Skip to content
2000
image of Pharmacological Activity of Scopoletin: Deciphering the Potential of Coumarins in Cognitive Dysfunction

Abstract

Numerous therapeutic and culinary species produce scopoletin, a coumarin that is essential for treating a wide range of illnesses as a curative and chemopreventive agent. Globally, chronic illnesses are regarded as a major public health concern. Atypical regulation of various signalling pathways is the primary cause of most of these illnesses, which include cancer, as well as cardiovascular, metabolic, and neurological disorders. In Alzheimer’s disease (AD), amyloid β (Aβ) peptide aggregates are deposited in the CNS, forming plaques. The investigation assessed the capacity of scopoletin to modify the disease to several AD-related factors. It activated the release of insulin in the β cell of the pancreas. Additionally, it has been noted that most currently approved treatments for these illnesses are mono-targeted and related to the development of chemoresistance, which limits their utility and prevents them from demonstrating prolonged efficacy. Conversely, the molecules originating from plants exhibit a multi-targeted nature, which has led to widespread interest in these phytochemicals due to their few adverse effects. The purpose of this review is to summarise the possible consequences of scopoletin. An outline of scopoletin pharmacology, pharmacokinetics, and toxicity is given in this review. In addition, this chemical is non-toxic and has good pharmacokinetic properties, so more research in clinical settings is necessary to develop it as a possible medication. The findings from the investigation could aid in the prevention and management of illnesses as well as the understanding of the benefits of plants containing scopoletin.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775358899250726213130
2025-08-21
2025-10-19
Loading full text...

Full text loading...

References

  1. Annunziata F. Pinna C. Dallavalle S. Tamborini L. Pinto A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci. 2020 21 13 4618 10.3390/ijms21134618 32610556
    [Google Scholar]
  2. Bourgaud F. Hehn A. Larbat R. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem. Rev. 2006 5 2-3 293 308 10.1007/s11101‑006‑9040‑2
    [Google Scholar]
  3. Firmansyah A. Winingsih W. Manobi J.D. Review of scopoletin: Isolation, analysis process, and pharmacological activity. Biointerface Res. Appl. Chem. 2020 11 4 12006 12019 10.33263/BRIAC114.1200612019
    [Google Scholar]
  4. Li J. Wu J. Scopolin, a glycoside form of the phytoalexin scopoletin, is likely involved in the resistance of Nicotiana attenuata against Alternaria alternata. J. Plant Pathol. 2016 641 644 10.4454/JPP.V98I3.006
    [Google Scholar]
  5. Gnonlonfin G.J.B. Sanni A. Brimer L. Review scopoletin–A coumarin phytoalexin with medicinal properties. Crit. Rev. Plant Sci. 2012 31 1 47 56 10.1080/07352689.2011.616039
    [Google Scholar]
  6. Gao X.Y. Li X.Y. Zhang C.Y. Bai C.Y. Scopoletin: A review of its pharmacology, pharmacokinetics, and toxicity. Front. Pharmacol. 2024 15 1268464 10.3389/fphar.2024.1268464 38464713
    [Google Scholar]
  7. Liu X.L. Zhang L. Fu X.L. Chen K. Qian B.C. Effect of scopoletin on PC3 cell proliferation and apoptosis. Acta Pharmacol. Sin. 2001 22 10 929 933 11749777
    [Google Scholar]
  8. Kashyap P. Ram H. Shukla S.D. Kumar S. Scopoletin: Antiamyloidogenic, anticholinesterase, and neuroprotective potential of a natural compound present in Argyreia speciosa roots by in vitro and in silico study. Neurosci Insights 2020 15 10.1177/2633105520937693 32671342
    [Google Scholar]
  9. Koca I. Cakir D. Tekgular B. Scopoletin: Natural sources and its Effects on Health. International Congress on Medicinal and Aromatic Plants 2017 589 596
    [Google Scholar]
  10. Napiroon T. Bacher M. Balslev H. Tawaitakham K. Santimaleeworagun W. Vajrodaya S. Scopoletin from Lasianthus lucidus Blume (Rubiaceae): A potential antimicrobial against multidrug-resistant Pseudomonas aeruginosa. J. Appl. Pharm. Sci. 2018 8 9 1 6 10.7324/JAPS.2018.8901
