Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Cancer therapies have advanced significantly, yet traditional treatments still confront obstacles, such as systemic toxicity and drug resistance. Nanotechnology plays a pivotal role in addressing these issues, particularly through the development of polymer nanocomposites (PNCs). PNCs are hybrid materials composed of a polymer matrix embedded with nanoscale fillers. These composites can be classified based on the type of matrix (ceramic, metal, or polymer) and their structural properties (exfoliated or intercalated forms). Synthesis methods, such as solvent casting and polymerization, ensure the uniform dispersion of nanoparticles within the polymer matrix. PNC-based drug delivery systems are categorized into two types: passive targeting, which leverages the enhanced permeability and retention (EPR) effect, and active targeting, which relies on ligand-receptor interactions. In the pharmaceutical industry, recent developments in nanocomposite-based systems have demonstrated great promise, especially in terms of improving medication solubility, stability, and bioavailability while reducing adverse effects. These methods use nanoparticles embedded in a matrix to increase drug delivery, addressing issues, such as poor solubility and limited bioavailability associated with conventional therapies. Before these novel medicines are widely used, clinical studies are essential for assessing their safety and effectiveness and making sure they adhere to legal requirements. Furthermore, the growth of patents pertaining to nanocomposites indicates continued study and advancement in this field, emphasizing nanocomposites’ potential uses in a range of medical conditions. Nanocomposites are anticipated to transform drug delivery methods and make a substantial contribution to current medicine as research advances.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775367848250226063700
2025-03-13
2025-11-03
Loading full text...

Full text loading...

References

  1. Global cancer burden growing, amidst mounting need for services.2024Available from: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services
  2. BrayF. LaversanneM. SungH. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  3. AngolkarM. ParamshettiS. HalagaliP. JainV. PatilA.B. SomannaP. Nanotechnological advancements in the brain tumor therapy: A novel approach.Ther. Deliv.2022131153155710.4155/tde‑2022‑0035 36802944
    [Google Scholar]
  4. Bakshi IshaanComparing minimally invasive techniques to traditional surgery for specific tumor or cancer types: A comprehensive review.Int J Multidiscip Res202462117
    [Google Scholar]
  5. MathanS.V. RajputM. SinghR.P. Chemotherapy and radiation therapy for cancer.Academic Press202210.1016/B978‑0‑323‑99883‑3.00003‑2
    [Google Scholar]
  6. MaqboolH. YasinU. ShawalL. Advancements in cancer pharmacotherapy: Targeted therapies and immunotherapy strategies, A review.Biol Clin Sci Res J202420241102510.54112/bcsrj.v2024i1.1025
    [Google Scholar]
  7. TaibiT. CheonS. PernaF. VuL.P. mRNA-based therapeutic strategies for cancer treatment.Mol. Ther.20243292819283410.1016/j.ymthe.2024.04.035 38702886
    [Google Scholar]
  8. AliR. AdilM. SultanA. KhanN.J. IshratR. Nanotechnology, drug delivery and prospects in precision medicine.Bentham Books202446451010.2174/9789815223583124010023
    [Google Scholar]
  9. JahagirdarV. KrishnaS.M.K.L. PalakshaS. ShariffA. DoddawadV.G. HalagaliP. An overview Of EGCG and its potential effects on breast.Cancer Cells2023141800806
    [Google Scholar]
  10. AndohV. OcanseyD. NaveedH. The advancing role of nanocomposites in cancer diagnosis and treatment.Int. J. Nanomedicine2024196099612610.2147/IJN.S471360 38911500
    [Google Scholar]
