Skip to content
2000
image of Functional Effects of Cromakalim on Aortic Tissue in STZ-Diabetic Rats: Impact of Insulin Treatment

Abstract

Introduction

K+ channels play a key role in the development of the vasodilation response, which is compromised in diabetes.

Methods

In this study, the effects of the potassium channel activator cromakalim on aortic function were investigated in streptozotocin (STZ)-diabetic rats at short (1 week), medium (8 weeks), and long-term (14 weeks) durations, including a group treated with insulin for 14 weeks.

Results

Compared with the control group, cromakalim-induced concentration-dependent vasodilation was reduced in the aortas of 8 and 14-week streptozotocin-diabetic rats ( < 0.05). Daily insulin treatment during the long-term (14 weeks) durations normalized the vasodilation response to cromakalim in the aortas of 14-week streptozotocin-diabetic rats.

Discussion

Studies with cromakalim on diabetic rat aortic K+ channels are limited. Dose-dependent cromakalim-induced vasodilation was investigated in 8- and 12-week STZ-diabetic rat aortas and was found to be reduced. The impaired vasodilation responses were improved in the STZ-diabetic group with chronic insulin treatment. The results of these studies were similar to those of our study.

Conclusion

These findings indicate that potassium channel activity and vascular vasodilation ability decrease in the aortas of streptozotocin-diabetic rats depending on the duration of diabetes. In contrast, potassium channel activity and vascular vasodilation ability return to normal with insulin treatment in 14-week streptozotocin-diabetic aortas.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775374270250714222602
2025-07-30
2025-10-19
Loading full text...

Full text loading...