    [Google Scholar]
  11. Luo L. Sun T. Yang L. Scopoletin ameliorates anxiety-like behaviors in complete Freund’s adjuvant-induced mouse model. Mol. Brain 2020 13 1 15 10.1186/s13041‑020‑0560‑2 32019580
    [Google Scholar]
  12. Prabowo W.C. Agustina R. Antibacterial activity of scopoletin from stem bark of Aleurites moluccana against Salmonella typhi. J Trop Pharm Chem 2020 5 1 29 32 10.25026/jtpc.v5i1.218
    [Google Scholar]
  13. Das S. Czuni L. Báló V. Cytotoxic action of artemisinin and scopoletin on planktonic forms and on biofilms of Candida species. Molecules 2020 25 3 476 10.3390/molecules25030476 31979177
    [Google Scholar]
  14. Njankouo Ndam Y. Nyegue M.A. Mounjouenpou P. Kansci G. Kenfack M.J. Eugène E.E. LC‐MS quantification of scopoletin in cassava (Manihot Esculenta Crantz) varieties, local derived foods, and activity on some food spoilage fungi. J. Food Process. Preserv. 2020 44 4 e14387 10.1111/jfpp.14387
    [Google Scholar]
  15. Vyas N. Raval M. Patel N. Quantitative estimation of scopoletin from Argyreia speciosa (L. f.) sweet by a validated high performance thin layer chromatographic method. Separ. Sci. Plus 2020 3 8 362 368 10.1002/sscp.202000031
    [Google Scholar]
  16. Kang H.R. Kim H.J. Kim B. Inhibitory Effect of Scopoletin Isolated from Sorbus commixta on TNF-α-Induced Inflammation in Human Vascular Endothelial EA.hy926 Cells through NF-κB Signaling Pathway Suppression. J. Life Sci. 2020 30 4 343 351 10.5352/JLS.2020.30.4.343
    [Google Scholar]
  17. Serrano-Román J. Nicasio-Torres P. Hernández-Pérez E. Jiménez-Ferrer E. Elimination pharmacokinetics of sphaeralcic acid, tomentin and scopoletin mixture from a standardized fraction of Sphaeralcea angustifolia (Cav.) G. Don orally administered. J. Pharm. Biomed. Anal. 2020 183 113143 10.1016/j.jpba.2020.113143 32045824
    [Google Scholar]
  18. Meilawati L. Dewi R.M. Tasfiyati A.N. Septama A.W. Antika L.D. Scopoletin. Asian Pac. J. Trop. Biomed. 2023 13 1 1 8 10.4103/2221‑1691.367685
    [Google Scholar]
  19. Gnonlonfin G.J.B. Sanni A. Brimer L. Review Scopoletin – A Coumarin Phytoalexin with Medicinal Properties. Crit. Rev. Plant Sci. 2012 31 1 47 56 10.1080/07352689.2011.616039
    [Google Scholar]
  20. Kang H.R. Kim H.J. Kim B. Inhibitory effect of scopoletin isolated from Sorbus commixta on TNF-α-induced inflammation in human vascular endothelial EA. hy926 cells through NF-κB signaling pathway suppresions. J. Life Sci. 2020 30 4 343 351 10.5352/JLS.2020.30.4.343
    [Google Scholar]
  21. Bhatt Mehul K. Dholwani Kishor K. Saluja Ajay K. Isolation and structure elucidation of scopoletin from Ipomoea reniformis (Convolvulaceae). J. Appl. Pharm. Sci. 2011 1 05 138 144
    [Google Scholar]
  22. Sichaem J. Inthanon K. Funnimid N. Chemical Constituents of the Stem Bark of Bombax ceiba. Chem. Nat. Compd. 2020 56 5 909 911 10.1007/s10600‑020‑03183‑z
    [Google Scholar]
  23. Scopoletin. PubChem Compound Database. 2020 Available from:https://pubchem.ncbi.nlm.nih.gov/compound/5280460
    [Google Scholar]
  24. Tzeng T. Lin Y. Jong T. Chang C. Ethanol modified supercritical fluids extraction of scopoletin and artemisinin from Artemisia annua L. Separ. Purif. Tech. 2007 56 1 18 24 10.1016/j.seppur.2007.01.010
    [Google Scholar]
  25. Jain DC Pant N Gupta MM Process for the isolation of compound scopoletin useful as nitric oxide synthesis inhibitor. Patent US6337095B1 2002
    [Google Scholar]
  26. Zeng Y. Li S. Wang X. Gong T. Sun X. Zhang Z. Validated LC-MS/MS method for the determination of scopoletin in rat plasma and its application to pharmacokinetic studies. Molecules 2015 20 10 18988 19001 10.3390/molecules201018988 26492227
    [Google Scholar]
  27. Khuda-Bukhsh A.R. Bhattacharyya S.S. Paul S. Boujedaini N. Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375. J. Chin. Integr. Med. 2010 8 9 853 862 10.3736/jcim20100909 20836976