  11. ChakrabortyS. RahmanT. The difficulties in cancer treatment. Ecancermedicalscience.Ecancermedicalscience2012616
    [Google Scholar]
  12. MahviD.A. LiuR. GrinstaffM.W. ColsonY.L. RautC.P. Local cancer recurrence: The realities, challenges, and opportunities for new therapies.CA Cancer J. Clin.201868648850510.3322/caac.21498 30328620
    [Google Scholar]
  13. NurgaliK. JagoeR.T. AbaloR. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae?Front. Pharmacol.20189MAR24510.3389/fphar.2018.00245 29623040
    [Google Scholar]
  14. AnandU. DeyA. ChandelA.K.S. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  15. MajeedH. GuptaV. Adverse Effects Of Radiation Therapy.Treasure Island, FLStatPearls Publishing2020
    [Google Scholar]
  16. WangK. Radiation therapy-associated toxicity: Etiology, management, and prevention.CA Cancer J. Clin.2021715437454
    [Google Scholar]
  17. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  18. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: Current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  19. TiwariH. RaiN. SinghS. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics.Bioengineering202310776010.3390/bioengineering10070760 37508788
    [Google Scholar]
  20. MagoG. KalyonD.M. JanaS.C. FisherF.T. Polymer nanocomposite processing, characterization, and applications.J. Nanomater.2010325807
    [Google Scholar]
  21. YaoY. ZhouY. LiuL. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  22. HapuarachchigeS. ArtemovD. Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine.Front. Oncol.202010113110.3389/fonc.2020.01131 32793481
    [Google Scholar]
  23. SaeedK. KhanI. KhanI. AliN. BilalM. Graphene and carbon nanotubes-based polymer nanocomposites.Smart Polymer Nanocomposites.Elsevier2023205218
    [Google Scholar]
  24. LocatelliE. Comes FranchiniM. Biodegradable PLGA-b-PEG polymeric nanoparticles: Synthesis, properties, and nanomedical applications as drug delivery system.J. Nanopart. Res.20121412131610.1007/s11051‑012‑1316‑4
    [Google Scholar]
  25. LiS. Meng LinM. ToprakM.S. KimD.K. MuhammedM. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications.Nano Rev.201011521410.3402/nano.v1i0.5214 22110855
    [Google Scholar]
  26. SonK.H. HongJ.H. LeeJ.W. Carbon nanotubes as cancer therapeutic carriers and mediators.Int. J. Nanomedicine2016115163518510.2147/IJN.S112660 27785021
    [Google Scholar]
  27. RaneA.V. KannyK. AbithaV.K. ThomasS. Methods for synthesis of nanoparticles and fabrication of nanocomposites.Synthesis of Inorganic Nanomaterials.Woodhead Publishing201812113910.1016/B978‑0‑08‑101975‑7.00005‑1
    [Google Scholar]
  28. DhandC. DwivediN. LohX.J. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview.RSC Advances2015512710500310503710.1039/C5RA19388E
    [Google Scholar]
  29. AdnanM.M. DalodA.R.M. BalciM.H. GlaumJ. EinarsrudM.A. In situ synthesis of hybrid inorganic-polymer nanocomposites.Polymers20181010112910.3390/polym10101129 30961054
    [Google Scholar]
  30. GagliardiA. GiulianoE. VenkateswararaoE. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.601626 33613290
    [Google Scholar]
  31. MittalV. Synthesis techniques for polymer nanocomposites.Synthesis Techniques for Polymer Nanocomposites2014129710.1002/9783527670307
    [Google Scholar]
  32. LagoE. TothP.S. PuglieseG. PellegriniV. BonaccorsoF. Solution blending preparation of polycarbonate/graphene composite: Boosting the mechanical and electrical properties.RSC Advances20166100979319794010.1039/C6RA21962D
    [Google Scholar]
  33. ZhangD. LiuL. WangJ. ZhangH. ZhangZ. XingG. Drug-loaded PEG-PLGA nanoparticles for cancer treatment.Front. Pharmacol.20221399050510.3389/fphar.2022.990505
    [Google Scholar]
  34. ZhaoQ. LinY. HanN. Mesoporous carbon nanomaterials in drug delivery and biomedical application.Drug Deliv.20172429410710.1080/10717544.2017.1399300 29124979
