Skip to content
2000
Volume 17, Issue 3
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Background

The Colon-specific Drug Delivery Systems (CDDS) are advantageous, especially in the targeted therapy of colonic disorders such as Inflammatory Bowel Diseases (IBD), amoebiasis, and Colorectal Cancer (CRC). Site-specific drug release enables achieving a high drug level at the targeted site and reduces adverse effects. The drug targeting can be achieved with zero or minimal drug releases into the non-targeted area, especially at the stomach and small intestine sites, with maximum releases into the site of action.

Objectives

This article focused primarily on reviewing the literature on product development of CDDS using approaches ., pH-dependent, time-dependent, microbial-triggered, and combination approaches of two or more strategies for achieving possible drug releases and targeting successfully.

Methods

This review highlights the contributions of researchers in recent years to the field of CDDS, including various effective formulation designs and optimization, targeting approaches, factors affecting colon targeting, and evaluation parameters.

Conclusion

This review article broadly covers recent advancements in the optimization and designing of novel CDDS with newer technologies in managing colon-specific diseases. It is concluded that CDDS is advantageous for the successful targeting of drugs to the colon region for effective management of colonic diseases.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775364358250124105814
2025-02-06
2025-09-18
Loading full text...

Full text loading...

References

  1. SardouH.S. VosoughP.R. AbbaspourM. AkhgariA. SathyapalanT. SahebkarA. A review on curcumin colon-targeted oral drug delivery systems for the treatment of inflammatory bowel disease.Inflammopharmacology20233131095110510.1007/s10787‑023‑01140‑0 36757584
    [Google Scholar]
  2. OshiM.A. NaeemM. BaeJ. Colon-targeted dexamethasone microcrystals with pH-sensitive chitosan/alginate/Eudragit S multilayers for the treatment of inflammatory bowel disease.Carbohydr. Polym.201819843444210.1016/j.carbpol.2018.06.107 30093020
    [Google Scholar]
  3. ChandranS.C. SajayanK. SomanJ.C. Advancement in targeted drug delivery systems in managing colonic disorders. Advanced Drug Delivery Systems for Colonic Disorders.Elsevier202420722110.1016/B978‑0‑443‑14044‑0.00001‑6
    [Google Scholar]
  4. MahadevanV. Anatomy of the caecum, appendix and colon.Surgery20203811610.1016/j.mpsur.2019.10.017
    [Google Scholar]
  5. BroesderA. WoerdenbagH.J. PrinsG.H. NguyenD.N. FrijlinkH.W. HinrichsW.L.J. pH-dependent ileocolonic drug delivery, part I: in vitro and clinical evaluation of novel systems.Drug Discov. Today20202581362137310.1016/j.drudis.2020.06.011 32554060
    [Google Scholar]
  6. AwadA. MadlaC.M. McCoubreyL.E. Clinical translation of advanced colonic drug delivery technologies.Adv. Drug Deliv. Rev.202218111407610.1016/j.addr.2021.114076 34890739
    [Google Scholar]
  7. LouJ. DuanH. QinQ. Advances in oral drug delivery systems: Challenges and opportunities.Pharmaceutics202315248410.3390/pharmaceutics15020484 36839807
    [Google Scholar]
  8. PintoJ.F. Site-specific drug delivery systems within the gastro-intestinal tract: From the mouth to the colon.Int. J. Pharm.20103951-2445210.1016/j.ijpharm.2010.05.003 20546856
    [Google Scholar]
  9. MacfarlaneG.T. GibsonG.R. CummingsJ.H. Comparison of fermentation reactions in different regions of the human colon.J. Appl. Bacteriol.1992721576410.1111/j.1365‑2672.1992.tb04882.x 1541601
    [Google Scholar]
  10. AbdellaS. AbidF. YoussefS.H. pH and its applications in targeted drug delivery.Drug Discov. Today202328110341410.1016/j.drudis.2022.103414 36273779