References

  1. Jackson W.F. Ion channels and vascular tone. Hypertension 2000 35 1 173 178 10.1161/01.HYP.35.1.173 10642294
    [Google Scholar]
  2. Okada Y. Yanagisawa T. Taira N. BRL 38227 (levcromakalim)-induced hyperpolarization reduces the sensitivity to Ca2+ of contractile elements in canine coronary artery. Naunyn Schmiedebergs Arch. Pharmacol. 1993 347 4 438 444 10.1007/BF00165396 8510771
    [Google Scholar]
  3. Sobey C.G. Potassium channel function in vascular disease. Arterioscler. Thromb. Vasc. Biol. 2001 21 1 28 38 10.1161/01.ATV.21.1.28 11145930
    [Google Scholar]
  4. Quayle J.M. Nelson M.T. Standen N.B. ATP-sensitive and inwardly rectifying potassium channels in smooth muscle. Physiol. Rev. 1997 77 4 1165 1232 10.1152/physrev.1997.77.4.1165 9354814
    [Google Scholar]
  5. Nelson M.T. Quayle J.M. Physiological roles and properties of potassium channels in arterial smooth muscle. Am. J. Physiol. Cell Physiol. 1995 268 4 C799 C822 10.1152/ajpcell.1995.268.4.C799 7733230
    [Google Scholar]
  6. Kannel W.B. McGee D.L. Diabetes and cardiovascular risk factors: The Framingham study. Circulation 1979 59 1 8 13 10.1161/01.CIR.59.1.8 758126
    [Google Scholar]
  7. Mayhan W.G. Faraci F.M. Responses of cerebral arterioles in diabetic rats to activation of ATP-sensitive potassium channels. Am. J. Physiol. 1993 265 1 Pt 2 H152 H157 10.1152/ajpheart.1993.265 8342628
    [Google Scholar]
  8. Kamata K. Miyata N. Kasuya Y. Functional changes in potassium channels in aortas from rats with streptozotocin-induced diabetes. Eur. J. Pharmacol. 1989 166 2 319 323 10.1016/0014‑2999(89)90076‑9 2529128
    [Google Scholar]
  9. Cameron N.E. Cotter M.A. Impaired contraction and relaxation in aorta from streptozotocin-diabetic rats: Role of polyol pathway. Diabetologia 1992 35 11 1011 1019 10.1007/BF02221675 1473611
    [Google Scholar]
  10. Edwards G. Weston A.H. Pharmacology of the potassium channel openers. Cardiovasc. Drugs Ther. 1995 9 S2 Suppl. 2 185 193 10.1007/BF00878465 7647022
    [Google Scholar]
  11. Standen N.B. Quayle J.M. Davies N.W. Brayden J.E. Huang Y. Nelson M.T. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989 245 4914 177 180 10.1126/science.2501869 2501869
    [Google Scholar]
  12. Serdar C.C. Cihan M. Yücel D. Serdar M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. (Zagreb) 2021 31 1 27 53 10.11613/BM.2021.010502 33380887
    [Google Scholar]
  13. Council Directive 86/609/EEC of 24 November 1986 on the approximation of laws, regulations and administrative provisions of the Member States regarding the protection of animals used for experimental and other scientific purposes. 1986 Available from: http://data.europa.eu/eli/dir/1986/609/oj
  14. Ozaydin FN Changes in potassium channel activity of STZ-diabetic rat aorta. Proceeding of the 7th International Medicine and Health Sciences Researches Congress Ankara, Turkiye; 28-29 Aug 2021; pp. 206-14.
    [Google Scholar]
  15. Bouchard J.F. Dumont É.C. Lamontagne D. Modification of vasodilator response in streptozotocin-induced diabetic rat. Can. J. Physiol. Pharmacol. 1999 77 12 980 985 10.1139/y99‑106 10606445
    [Google Scholar]
  16. Miyata N. Yamaura H. Tsuchida K. Otomo S. Kamata K. Kasuya Y. Changes in responsiveness of the aorta to vasorelaxant agents in genetically diabetic rats: A study in WBN/KOB rats. Life Sci. 1992 50 18 1363 1369 10.1016/0024‑3205(92)90287‑Y 1313940
    [Google Scholar]
  17. Beech D.J. Zhang H. Nakao K. Bolton T.B. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Br. J. Pharmacol. 1993 110 2 583 590 10.1111/j.1476‑5381.1993.tb13850.x 8242233
    [Google Scholar]
  18. Dart C. Standen N.B. Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J. Physiol. 1993 471 1 767 786 10.1113/jphysiol.1993.sp019927 7509875
    [Google Scholar]
  19. Furspan P.B. Webb R.C. Decreased ATP sensitivity of a K+ channel and enhanced vascular smooth muscle relaxation in genetically hypertensive rats. J. Hypertens. 1993 11 10 1067 1072 10.1097/00004872‑199310000‑00010 8258670
    [Google Scholar]
  20. Lorenz J.N. Schnermann J. Brosius F.C. Briggs J.P. Furspan P.B. Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive K+ channels in the rabbit. J. Clin. Invest. 1992 90 3 733 740 10.1172/JCI115945 1522228
    [Google Scholar]
  21. Mayhan W.G. Effect of diabetes mellitus on response of the basilar artery to activation of ATP-sensitive potassium channels. Brain Res. 1994 636 1 35 39 10.1016/0006‑8993(94)90172‑4 8156408
    [Google Scholar]
  22. Matsumoto T. Yoshiyama S. Wakabayashi K. Kobayashi T. Kamata K. Effect of chronic insulin on cromakalim-induced relaxation in established streptozotocin–diabetic rat basilar artery. Eur. J. Pharmacol. 2004 504 1-2 129 137 10.1016/j.ejphar.2004.09.031 15507229
    [Google Scholar]
  23. Herrera G.M. Resta T.C. Candelaria J.J. Walker B.R. Maintained vasodilatory response to cromakalim after inhibition of nitric oxide synthesis. J. Cardiovasc. Pharmacol. 1998 31 6 921 929 10.1097/00005344‑199806000‑00017 9641478
    [Google Scholar]
  24. MacLeod K.M. The effect of insulin treatment on changes in vascular reactivity in chronic, experimental diabetes. Diabetes 1985 34 11 1160 1167 10.2337/diab.34.11.1160 3899813
    [Google Scholar]
  25. Liu Y. Gutterman D.D. The coronary circulation in diabetes. Vascul. Pharmacol. 2002 38 1 43 49 10.1016/S1537‑1891(02)00125‑8 12378822
    [Google Scholar]
  26. Owu D.U. Orie N.N. Nwokocha C.R. Muzyamba M. Clapp L.H. Osim E.E. Attenuated vascular responsiveness to K+ channel openers in diabetes mellitus: The differential role of reactive oxygen species. Gen. Physiol. Biophys. 2013 32 4 527 534 10.4149/gpb_2013057 23940092
    [Google Scholar]
  27. Liu Y. Gutterman D.D. Oxidative stress and potassium channel function. Clin. Exp. Pharmacol. Physiol. 2002 29 4 305 311 10.1046/j.1440‑1681.2002.03649.x 11985541
    [Google Scholar]
  28. Li S.S. Cui N. Yang Y. Trower T.C. Wei Y.M. Wu Y. Zhang S. Jin X. Jiang C. Impairment of the vascular KATP channel imposes fatal susceptibility to experimental diabetes due to multi-organ injuries. J. Cell. Physiol. 2015 230 12 2915 2926 10.1002/jcp.25003 25825210
    [Google Scholar]
  29. Jeong Nam Y. Kim A. Sung Lee M. Suep Sohn D. Soo Lee C. K ATP channel block inhibits the Toll-like receptor 2-mediated stimulation of NF-κB by suppressing the activation of Akt, mTOR, JNK and p38-MAPK. Eur. J. Pharmacol. 2017 815 190 201 10.1016/j.ejphar.2017.09.014 28923349
    [Google Scholar]
  30. Standen N.B. KATP channels in vascular smooth muscle: Structure, Regulation and functional roles. J Clin Basic Cardiol 2003 6 1-4 7 14
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775374270250714222602
Loading
/content/journals/cdrr/10.2174/0125899775374270250714222602
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: STZ-diabetic rat ; K+ATP channels ; cromakalim ; aorta ; insulin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test