    [Google Scholar]
  35. MondalA. NayakA. ChakrabortyP. BanerjeeS. NandyB. Natural polymeric nanobiocomposites for anti-cancer drug delivery therapeutics: A recent update.Pharmaceutics2023158206410.3390/pharmaceutics15082064 37631276
    [Google Scholar]
  36. XiaoX. TengF. ShiC. Polymeric nanoparticles—Promising carriers for cancer therapy.Front. Bioeng. Biotechnol.202210102414310.3389/fbioe.2022.1024143 36277396
    [Google Scholar]
  37. CastroJ.I. Valencia LlanoC.H. TenorioD.L. Biocompatibility assessment of polylactic acid (PLA) and nanobioglass (n-BG) nanocomposites for biomedical applications.Molecules20222711364010.3390/molecules27113640 35684575
    [Google Scholar]
  38. FouadF.A. YoussefD.G. RefayF.A. HeakalF.E.T. Biocompatibility of Nanomaterials Reinforced Polymer-Based Nanocomposites.Springer202310.1007/978‑3‑031‑09710‑2_17
    [Google Scholar]
  39. RahimM. Mas HarisM.R.H. SaqibN.U. An overview of polymeric nano-biocomposites as targeted and controlled-release devices.Biophys. Rev.20201251223123110.1007/s12551‑020‑00750‑0 32901426
    [Google Scholar]
  40. WuJ. The enhanced permeability and retention (Epr) effect: The significance of the concept and methods to enhance its application.J. Pers. Med.202111877110.3390/jpm11080771 34442415
    [Google Scholar]
  41. MatsumuraY. MaedaH. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs.Cancer Res.19864612 Pt 163876392 2946403
    [Google Scholar]
  42. LuT. PrakashJ. Nanomedicine strategies to enhance tumor drug penetration in pancreatic cancer.Int. J. Nanomedicine2021166313632810.2147/IJN.S279192 34552327
    [Google Scholar]
  43. MaedaH. BharateG.Y. DaruwallaJ. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.Eur. J. Pharm. Biopharm.200971340941910.1016/j.ejpb.2008.11.010 19070661
    [Google Scholar]
  44. ArgenzianoM. ArpiccoS. BrusaP. Developing actively targeted nanoparticles to fight cancer: Focus on italian research.Pharmaceutics20211310153810.3390/pharmaceutics13101538 34683830
    [Google Scholar]
  45. EbrahimnejadP. Sodagar TaleghaniA. Asare-AddoK. NokhodchiA. An updated review of folate-functionalized nanocarriers: A promising ligand in cancer.Drug Discov. Today202227247148910.1016/j.drudis.2021.11.011 34781032
    [Google Scholar]
  46. RamalhoM.J. LoureiroJ.A. CoelhoM.A.N. PereiraM.C. Transferrin receptor-targeted nanocarriers: Overcoming barriers to treat glioblastoma.Pharmaceutics202214227910.3390/pharmaceutics14020279 35214012
    [Google Scholar]
  47. KarimiM. EslamiM. Sahandi-ZangabadP. pH ‐Sensitive stimulus‐responsive nanocarriers for targeted delivery of therapeutic agents.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20168569671610.1002/wnan.1389 26762467
    [Google Scholar]
  48. SunY. WangQ. ChenJ. LiuL. DingL. ShenM. Temperature-sensitive gold nanoparticle-coated Pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy.Theranostics20177184424444410.7150/thno.18832
    [Google Scholar]
  49. XuX. LiuY. FuW. Poly(N-isopropylacrylamide)-based thermoresponsive composite hydrogels for biomedical applications.Polymers202012358010.3390/polym12030580 32150904
    [Google Scholar]
  50. MathurA. SinghalJ. GuptaD. SaxenaR. Enzyme-responsive nanoparticles for drug delivery.Bentham Book202410.2174/9789815256505124010007
    [Google Scholar]
  51. LiaoS. JiaS. YueY. ZengH. LinJ. LiuP. Advancements in pH-Responsive nanoparticles for osteoarthritis treatment: Opportunities and challenges.Front. Bioeng. Biotechnol.202412142679410.3389/fbioe.2024.1426794 39036562
    [Google Scholar]
  52. ZhouL. LuY. LiuW. Drug conjugates for the treatment of lung cancer: From drug discovery to clinical practice.Exp. Hematol. Oncol.20241312610.1186/s40164‑024‑00493‑8 38429828
    [Google Scholar]