    [Google Scholar]
  11. ChuJ.N. TraversoG. Foundations of gastrointestinal-based drug delivery and future developments.Nat. Rev. Gastroenterol. Hepatol.202219421923810.1038/s41575‑021‑00539‑w 34785786
    [Google Scholar]
  12. HuZ. MawatariS. ShibataN. Application of a biomagnetic measurement system (BMS) to the evaluation of gastrointestinal transit of intestinal pressure-controlled colon delivery capsules (PCDCs) in human subjects.Pharm. Res.200017216016710.1023/A:1007561129221 10751030
    [Google Scholar]
  13. DuchmannR. KaiserI. HermannE. MayetW. EweK. BÜSchenfelde K-HMZ. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD).Clin. Exp. Immunol.2008102344845510.1111/j.1365‑2249.1995.tb03836.x 8536356
    [Google Scholar]
  14. AzehafH. BenzineY. TagzirtM. SkibaM. KarroutY. Microbiota-sensitive drug delivery systems based on natural polysaccharides for colon targeting.Drug Discov. Today202328710360610.1016/j.drudis.2023.103606 37146964
    [Google Scholar]
  15. AmidonS. BrownJ.E. DaveV.S. Colon-targeted oral drug delivery systems: Design trends and approaches.AAPS PharmSciTech201516473174110.1208/s12249‑015‑0350‑9 26070545
    [Google Scholar]
  16. SinhaV.R. KumriaR. Microbially triggered drug delivery to the colon.Eur. J. Pharm. Sci.200318131810.1016/S0928‑0987(02)00221‑X 12554067
    [Google Scholar]
  17. DarM.J. AliH. KhanA. KhanG.M. Polymer-based drug delivery: The quest for local targeting of inflamed intestinal mucosa.J. Drug Target.201725758259610.1080/1061186X.2017.1298601 28277824
    [Google Scholar]
  18. GomteS.S. AgnihotriT.G. KhopadeS. JainA. Exploring the potential of pH-sensitive polymers in targeted drug delivery.J. Biomater. Sci. Polym. Ed.202435222826810.1080/09205063.2023.2279792 37927045
    [Google Scholar]
  19. NaikJ.B. WaghuldeM.R. Development of vildagliptin loaded Eudragit® microspheres by screening design: in vitro evaluation.J. Pharm. Investig.201848662763710.1007/s40005‑017‑0355‑3
    [Google Scholar]
  20. MaroniA. ZemaL. LoretiG. PaluganL. GazzanigaA. Film coatings for oral pulsatile release.Int. J. Pharm.2013457236237110.1016/j.ijpharm.2013.03.010 23506956
    [Google Scholar]
  21. AlkilaniZ.A. OmarS. NasereddinJ. HamedR. ObaidatR. Design of colon-targeted drug delivery of dexamethasone: Formulation and in vitro characterization of solid dispersions.Heliyon20241014e3421210.1016/j.heliyon.2024.e34212 39100451
    [Google Scholar]
  22. AlshammariN.D. ElkanayatiR. VemulaS.K. Advancements in colon-targeted drug delivery: A comprehensive review on recent techniques with emphasis on hot-melt extrusion and 3D printing technologies.AAPS PharmSciTech202425723610.1208/s12249‑024‑02965‑w 39379609
    [Google Scholar]
  23. GazzanigaA. MoutaharrikS. FilippinI. Time-based formulation strategies for colon drug delivery.Pharmaceutics20221412276210.3390/pharmaceutics14122762 36559256
    [Google Scholar]
  24. SangalliM.E. MaroniA. ZemaL. BusettiC. GiordanoF. GazzanigaA. In vitro and in vivo evaluation of an oral system for time and/or site-specific drug delivery.J. Control. Release200173110311010.1016/S0168‑3659(01)00291‑7 11337063
    [Google Scholar]
  25. DewM.J. RyderR.E. EvansN. EvansB.K. RhodesJ. Colonic release of 5‐amino salicylic acid from an oral preparation in active ulcerative colitis.Br. J. Clin. Pharmacol.198316218518710.1111/j.1365‑2125.1983.tb04983.x 6615691
    [Google Scholar]
  26. JainS.N. PatilS.B. Perspectives of colon-specific drug delivery in the management of morning symptoms of rheumatoid arthritis.Inflammopharmacology202331125326410.1007/s10787‑022‑01120‑w 36544060
    [Google Scholar]
  27. SunN. ZhuangF. WangC. Enzymatically cross-linked arabinoxylan hydrogel: Effect of glucose oxidase on the gel characteristics and oral colon-targeted delivery for Naja atra neurotoxin.J. Food Eng.202438311224810.1016/j.jfoodeng.2024.112248