    [Google Scholar]
  28. Shah M.R. Shamim A. White L.S. Bertino M.F. Mesaik M.A. Soomro S. The anti-inflammatory properties of Au–scopoletin nanoconjugates. New J. Chem. 2014 38 11 5566 5572 10.1039/C4NJ00792A
    [Google Scholar]
  29. Zeng Y. Li S. Liu C. Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta Pharmacol. Sin. 2017 38 3 424 433 10.1038/aps.2016.126 28112183
    [Google Scholar]
  30. Ghezzi M. Pescina S. Padula C. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021 332 312 336 10.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  31. Pignatello R. Corsaro R. Bonaccorso A. Zingale E. Carbone C. Musumeci T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv. Transl. Res. 2022 12 8 1991 2006 10.1007/s13346‑022‑01182‑x 35604634
    [Google Scholar]
  32. Newman M.F. Kirchner J.L. Phillips-Bute B. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 2001 344 6 395 402 10.1056/NEJM200102083440601 11172175
    [Google Scholar]
  33. Mesulam M.M. Principles of behavioral and cognitive neurology. Oxford University Press 2000 10.1093/oso/9780195134759.001.0001
    [Google Scholar]
  34. Dauer W. Przedborski S. Parkinson’s disease: Mechanisms and models. Neuron 2003 39 6 889 909 10.1016/S0896‑6273(03)00568‑3 12971891
    [Google Scholar]
  35. Martin L.J. Pan Y. Price A.C. Parkinson’s disease α-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 2006 26 1 41 50 10.1523/JNEUROSCI.4308‑05.2006 16399671
    [Google Scholar]
  36. Reddy A.P. Ravichandran J. Carkaci-Salli N. Neural regeneration therapies for Alzheimer’s and Parkinson’s disease-related disorders. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 4 165506 10.1016/j.bbadis.2019.06.020 31276770
    [Google Scholar]
  37. Hirsch E.C. Vyas S. Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat. Disord. 2012 18 Suppl. 1 S210 S212 10.1016/S1353‑8020(11)70065‑7 22166438
    [Google Scholar]
  38. Wang Q. Liu Y. Zhou J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener. 2015 4 1 19 10.1186/s40035‑015‑0042‑0 26464797
    [Google Scholar]
  39. Bose A Beal MF Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 2016139 S1 216 31 (Suppl. 1) 10.1111/jnc.13731 27546335
    [Google Scholar]
  40. Exner N. Lutz A.K. Haass C. Winklhofer K.F. Mitochondrial dysfunction in Parkinson’s disease: Molecular mechanisms and pathophysiological consequences. EMBO J. 2012 31 14 3038 3062 10.1038/emboj.2012.170 22735187
    [Google Scholar]
  41. Henchcliffe C. Beal M.F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 2008 4 11 600 609 10.1038/ncpneuro0924 18978800
    [Google Scholar]
  42. Olanow C.W. Prusiner S.B. Is Parkinson’s disease a prion disorder? Proc. Natl. Acad. Sci. USA 2009 106 31 12571 12572 10.1073/pnas.0906759106 19666621
    [Google Scholar]
  43. Klein C. Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2012 2 1 a008888 10.1101/cshperspect.a008888 22315721
    [Google Scholar]
  44. Lopez A. Muñoz A. Guerra M.J. Labandeira-Garcia J.L. Mechanisms of the effects of exogenous levodopa on the dopamine-denervated striatum. Neuroscience 2001 103 3 639 651 10.1016/S0306‑4522(00)00588‑1 11274784
    [Google Scholar]
  45. LIEBERMAN A. Comparison of dopa decarboxylase inhibitor (carbidopa) combined with levodopa and levodopa alone in Parkinson’s disease. Neurology 1975 25 10 911 916 10.1212/wnl.25.10.911 1101099
    [Google Scholar]
  46. Müller T. Catechol-O-methyltransferase inhibitors in Parkinson’s disease. Drugs 2015 75 2 157 174 10.1007/s40265‑014‑0343‑0 25559423
    [Google Scholar]
  47. Brooks D.J. Dopamine agonists: Their role in the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2000 68 6 685 689 10.1136/jnnp.68.6.685 10811688
    [Google Scholar]
  48. Fernandez H.H. Chen J.J. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy 2007 27 12 Pt 2 174S 185S 10.1592/phco.27.12part2.174S 18041937
    [Google Scholar]