  53. LuckanagulJA AlcantaraKP BulataoBPI WongTW RojsitthisakP RojsitthisakP Thermo-Responsive Polymers and Their Application as Smart Biomaterials.Nanotechnol. Life Sci.202129134310.1007/978‑3‑030‑84262‑8_11
    [Google Scholar]
  54. GhassamiE. VarshosazJ. TaymouriS. Redox sensitive polysaccharide based nanoparticles for improved cancer treatment: A comprehensive review.Curr. Pharm. Des.201824283303331910.2174/1381612824666180813114841 30101696
    [Google Scholar]
  55. Alvarez-LorenzoC. BrombergL. ConcheiroA. Light-sensitive intelligent drug delivery systems.Photochem. Photobiol.200985484886010.1111/j.1751‑1097.2008.00530.x 19222790
    [Google Scholar]
  56. BrazelC.S. Magnetothermally-responsive nanomaterials: Combining magnetic nanostructures and thermally-sensitive polymers for triggered drug release.Pharm. Res.200926364465610.1007/s11095‑008‑9773‑2 19005741
    [Google Scholar]
  57. JinZ. Al AmiliM. GuoS. Tumor microenvironment-responsive drug delivery based on polymeric micelles for precision cancer therapy: Strategies and prospects.Biomedicines202412241710.3390/biomedicines12020417 38398021
    [Google Scholar]
  58. SeiduT.A. KutokaP.T. AsanteD.O. FarooqM.A. AlolgaR.N. BoW. Functionalization of nanoparticulate drug delivery systems and its influence in cancer therapy.Pharmaceutics2022145111310.3390/pharmaceutics14051113 35631699
    [Google Scholar]
  59. RahimM.A. JanN. KhanS. Recent advancements in stimuli responsive drug delivery platforms for active and passive cancer targeting.Cancers202113467010.3390/cancers13040670 33562376
    [Google Scholar]
  60. MaedaH. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.Adv. Enzyme Regul.200141118920710.1016/S0065‑2571(00)00013‑3 11384745
    [Google Scholar]
  61. ShiJ. XiaoZ. KamalyN. FarokhzadO.C. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.Acc. Chem. Res.201144101123113410.1021/ar200054n 21692448
    [Google Scholar]
  62. DanhierF. FeronO. PréatV. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery.J. Control. Release2010148213514610.1016/j.jconrel.2010.08.027 20797419
    [Google Scholar]
  63. AlromiD. MadaniS. SeifalianA. Emerging application of magnetic nanoparticles for diagnosis and treatment of cancer.Polymers20211323414610.3390/polym13234146 34883649
    [Google Scholar]
  64. Manescu PaltaneaV. PaltaneaG. AntoniacI. VasilescuM. Magnetic nanoparticles used in oncology.Materials20211420594810.3390/ma14205948 34683540
    [Google Scholar]
  65. HowardC.B. FletcherN. HoustonZ.H. Overcoming instability of antibody‐nanomaterial conjugates: Next generation targeted nanomedicines using bispecific antibodies.Adv. Healthc. Mater.20165162055206810.1002/adhm.201600263 27283923
    [Google Scholar]
  66. SinghA. SuhagD. Polymers and polymeric composites in nano/bio-medicine.Integrated Nanomaterials and their Applications.SingaporeSpringer2023153176
    [Google Scholar]
  67. K VTiwari A A review on magnetic polymeric nanocomposite materials: Emerging applications in biomedical field.Inorganic and Nano-Metal Chemistry202353763966310.1080/24701556.2023.2187418
    [Google Scholar]
  68. CrinteaA. MotofeleaA.C. ȘovreaA.S. Dendrimers: Advancements and potential applications in cancer diagnosis and treatment—An overview.Pharmaceutics2023155140610.3390/pharmaceutics15051406 37242648
    [Google Scholar]
  69. RaiD.B. MedicherlaK. PoojaD. KulhariH. Dendrimer-mediated delivery of anticancer drugs for colon cancer treatment.Pharmaceutics202315380110.3390/pharmaceutics15030801 36986662
    [Google Scholar]
  70. BoberZ. Bartusik-AebisherD. AebisherD. Application of dendrimers in anticancer diagnostics and therapy.Molecules20222710323710.3390/molecules27103237 35630713
    [Google Scholar]
  71. Elieh-Ali-KomiD. HamblinM.R. Chitin and chitosan: Production and application of versatile biomedical nanomaterials.Int. J. Adv. Res.201643411427 27819009
    [Google Scholar]