    [Google Scholar]
  28. KotlaN.G. RanaS. SivaramanG. Bioresponsive drug delivery systems in intestinal inflammation: State-of-the-art and future perspectives.Adv. Drug Deliv. Rev.201914624826610.1016/j.addr.2018.06.021 29966684
    [Google Scholar]
  29. JainS.K. JainA. Target-specific drug release to the colon.Expert Opin. Drug Deliv.20085548349810.1517/17425247.5.5.483 18491977
    [Google Scholar]
  30. SinhaV.R. KumriaR. Polysaccharide matrices for microbially triggered drug delivery to the colon.Drug Dev. Ind. Pharm.200430214315010.1081/DDC‑120028709 15089048
    [Google Scholar]
  31. FerraroF. SonnleitnerL.M. NeutC. Colon targeting in rats, dogs and IBD patients with species-independent film coatings.Int. J. Pharm. X2024710023310.1016/j.ijpx.2024.100233 38379554
    [Google Scholar]
  32. HuaS. MarksE. SchneiderJ.J. KeelyS. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue.Nanomedicine20151151117113210.1016/j.nano.2015.02.018 25784453
    [Google Scholar]
  33. KumarP. MishraB. Colon targeted drug delivery systems-An overview.Curr. Drug Deliv.20085318619810.2174/156720108784911712
    [Google Scholar]
  34. DennyW.A. Prodrug strategies in cancer therapy.Eur. J. Med. Chem.2001367-857759510.1016/S0223‑5234(01)01253‑3 11600229
    [Google Scholar]
  35. AgrawalN. JaiswalM. Synthesis and pharmacological characterization of new curcumin ester pro-drugs with enhanced anti-inflammatory, anti-ulcerogenic and improved tissue distribution.J Med Pharm Allied Sci20231260666074
    [Google Scholar]
  36. SinhaV.R. KumriaR. Colonic drug delivery: Prodrug approach.Pharm. Res.200118555756410.1023/A:1011033121528 11465408
    [Google Scholar]
  37. ChenH. CernigliaC.E. ChenH. Toxicological significance of azo dye metabolism by human intestinal microbiota.Front. Biosci.2012E4256858610.2741/e400 22201895
    [Google Scholar]
  38. JungY. KimY.M. What should be considered on design of a colon-specific prodrug?Expert Opin. Drug Deliv.20107224525810.1517/17425240903490401 20095945
    [Google Scholar]
  39. DhaneshwarS.S. Colon-specific prodrugs of 4-aminosalicylic acid for inflammatory bowel disease.World J. Gastroenterol.201420133564357110.3748/wjg.v20.i13.3564 24707139
    [Google Scholar]
  40. KimW. YangY. KimD. Conjugation of metronidazole with dextran: A potential pharmaceutical strategy to control colonic distribution of the anti-amebic drug susceptible to metabolism by colonic microbes.Drug Des. Devel. Ther.20171141942910.2147/DDDT.S129922 28243064
    [Google Scholar]
  41. LeeJ.S. JungY.J. DohM.J. KimY.M. Synthesis and properties of dextran-nalidixic acid ester as a colon-specific prodrug of nalidixic acid.Drug Dev. Ind. Pharm.200127433133610.1081/DDC‑100103732 11411900
    [Google Scholar]
  42. YanY. RenF. WangP. SunY. XingJ. Synthesis and evaluation of a prodrug of 5-aminosalicylic acid for the treatment of ulcerative colitis.Iran. J. Basic Med. Sci.2019221214521461 32133064
    [Google Scholar]
  43. PérezA.R. MaderueloC. LanaoJ.M. Recent advances in colon drug delivery systems.J. Control. Release202032770372410.1016/j.jconrel.2020.09.026 32941930
    [Google Scholar]
  44. NandhraG.K. ChaichanavichkijP. BirchM. ScottS.M. Gastrointestinal transit times in health as determined using ingestible capsule systems: A systematic review.J. Clin. Med.20231216527210.3390/jcm12165272 37629314
    [Google Scholar]
  45. KorzekwaK. NagarS. ClarkD. SciasciaT. HawiA. A continuous intestinal absorption model to predict drug enterohepatic recirculation in healthy humans: Nalbuphine as a model substrate.Mol. Pharm.20242194510452310.1021/acs.molpharmaceut.4c00424 38956965
    [Google Scholar]