  49. Dumurgier J. Tzourio C. Epidemiology of neurological diseases in older adults. Rev. Neurol. 2020 176 9 642 648 10.1016/j.neurol.2020.01.356 32145981
    [Google Scholar]
  50. Sethiya N.K. Nahata A. Singh P.K. Mishra S.H. Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J. Ayurveda Integr. Med. 2019 10 1 25 31 10.1016/j.jaim.2017.08.012 29530454
    [Google Scholar]
  51. Zhang H. Jay Forman H. Choi J. γ-glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 2005 401 468 483 10.1016/S0076‑6879(05)01028‑1 16399403
    [Google Scholar]
  52. Sabuncu M.R. Desikan R.S. Sepulcre J. The dynamics of cortical and hippocampal atrophy in Alzheimer disease. Arch. Neurol. 2011 68 8 1040 1048 10.1001/archneurol.2011.167 21825241
    [Google Scholar]
  53. Armstrong R.A. Plaques and tangles and the pathogenesis of Alzheimer’s disease. Folia Neuropathol. 2006 44 1 1 11 16565925
    [Google Scholar]
  54. Mirra S.S. Heyman A. McKeel D. Participating CERAD Neuropathologists. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 1991 41 4 479 10.1212/WNL.41.4.479
    [Google Scholar]
  55. Gauthier S. Rosa-Neto P. Morais J.A. Webster C. World Alzheimer Report 2021: Journey Through the Diagnosis of Dementia. London, England Alzheimer’s Disease International 2021
    [Google Scholar]
  56. Bloom G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014 71 4 505 508 10.1001/jamaneurol.2013.5847 24493463
    [Google Scholar]
  57. Avila J. Intracellular and extracellular tau. Front. Neurosci. 2010 4 49 10.3389/fnins.2010.00049 20661459
    [Google Scholar]
  58. Du X. Wang X. Geng M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener. 2018 7 1 2 10.1186/s40035‑018‑0107‑y 29423193
    [Google Scholar]
  59. Esposito Z. Belli L. Toniolo S. Sancesario G. Bianconi C. Martorana A. Amyloid β, glutamate, excitotoxicity in Alzheimer’s disease: Are we on the right track? CNS Neurosci. Ther. 2013 19 8 549 555 10.1111/cns.12095 23593992
    [Google Scholar]
  60. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nat. Neurosci. 2015 18 6 794 799 10.1038/nn.4017 26007212
    [Google Scholar]
  61. Makin S. The amyloid hypothesis on trial. Nature 2018 559 7715 S4 S7 10.1038/d41586‑018‑05719‑4 30046080
    [Google Scholar]
  62. Lan J.S. Xie S.S. Li S.Y. Pan L.F. Wang X.B. Kong L.Y. Design, synthesis and evaluation of novel tacrine-(β-carboline) hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. 2014 22 21 6089 6104 10.1016/j.bmc.2014.08.035 25282654
    [Google Scholar]
  63. Gay N.H. Suwanjang W. Ruankham W. Butein, isoliquiritigenin, and scopoletin attenuate neurodegeneration via antioxidant enzymes and SIRT1/ADAM10 signaling pathway. RSC Advances 2020 10 28 16593 16606 10.1039/C9RA06056A 35498835
    [Google Scholar]
  64. Keefe R.S.E. Fox K.H. Harvey P.D. Cucchiaro J. Siu C. Loebel A. Characteristics of the MATRICS Consensus Cognitive Battery in a 29-site antipsychotic schizophrenia clinical trial. Schizophr. Res. 2011 125 2-3 161 168 10.1016/j.schres.2010.09.015 21075600
    [Google Scholar]
  65. Brekke J.S. Hoe M. Long J. Green M.F. How neurocognition and social cognition influence functional change during community-based psychosocial rehabilitation for individuals with schizophrenia. Schizophr. Bull. 2007 33 5 1247 1256 10.1093/schbul/sbl072 17255120
    [Google Scholar]
  66. Sabe M. Pillinger T. Kaiser S. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022 136 104608 10.1016/j.neubiorev.2022.104608 35303594
    [Google Scholar]
  67. Seeman P. Lee T. Antipsychotic drugs: Direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 1975 188 4194 1217 1219 10.1126/science.1145194 1145194
    [Google Scholar]
  68. Kaar S.J. Natesan S. McCutcheon R. Howes O.D. Antipsychotics: Mechanisms underlying clinical response and side-effects and novel treatment approaches based on pathophysiology. Neuropharmacology 2020 172 107704 10.1016/j.neuropharm.2019.107704 31299229
    [Google Scholar]