  72. RaafatD. SahlH.G. Chitosan and its antimicrobial potential--A critical literature survey.Microb. Biotechnol.200922186201
    [Google Scholar]
  73. TanL. HuangR. LiX. LiuS. ShenY.M. ShaoZ. Chitosan-based core-shell nanomaterials for pH-triggered release of anticancer drug and near-infrared bioimaging.Carbohydr. Polym.201715732533410.1016/j.carbpol.2016.09.092 27987935
    [Google Scholar]
  74. HosseinzadehS. HosseinzadehH. PashaeiS. KhodaparastZ. Synthesis of stimuli-responsive chitosan nanocomposites via RAFT copolymerization for doxorubicin delivery.Int. J. Biol. Macromol.201912167768510.1016/j.ijbiomac.2018.10.106 30339997
    [Google Scholar]
  75. GeorgeD. MaheswariP.U. Sheriffa BegumK.M.M. ArthanareeswaranG. Biomass-derived dialdehyde cellulose cross-linked chitosan-based nanocomposite hydrogel with phytosynthesized zinc oxide nanoparticles for enhanced curcumin delivery and bioactivity.J. Agric. Food Chem.20196739108801089010.1021/acs.jafc.9b01933 31508956
    [Google Scholar]
  76. MondalA. BoseS. BanerjeeS. Marine cyanobacteria and microalgae metabolites—A rich source of potential anticancer drugs.Mar. Drugs202018947610.3390/md18090476 32961827
    [Google Scholar]
  77. ZhangS. QamarS.A. JunaidM. MunirB. BadarQ. BilalM. Algal polysaccharides-based nanoparticles for targeted drug delivery applications.Starch2022747220001410.1002/star.202200014
    [Google Scholar]
  78. IdreesH. ZaidiS.Z.J. SabirA. KhanR.U. ZhangX. HassanS. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications.Nanomaterials20201010197010.3390/nano10101970 33027891
    [Google Scholar]
  79. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.003 22125349
    [Google Scholar]
  80. VenkataP. KumariK. RaoY.S. AkhilaS. GSC biological and pharmaceutical sciences role of nanocomposites in drug delivery.GSC Biol. Pharm. Sci.20198394103
    [Google Scholar]
  81. DarekarA. BeleM. WaghM. NawaleV. SaudagarR. A review on nanocomposite drug delivery.J. Drug Delivery Ther.201992-s52953610.22270/jddt.v9i2‑s.2475
    [Google Scholar]
  82. Haq KhanZ.U. KhanT.M. KhanA. Brief review: Applications of nanocomposite in electrochemical sensor and drugs delivery.Front Chem.202311115221710.3389/fchem.2023.1152217 37007050
    [Google Scholar]
  83. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  84. NaumenkoE. GuryanovI. GomzikovaM. Drug delivery nano-platforms for advanced cancer therapy.Sci. Pharm.20249222810.3390/scipharm92020028
    [Google Scholar]
  85. IqbalM.J. JavedZ. SadiaH. Targeted therapy using nanocomposite delivery systems in cancer treatment: Highlighting miR34a regulation for clinical applications.Cancer Cell Int.20232318410.1186/s12935‑023‑02929‑3 37149609
    [Google Scholar]
  86. FeldmanD. Polymers and polymer nanocomposites for cancer therapy.Appl. Sci.2019918389910.3390/app9183899
    [Google Scholar]
  87. SharafM. AlhamadA.A. LtaiefO.O. AmorI.B. Challenges of nanomaterials-based cancer therapy: A future destination.Int. J. Surg.202310961819182010.1097/JS9.0000000000000412 37072147
    [Google Scholar]
  88. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  89. WangJ. SuiL. HuangJ. MoS2-based nanocomposites for cancer diagnosis and therapy.Bioact. Mater.20216114209424210.1016/j.bioactmat.2021.04.021 33997503
    [Google Scholar]
  90. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
  91. ZhuR. ZhangF. PengY. XieT. WangY. LanY. Current progress in cancer treatment using nanomaterials.Front. Oncol.20221293012510.3389/fonc.2022.930125 35912195
    [Google Scholar]
  92. SubramanianA.P. JaganathanS.K. SupriyantoE. Overview on in vitro and in vivo investigations of nanocomposite based cancer diagnosis and therapeutics.RSC Advances2015589726387265210.1039/C5RA11912J
    [Google Scholar]
  93. MishraD.K. YadavK.S. PrabhakarB. GaudR.S. Nanocomposite for cancer targeted drug delivery.Woodhead Publishing201832333710.1016/B978‑0‑12‑813741‑3.00014‑5