  46. MaroniA. MoutaharrikS. ZemaL. GazzanigaA. Enteric coatings for colonic drug delivery: State of the art.Expert Opin. Drug Deliv.20171491027102910.1080/17425247.2017.1360864 28749188
    [Google Scholar]
  47. PatelM.M. ShahT.J. AminA.F. ShahN.N. Design, development and optimization of a novel time and pH-dependent colon targeted drug delivery system.Pharm. Dev. Technol.2009141657210.1080/10837450802409412 18802844
    [Google Scholar]
  48. MastiholimathV.S. DandagiP.M. JainS.S. GadadA.P. KulkarniA.R. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma.Int. J. Pharm.20073281495610.1016/j.ijpharm.2006.07.045 16942847
    [Google Scholar]
  49. VarumF. FreireA.C. FaddaH.M. BravoR. BasitA.W. A dual pH and microbiota-triggered coating (Phloral™) for fail-safe colonic drug release.Int. J. Pharm.202058311937910.1016/j.ijpharm.2020.119379 32360546
    [Google Scholar]
  50. IbekweV.C. KhelaM.K. EvansD.F. BasitA.W. A new concept in colonic drug targeting: A combined pH‐responsive and bacterially‐triggered drug delivery technology.Aliment. Pharmacol. Ther.200828791191610.1111/j.1365‑2036.2008.03810.x 18647282
    [Google Scholar]
  51. DodooC.C. WangJ. BasitA.W. StapletonP. GaisfordS. Targeted delivery of probiotics to enhance gastrointestinal stability and intestinal colonisation.Int. J. Pharm.20175301-222422910.1016/j.ijpharm.2017.07.068 28764983
    [Google Scholar]
  52. YeB. Langenberg vDR. Mesalazine preparations for the treatment of ulcerative colitis: Are all created equal?World J. Gastrointest. Pharmacol. Ther.20156413714410.4292/wjgpt.v6.i4.137 26558148
    [Google Scholar]
  53. MolemaG. MeijerD.K.F. Drug targeting.Wiley200110.1002/352760006X
    [Google Scholar]
  54. YangL. ChuJ.S. FixJ.A. Colon-specific drug delivery: New approaches and in vitro/in vivo evaluation.Int. J. Pharm.20022351-211510.1016/S0378‑5173(02)00004‑2 11879735
    [Google Scholar]
  55. LuoY. WangQ. Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery.Int. J. Biol. Macromol.20146435336710.1016/j.ijbiomac.2013.12.017 24360899
    [Google Scholar]
  56. PhilipA. PhilipB. Colon targeted drug delivery systems: A review on primary and novel approaches.Oman Med. J.2010252707810.5001/omj.2010.24 22125706
    [Google Scholar]
  57. MalaterreV. OgorkaJ. LoggiaN. GurnyR. Oral osmotically driven systems: 30 years of development and clinical use.Eur. J. Pharm. Biopharm.200973331132310.1016/j.ejpb.2009.07.002 19602438
    [Google Scholar]
  58. LautenschlägerC. SchmidtC. FischerD. StallmachA. Drug delivery strategies in the therapy of inflammatory bowel disease.Adv. Drug Deliv. Rev.201471587610.1016/j.addr.2013.10.001 24157534
    [Google Scholar]
  59. VermaR. KrishnaD.M. GargS. Formulation aspects in the development of osmotically controlled oral drug delivery systems.J. Control. Release2002791-372710.1016/S0168‑3659(01)00550‑8 11853915
    [Google Scholar]
  60. ShahN. ShahT. AminA. Polysaccharides: A targeting strategy for colonic drug delivery.Expert Opin. Drug Deliv.20118677979610.1517/17425247.2011.574121 21506904
    [Google Scholar]
  61. ZhangQ. TaoH. LinY. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.Biomaterials201610520622110.1016/j.biomaterials.2016.08.010 27525680
    [Google Scholar]
  62. TeruelA.H. AlvarezG.I. BermejoM. New insights of oral colonic drug delivery systems for inflammatory bowel disease therapy.Int. J. Mol. Sci.20202118650210.3390/ijms21186502 32899548
    [Google Scholar]
  63. WangK. ShenR. MengT. HuF. YuanH. Nano-drug delivery systems based on different targeting mechanisms in the targeted therapy of colorectal cancer.Molecules2022279298110.3390/molecules27092981 35566331
    [Google Scholar]
