10 1 7 10.1186/s13102‑018‑0097‑1 29755739
    [Google Scholar]
  35. Basu D. Huggins L.A. Scerbo D. Mechanism of increased LDL (Low-Density Lipoprotein) and decreased triglycerides with SGLT2 (Sodium-Glucose Cotransporter 2) inhibition. Arterioscler. Thromb. Vasc. Biol. 2018 38 9 2207 2216 10.1161/ATVBAHA.118.311339 30354257
    [Google Scholar]
  36. Bechmann L.E. Emanuelsson F. Nordestgaard B.G. Benn M. SGLT-2-inhibition increases total, LDL, and HDL cholesterol and lowers triglycerides: Meta-analyses of 60 randomized trials, overall and by dose, ethnicity, and drug type. Atherosclerosis 2023 117236 10.1016/j.atherosclerosis.2023.117236 37582673
    [Google Scholar]
  37. Yang T. Zhou Y. Cui Y. Urinary tract infections and genital mycotic infections associated with SGLT 2 inhibitors: An analysis of the FDA Adverse Event Reporting System. Expert Opin. Drug Saf. 2024 23 8 1035 1040 10.1080/14740338.2023.2288897 38009230
    [Google Scholar]
  38. Pishdad R. Auwaerter P.G. Kalyani R.R. Diabetes, SGLT-2 inhibitors, and urinary tract infection: A review. Curr. Diab. Rep. 2024 24 5 108 117 10.1007/s11892‑024‑01537‑3 38427314
    [Google Scholar]
  39. Douros A. Lix L.M. Fralick M. Sodium–glucose cotransporter-2 inhibitors and the risk for diabetic ketoacidosis: A multicenter cohort study. Ann. Intern. Med. 2020 173 6 417 425 10.7326/M20‑0289 32716707
    [Google Scholar]
  40. Yang S. Liu Y. Zhang S. Risk of diabetic ketoacidosis of SGLT2 inhibitors in patients with type 2 diabetes: A systematic review and network meta-analysis of randomized controlled trials. Front. Pharmacol. 2023 14 1145587 10.3389/fphar.2023.1145587 37397500
    [Google Scholar]
  41. Wondmkun Y.T. Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab. Syndr. Obes. 2020 13 3611 3616 10.2147/DMSO.S275898 33116712
    [Google Scholar]
  42. Hsia D.S. Grove O. Cefalu W.T. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr. Opin. Endocrinol. Diabetes Obes. 2017 24 1 73 79 10.1097/MED.0000000000000311 27898586
    [Google Scholar]
  43. Xu B. Li S. Kang B. Zhou J. The current role of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes mellitus management. Cardiovasc. Diabetol. 2022 21 1 83 10.1186/s12933‑022‑01512‑w 35614469
    [Google Scholar]
  44. Youssef M.E. Yahya G. Popoviciu M.S. Cavalu S. Abd-Eldayem M.A. Saber S. Unlocking the full potential of SGLT2 inhibitors: Expanding applications beyond glycemic control. Int. J. Mol. Sci. 2023 24 7 6039 10.3390/ijms24076039 37047011
    [Google Scholar]
  45. Mohamed S.M. Shalaby M.A. El-Shiekh R.A. El-Banna H.A. Emam S.R. Bakr A.F. Metabolic syndrome: Risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem Adv 2023 3 100335 10.1016/j.focha.2023.100335
    [Google Scholar]
  46. Zhao X. An X. Yang C. Sun W. Ji H. Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front. Endocrinol. 2023 14 1149239 10.3389/fendo.2023.1149239 37056675
    [Google Scholar]
  47. Ramírez-Manent J.I. Jover A.M. Martinez C.S. Tomás-Gil P. Martí-Lliteras P. López-González Á.A. Waist circumference is an essential factor in predicting insulin resistance and early detection of metabolic syndrome in adults. Nutrients 2023 15 2 257 10.3390/nu15020257 36678129
    [Google Scholar]
  48. Saad R.K. Ghezzawi M. Horanieh R. Abdominal visceral adipose tissue and all-cause mortality: A systematic review. Front. Endocrinol. 2022 13 922931 10.3389/fendo.2022.922931 36082075
    [Google Scholar]