    [Google Scholar]
  94. GhaniM.W. IqbalA. GhaniH. BibiS. WangZ. PeiR. Recent advances in nanocomposite-based delivery systems for targeted CRISPR/Cas delivery and therapeutic genetic manipulation.J. Mater. Chem. B Mater. Biol. Med.202311245251527110.1039/D2TB02610D 36779580
    [Google Scholar]
  95. WenJ. YangK. HuangJ. SunS. Recent advances in LDH-based nanosystems for cancer therapy.Mater. Des.202119810929810.1016/j.matdes.2020.109298
    [Google Scholar]
  96. MetselaarJ.M. LammersT. Challenges in nanomedicine clinical translation.Drug Deliv. Transl. Res.202010372172510.1007/s13346‑020‑00740‑5 32166632
    [Google Scholar]
  97. SnodinD.J. McCrossenS.D. Guidelines and pharmacopoeial standards for pharmaceutical impurities: Overview and critical assessment.Regul. Toxicol. Pharmacol.201263229831210.1016/j.yrtph.2012.03.016 22507740
    [Google Scholar]
  98. ZhaoR. KeenL. KongX. Clinical Translation and Safety Regulation of Nanobiomaterials.Wiley201845947910.1002/9783527698646.ch19
    [Google Scholar]
  99. LooY.S. ZahidN.I. MadheswaranT. Mat AzmiI.D. Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer.J. Drug Deliv. Sci. Technol.20227110330010.1016/j.jddst.2022.103300
    [Google Scholar]
  100. ClinicalTrials.gov is a place to learn about clinical studies from around the world.2024Available from: https://clinicaltrials.gov
  101. Designs in action: Creating smart enhanced reefs to regenerate marine life2024Available from: https://www.wipo.int/portal/en/index.html
  102. SharmaH. HalagaliP. MajumderA. SharmaV. PathakR. Natural compounds targeting signaling pathways in breast cancer therapy.African J Biol Sci20246105430547910.33472/AFJBS.6.10.2024.5430‑5479
    [Google Scholar]
  103. PathakR. KaurV. SharmaS. BhandariM. MishraR. SaxenaA. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors.AfrJBioSc2024691311133010.33472/AFJBS.6.9.2024.1311‑1330
    [Google Scholar]
  104. KumarP. SharmaH. SinghA. Targeting the interplay of proteins through PROTACs for management cancer and associated disorders.Curr. Cancer Ther. Rev.20242010.2174/0115733947304806240417092449
    [Google Scholar]
  105. AshiqueS. BhowmickM. PalR. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success.Adv. Cancer Biol. Metastasis20241010011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  106. KumarP. PandeyS. AhmadF. VermaA. SharmaH. AshiqueS. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.2023913110.2174/0115734137271865231105070727
    [Google Scholar]
  107. ChandraP. SharmaH. SachanN. The Potential Role of Prebiotics, Probiotics, and Synbiotics in Cancer Prevention and Therapy.Synbiotics in Metabolic Disorders.Boca RatonCRC Press202419121310.1201/9781032702438‑13
    [Google Scholar]
  108. SharmaH. PathakR. SachanN. ChandraP. Role of Tumor Antigens for Cancer Vaccine Development.Cancer Vaccination and Challenges.New YorkApple Academic Press2024579410.1201/9781003501718‑3
    [Google Scholar]
  109. KaushikM. KumarS. SinghM. SharmaH. BhowmickM. BhowmickP. Bio-inspired Nanomaterials in Cancer Theranostics.Nanotheranostics for Diagnosis and Therapy.SingaporeSpringer Nature Singapore20249512310.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
  110. DattaD. ColacoV. BandiS.P. SharmaH. DhasN. GiramP.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities.Polymers for Oral Drug Delivery Technologies.Woodhead Publishing202526333310.1016/B978‑0‑443‑13774‑7.00007‑4
    [Google Scholar]
  111. SharmaS. DindaSCSH. Matrix types drug delivery system for sustained release : A review.ASIO J Drug Deliv20226118
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775367848250226063700
Loading
/content/journals/cdrr/10.2174/0125899775367848250226063700
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test