  64. NaeemM. AwanU.A. SubhanF. Advances in colon-targeted nano-drug delivery systems: Challenges and solutions.Arch. Pharm. Res.202043115316910.1007/s12272‑020‑01219‑0 31989477
    [Google Scholar]
  65. ZhuoZ. GuoK. LuoY. Targeted modulation of intestinal epithelial regeneration and immune response in ulcerative colitis using dual-targeting bilirubin nanoparticles.Theranostics202414252854610.7150/thno.87739 38169633
    [Google Scholar]
  66. KumariJ. PandeyS. JangdeK.K. KumarP.V. MishraD.K. Evolution, integration, and challenges of 3D printing in pharmaceutical applications: A comprehensive review.Bioprinting202444e0036710.1016/j.bprint.2024.e00367
    [Google Scholar]
  67. GooleJ. AmighiK. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems.Int. J. Pharm.20164991-237639410.1016/j.ijpharm.2015.12.071 26757150
    [Google Scholar]
  68. SonkarS.K. LanjhiyanaS.K. Formulation and evaluations of methotrexate loaded multiparticulate system for colon targeting: In vitro and surface morphology.Res J Pharm Technol2019125206710.5958/0974‑360X.2019.00342.1
    [Google Scholar]
  69. LeeT. ChangY.H. Structural, physicochemical, and in-vitro release properties of hydrogel beads produced by oligochitosan and de-esterified pectin from yuzu (Citrus junos) peel as a quercetin delivery system for colon target.Food Hydrocoll.202010810608610.1016/j.foodhyd.2020.106086
    [Google Scholar]
  70. XuY. ZhanC. FanL. WangL. ZhengH. Preparation of dual crosslinked alginate–chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system.Int. J. Pharm.2007336232933710.1016/j.ijpharm.2006.12.019 17223290
    [Google Scholar]
  71. AnsariM. SadaraniB. MajumdarA. Colon targeted beads loaded with pterostilbene: Formulation, optimization, characterization and in vivo evaluation.Saudi Pharm. J.2019271718110.1016/j.jsps.2018.07.021 30662309
    [Google Scholar]
  72. SonkarS. LanjhiyanaS. Drug release kinetic modeling and gamma scintigraphic studies of dual Ca 2+ and SO 4 2-cross-linked microbeads for colon specific targeting.Asian J. Pharm.202014661670
    [Google Scholar]
  73. PahariaA. YadavA.K. RaiG. JainS.K. PancholiS.S. AgrawalG.P. Eudragit-coated pectin microspheres of 5-fluorouracil for colon targeting.AAPS PharmSciTech200781E87E9310.1208/pt0801012 17408212
    [Google Scholar]
  74. UmadeviS.K. ThiruganeshR. SureshS. ReddyK.B. Formulation and evaluation of chitosan microspheres of aceclofenac for colon‐targeted drug delivery.Biopharm. Drug Dispos.201031740742710.1002/bdd.722 20848388
    [Google Scholar]
  75. SchymanP. PrintzR.L. PannalaV.R. Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat.Toxicol. Appl. Pharmacol.202143011571310.1016/j.taap.2021.115713 34492290
    [Google Scholar]
  76. ChandranS.C. SajayanK. SomanJ.C. Advancement in targeted drug delivery systems in managing colonic disorders. Advanced Drug Delivery Systems for Colonic Disorders.Elsevier202420722110.1016/B978‑0‑443‑14044‑0.00001‑6
    [Google Scholar]
  77. WenC. ChenD. ZhongR. PengX. Animal models of inflammatory bowel disease: Category and evaluation indexes.Gastroenterol. Rep.202312goae02110.1093/gastro/goae021 38634007
    [Google Scholar]
  78. TieS. ChenY. TanM. An evaluation of animal models for using bioactive compounds in the treatment of inflammatory bowel disease.Food Front.20245247449310.1002/fft2.360
    [Google Scholar]
  79. SharmaR. RawalR.K. GabaT. Design, synthesis and ex vivo evaluation of colon-specific azo based prodrugs of anticancer agents.Bioorg. Med. Chem. Lett.201323195332533810.1016/j.bmcl.2013.07.059 23968824
    [Google Scholar]
  80. Van den MooterG. KingetR. Oral colon-specific drug delivery: A review.Drug Deliv.199522819310.3109/10717549509031355
    [Google Scholar]
  81. DuttH. Gamma scintigraphy: An innovative technique for in vivo tracking of gastroretentive drug delivery systems.Ijppr Human202020512546