  49. Jahdkaran M. Sistanizad M. From lipids to glucose: Investigating the role of dyslipidemia in the risk of insulin resistance. J. Steroid Biochem. Mol. Biol. 2025 250 106744 10.1016/j.jsbmb.2025.106744 40158704
    [Google Scholar]
  50. Al-Mansoori L. Al-Jaber H. Prince M.S. Elrayess M.A. Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation 2022 45 1 31 44 10.1007/s10753‑021‑01559‑z 34536157
    [Google Scholar]
  51. Bovolini A. Garcia J. Andrade M.A. Duarte J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021 42 3 199 214 10.1055/a‑1263‑0898 33075830
    [Google Scholar]
  52. Quetglas-Llabrés M.M. Monserrat-Mesquida M. Bouzas C. Inflammatory and oxidative stress markers related to adherence to the Mediterranean diet in patients with metabolic syndrome. Antioxidants 2022 11 5 901 10.3390/antiox11050901 35624765
    [Google Scholar]
  53. Porca C. Rodriguez-Carnero G. Tejera C. Effectiveness to promote weight loss maintenance and healthy lifestyle habits of a group educational intervention program in adults with obesity: IGOBE program. Obes. Res. Clin. Pract. 2021 15 6 570 578 10.1016/j.orcp.2021.10.003 34742669
    [Google Scholar]
  54. Angelico F. Baratta F. Coronati M. Ferro D. Del Ben M. Diet and metabolic syndrome: A narrative review. Intern. Emerg. Med. 2023 18 4 1007 1017 10.1007/s11739‑023‑03226‑7 36929350
    [Google Scholar]
  55. Bhat S. Balakrishnan G. Role of exercise in the prevention and treatment of metabolic syndrome. Metabolic Syndrome. Academic Press 2024 367 381 10.1016/B978‑0‑323‑85732‑1.00012‑8
    [Google Scholar]
  56. Dobrowolski P. Prejbisz A. Kuryłowicz A. Metabolic syndrome — A new definition and management guidelines. Arterial Hypertens 2022 26 3 99 121 10.5603/AH.a2022.0012 36160355
    [Google Scholar]
  57. Carey R.M. Moran A.E. Whelton P.K. Treatment of hypertension. JAMA 2022 328 18 1849 1861 10.1001/jama.2022.19590 36346411
    [Google Scholar]
  58. Balasubramanian R. Maideen N.M.P. HMG-CoA reductase inhibitors (statins) and their drug interactions involving CYP enzymes, P-glycoprotein and OATP transporters-an overview. Curr. Drug Metab. 2021 22 5 328 341 10.2174/18755453MTEz9MzEj5 33459228
    [Google Scholar]
  59. Pakkir Maideen N.M. Manavalan G. Balasubramanian K. Drug interactions of meglitinide antidiabetics involving CYP enzymes and OATP1B1 transporter. Ther. Adv. Endocrinol. Metab. 2018 9 8 259 268 10.1177/2042018818767220 30181852
    [Google Scholar]
  60. Pakkir Maideen N.M. Jumale A. Balasubramaniam R. Drug interactions of metformin involving drug transporter proteins. Adv. Pharm. Bull. 2017 7 4 501 505 10.15171/apb.2017.062 29399540
    [Google Scholar]
  61. Patrono C. Fifty years with aspirin and platelets. Br. J. Pharmacol. 2023 180 1 25 43 10.1111/bph.15966 36189951
    [Google Scholar]
  62. Lillich F.F. Imig J.D. Proschak E. Multi-target approaches in metabolic syndrome. Front. Pharmacol. 2021 11 554961 10.3389/fphar.2020.554961 33776749
    [Google Scholar]
  63. Xie J. Wang Y. Multidisciplinary combined treatment based on bariatric surgery for metabolic syndrome: A review article. Int. J. Surg. 2024 110 6 3666 3679 10.1097/JS9.0000000000001320 38489549
    [Google Scholar]
  64. Pereira M.J. Eriksson J.W. Emerging role of SGLT-2 inhibitors for the treatment of obesity. Drugs 2019 79 3 219 230 10.1007/s40265‑019‑1057‑0 30701480
    [Google Scholar]
  65. Wright E.M. SGLT2 inhibitors: Physiology and pharmacology. Kidney360 2021 2 12 2027 2037 10.34067/KID.0002772021 35419546
    [Google Scholar]