    [Google Scholar]
  82. BurkeM.D. StatonJ.S. VickersA.W. PetersE.E. CoffinM.D. A novel method to radiolabel gastric retentive formulations for gamma scintigraphy assessment.Pharm. Res.200724469570410.1007/s11095‑006‑9189‑9 17372696
    [Google Scholar]
  83. ProcházkováN. LaursenM.F. BarberaL.G. Gut physiology and environment explain variations in human gut microbiome composition and metabolism.Nat. Microbiol.20249123210322510.1038/s41564‑024‑01856‑x 39604623
    [Google Scholar]
  84. EvansD.F. PyeG. BramleyR. ClarkA.G. DysonT.J. HardcastleJ.D. Measurement of gastrointestinal pH profiles in normal ambulant human subjects.Gut19882981035104110.1136/gut.29.8.1035 3410329
    [Google Scholar]
  85. CollnotE.M. AliH. LehrC.M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa.J. Control. Release2012161223524610.1016/j.jconrel.2012.01.028 22306429
    [Google Scholar]
  86. KoziolekM. GrimmM. BeckerD. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the intellicap® system.J. Pharm. Sci.201510492855286310.1002/jps.24274 25411065
    [Google Scholar]
  87. GadallaH.H. MohammedF.A. SayedE.A.M. SolimanG.M. Colon-targeting of progesterone using hybrid polymeric microspheres improves its bioavailability and in vivo biological efficacy.Int. J. Pharm.202057711907010.1016/j.ijpharm.2020.119070 31981708
    [Google Scholar]
  88. AhmedA.A. OttenA.T. GarebB. Capsules with ileocolonic-targeted release of vitamin B2, B3, and C (ColoVit) intended for optimization of gut health: Development and validation of the production process.Pharmaceutics2023155135410.3390/pharmaceutics15051354 37242596
    [Google Scholar]
  89. TangX. ZhangX. ZhaoQ. A pH/time/pectinase-dependent oral colon-targeted system containing isoliquiritigenin: Pharmacokinetics and colon targeting evaluation in mice.Eur. J. Drug Metab. Pharmacokinet.202247567768610.1007/s13318‑022‑00783‑8 35790663
    [Google Scholar]
  90. TieH. WangY. ShangY. LiM. WeiX. WangZ. Fabrication of pH-dependent solid dispersion for oral colon-targeted delivery of notoginsenoside R1 and its protective effects on ulcerative colitis mice.Heliyon202399e2028010.1016/j.heliyon.2023.e20280 37809823
    [Google Scholar]
  91. TuranlıY. AcartürkF. Preparation and characterization of colon-targeted pH/Time-dependent nanoparticles using anionic and cationic polymethacrylate polymers.Eur. J. Pharm. Sci.202217110612210.1016/j.ejps.2022.106122 35007712
    [Google Scholar]
  92. YangY.Y. LiuZ. YuD.G. WangK. LiuP. ChenX. Colon-specific pulsatile drug release provided by electrospun shellac nanocoating on hydrophilic amorphous composites.Int. J. Nanomedicine2018132395240410.2147/IJN.S154849 29713169
    [Google Scholar]
  93. DengX.Q. ZhangH.B. WangG.F. Colon-specific microspheres loaded with puerarin reduce tumorigenesis and metastasis in colitis-associated colorectal cancer.Int. J. Pharm.201957011864410.1016/j.ijpharm.2019.118644 31465837
    [Google Scholar]
  94. MalviyaT. JoshiS. DwivediL.M. Synthesis of aloevera/acrylonitrile based nanoparticles for targeted drug delivery of 5-aminosalicylic acid.Int. J. Biol. Macromol.201810693093910.1016/j.ijbiomac.2017.08.085 28837846
    [Google Scholar]
  95. BoschB. MoutaharrikS. GazzanigaA. Development of a time-dependent oral colon delivery system of anaerobic Odoribacter splanchnicus for bacteriotherapy.Eur. J. Pharm. Biopharm.2023190738010.1016/j.ejpb.2023.07.010 37479064
    [Google Scholar]
  96. IdoudiS. HijjiY. BedhiafiT. A novel approach of encapsulating curcumin and succinylated derivative in mannosylated-chitosan nanoparticles.Carbohydr. Polym.202229712003410.1016/j.carbpol.2022.120034 36184178
    [Google Scholar]