  66. Pan R. Zhang Y. Wang R. Xu Y. Ji H. Zhao Y. Effect of SGLT-2 inhibitors on body composition in patients with type 2 diabetes mellitus: A meta-analysis of randomized controlled trials. PLoS One 2022 17 12 e0279889 10.1371/journal.pone.0279889 36584211
    [Google Scholar]
  67. Bechmann L.E. Emanuelsson F. Nordestgaard B.G. Benn M. SGLT2-inhibition increases total, LDL, and HDL cholesterol and lowers triglycerides: Meta-analyses of 60 randomized trials, overall and by dose, ethnicity, and drug type. Atherosclerosis 2024 394 117236 10.1016/j.atherosclerosis.2023.117236 37582673
    [Google Scholar]
  68. Packer M. Interplay of adenosine monophosphate‐activated protein kinase/sirtuin‐1 activation and sodium influx inhibition mediates the renal benefits of sodium‐glucose co‐transporter‐2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes. Metab. 2020 22 5 734 742 10.1111/dom.13961 31916329
    [Google Scholar]
  69. Ma A. Wang J. Yang L. An Y. Zhu H. AMPK activation enhances the anti-atherogenic effects of high density lipoproteins in apoE −/− mice. J. Lipid Res. 2017 58 8 1536 1547 10.1194/jlr.M073270 28611100
    [Google Scholar]
  70. Hosokawa Y. Ogawa W. SGLT2 inhibitors for genetic and acquired insulin resistance: Considerations for clinical use. J. Diabetes Investig. 2020 11 6 1431 1433 10.1111/jdi.13309 32469141
    [Google Scholar]
  71. März W. Kleber M.E. Scharnagl H. HDL cholesterol: Reappraisal of its clinical relevance. Clin. Res. Cardiol. 2017 106 9 663 675 10.1007/s00392‑017‑1106‑1 28342064
    [Google Scholar]
  72. Sánchez-García A. Simental-Mendía M. Millán-Alanís J.M. Simental-Mendía L.E. Effect of sodium-glucose co-transporter 2 inhibitors on lipid profile: A systematic review and meta-analysis of 48 randomized controlled trials. Pharmacol. Res. 2020 160 105068 10.1016/j.phrs.2020.105068 32652200
    [Google Scholar]
  73. Briasoulis A. Al Dhaybi O. Bakris G.L. SGLT2 inhibitors and mechanisms of hypertension. Curr. Cardiol. Rep. 2018 20 1 1 7 10.1007/s11886‑018‑0943‑5 29349558
    [Google Scholar]
  74. Zhou H. Wang Y. Cui L. Chen Y. Li C. Zhao J. The ongoing role of serum uric acid in blood pressure. Clin. Exp. Hypertens. 2017 39 7 601 605 10.1080/10641963.2017.1299750 28678545
    [Google Scholar]
  75. Kochanowska A. Rusztyn P. Szczerkowska K. Sodium–glucose cotransporter 2 inhibitors to decrease the uric acid concentration—A novel mechanism of action. J. Cardiovasc. Dev. Dis. 2023 10 7 268 10.3390/jcdd10070268 37504524
    [Google Scholar]
  76. Zhang Q. Zhou S. Liu L. Efficacy and safety evaluation of SGLT2i on blood pressure control in patients with type 2 diabetes and hypertension: A new meta-analysis. Diabetol. Metab. Syndr. 2023 15 1 118 10.1186/s13098‑023‑01092‑z 37280615
    [Google Scholar]
  77. Teo Y.H. Teo Y.N. Syn N.L. Effects of sodium/glucose cotransporter 2 (SGLT2) inhibitors on cardiovascular and metabolic outcomes in patients without diabetes mellitus: A systematic review and meta‐analysis of randomized‐controlled trials. J. Am. Heart Assoc. 2021 10 5 e019463 10.1161/JAHA.120.019463 33625242
    [Google Scholar]
  78. Zaccardi F. Webb D.R. Htike Z.Z. Youssef D. Khunti K. Davies M.J. Efficacy and safety of sodium‐glucose co‐transporter‐2 inhibitors in type 2 diabetes mellitus: Systematic review and network meta‐analysis. Diabetes Obes. Metab. 2016 18 8 783 794 10.1111/dom.12670 27059700
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775382225250811111859
Loading
/content/journals/cdrr/10.2174/0125899775382225250811111859
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test