  97. SardouS.H. AkhgariA. MohammadpourA.H. Optimization study of combined enteric and time-dependent polymethacrylates as a coating for colon targeted delivery of 5-ASA pellets in rats with ulcerative colitis.Eur. J. Pharm. Sci.202216810607210.1016/j.ejps.2021.106072 34774715
    [Google Scholar]
  98. KhalifaA.Z. ZyadH. MohammedH. Recent advances in remotely controlled pulsatile drug delivery systems.J. Adv. Pharm. Technol. Res.2022132778210.4103/japtr.japtr_330_21 35464664
    [Google Scholar]
  99. ZhuJ. ZhongL. ChenW. Preparation and characterization of pectin/chitosan beads containing porous starch embedded with doxorubicin hydrochloride: A novel and simple colon targeted drug delivery system.Food Hydrocoll.20199556257010.1016/j.foodhyd.2018.04.042
    [Google Scholar]
  100. KumarB. KulanthaivelS. MondalA. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping.Colloids Surf. B Biointerfaces201715035236110.1016/j.colsurfb.2016.10.049 27847225
    [Google Scholar]
  101. SeeliD.S. PrabaharanM. Guar gum oleate-graft-poly(methacrylic acid) hydrogel as a colon-specific controlled drug delivery carrier.Carbohydr. Polym.2017158515710.1016/j.carbpol.2016.11.092 28024542
    [Google Scholar]
  102. ChenJ. LiX. ChenL. XieF. Starch film-coated microparticles for oral colon-specific drug delivery.Carbohydr. Polym.201819124225410.1016/j.carbpol.2018.03.025 29661315
    [Google Scholar]
  103. MolinaL.D. ChazarraS. HowC.W. Cinnamate of inulin as a vehicle for delivery of colonic drugs.Int. J. Pharm.201547919610210.1016/j.ijpharm.2014.12.064 25550210
    [Google Scholar]
  104. GünterE.A. PopeykoO.V. Calcium pectinate gel beads obtained from callus cultures pectins as promising systems for colon-targeted drug delivery.Carbohydr. Polym.201614749049910.1016/j.carbpol.2016.04.026 27178956
    [Google Scholar]
  105. QiaoH. FangD. ChenJ. Orally delivered polycurcumin responsive to bacterial reduction for targeted therapy of inflammatory bowel disease.Drug Deliv.201724123324210.1080/10717544.2016.1245367 28156160
    [Google Scholar]
  106. VarumF. FreireA.C. BravoR. BasitA.W. OPTICORE™, an innovative and accurate colonic targeting technology.Int. J. Pharm.202058311937210.1016/j.ijpharm.2020.119372 32344022
    [Google Scholar]
  107. ShendgeR.S. ZalteT.S. KhadeS.B. Polymeric microspheres redefining the landscape of colon-targeted delivery: A contemporary update.Eur. J. Med. Chem. Rep.20241110015610.1016/j.ejmcr.2024.100156
    [Google Scholar]
  108. AlangeV.V. BirajdarR.P. KulkarniR.V. Functionally modified polyacrylamide- graft -gum karaya pH-sensitive spray dried microspheres for colon targeting of an anti-cancer drug.Int. J. Biol. Macromol.201710282983910.1016/j.ijbiomac.2017.04.023 28392387
    [Google Scholar]
  109. MaurerJ.M. HofmanS. SchellekensR.C.A. Development and potential application of an oral ColoPulse infliximab tablet with colon specific release: A feasibility study.Int. J. Pharm.20165051-217518610.1016/j.ijpharm.2016.03.027 26997425
    [Google Scholar]
  110. NaeemM. ChoiM. CaoJ. Colon-targeted delivery of budesonide using dual pH- and time-dependent polymeric nanoparticles for colitis therapy.Drug Des. Devel. Ther.2015937893799 26229440
    [Google Scholar]
  111. AlvarezG.I. VivancosV. CollC. pH-Dependent molecular gate mesoporous microparticles for biological control of Giardia intestinalis.Pharmaceutics20211319410.3390/pharmaceutics13010094 33451061
    [Google Scholar]
  112. HodgesL.A. ConnollyS.M. BandJ. Scintigraphic evaluation of colon targeting pectin–HPMC tablets in healthy volunteers.Int. J. Pharm.20093701-214415010.1016/j.ijpharm.2008.12.002 19114096
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775364358250124105814
Loading
/content/journals/cdrr/10.2174/0125899775364358250124105814
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test