  69. Nuechterlein K.H. Barch D.M. Gold J.M. Goldberg T.E. Green M.F. Heaton R.K. Identification of separable cognitive factors in schizophrenia. Schizophr. Res. 2004 72 1 29 39 10.1016/j.schres.2004.09.007 15531405
    [Google Scholar]
  70. Burton C.Z. Vella L. Harvey P.D. Patterson T.L. Heaton R.K. Twamley E.W. Factor structure of the MATRICS Consensus Cognitive Battery (MCCB) in schizophrenia. Schizophr. Res. 2013 146 1-3 244 248 10.1016/j.schres.2013.02.026 23507359
    [Google Scholar]
  71. Pandy V. Narasingam M. Kunasegaran T. Murugan D.D. Mohamed Z. Effect of noni (Morinda citrifolia Linn.) fruit and its bioactive principles scopoletin and rutin on rat vas deferens contractility: An ex vivo study. ScientificWorldJournal 2014 2014 1 1 11 10.1155/2014/909586 25045753
    [Google Scholar]
  72. Basu M. Mayana K. Xavier S. Balachandran S. Mishra N. Effect of scopoletin on monoamine oxidases and brain amines. Neurochem. Int. 2016 93 113 117 10.1016/j.neuint.2016.01.001 26796202
    [Google Scholar]
  73. Fisher R.S. Acevedo C. Arzimanoglou A. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia 2014 55 4 475 482 10.1111/epi.12550 24730690
    [Google Scholar]
  74. Fisher R.S. Boas W.E. Blume W. Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005 46 4 470 472 10.1111/j.0013‑9580.2005.66104.x 15816939
    [Google Scholar]
  75. Mauritz M. Hirsch L.J. Camfield P. Acute symptomatic seizures: An educational, evidence‐based review. Epileptic Disord. 2022 24 1 26 49 10.1684/epd.2021.1376 34789447
    [Google Scholar]
  76. Neligan A. Hauser W.A. Sander J.W. The epidemiology of the epilepsies. Handb. Clin. Neurol. 2012 107 113 133 10.1016/B978‑0‑444‑52898‑8.00006‑9 22938966
    [Google Scholar]
  77. Pearl P.L. Gibson K.M. Clinical aspects of the disorders of GABA metabolism in children. Curr. Opin. Neurol. 2004 17 2 107 113 10.1097/00019052‑200404000‑00005 15021235
    [Google Scholar]
  78. Jiang J. Yu Y. Kinjo E.R. Du Y. Nguyen H.P. Dingledine R. Suppressing pro-inflammatory prostaglandin signaling attenuates excitotoxicity-associated neuronal inflammation and injury. Neuropharmacology 2019 149 149 160 10.1016/j.neuropharm.2019.02.011 30763657
    [Google Scholar]
  79. Carmans S. Hendriks J.J.A. Slaets H. Systemic treatment with the inhibitory neurotransmitter γ-aminobutyric acid aggravates experimental autoimmune encephalomyelitis by affecting proinflammatory immune responses. J. Neuroimmunol. 2013 255 1-2 45 53 10.1016/j.jneuroim.2012.11.001 23194644
    [Google Scholar]
  80. Muscatell K.A. Dedovic K. Slavich G.M. Greater amygdala activity and dorsomedial prefrontal–amygdala coupling are associated with enhanced inflammatory responses to stress. Brain Behav. Immun. 2015 43 46 53 10.1016/j.bbi.2014.06.201 25016200
    [Google Scholar]
  81. Redlich R. Stacey D. Opel N. Evidence of an IFN-γ by early life stress interaction in the regulation of amygdala reactivity to emotional stimuli. Psychoneuroendocrinology 2015 62 166 173 10.1016/j.psyneuen.2015.08.008 26313134
    [Google Scholar]
  82. Felger J.C. Imaging the role of inflammation in mood and anxiety-related disorders. Curr. Neuropharmacol. 2018 16 5 533 558 10.2174/1570159X15666171123201142 29173175
    [Google Scholar]
  83. Diabetes Available from:https://www.who.int/healthtopics/diabetes#tab=tab_1
  84. Diabetes Fact sheet N°312. 2013 Available from:https://www.who.int/news-room/fact-sheets/detail/diabetes
  85. Kitabchi A.E. Umpierrez G.E. Miles J.M. Fisher J.N. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009 32 7 1335 1343 10.2337/dc09‑9032 19564476
    [Google Scholar]
  86. Saedi E. Gheini M.R. Faiz F. Arami M.A. Diabetes mellitus and cognitive impairments. World J. Diabetes 2016 7 17 412 422 10.4239/wjd.v7.i17.412 27660698
    [Google Scholar]
  87. Dean L. McEntyre J. Introduction to diabetes. In: The Genetic Landscape of Diabetes. US National Center for Biotechnology Information 2004
    [Google Scholar]
  88. Types of Diabetes Mellitus 2024 Available from:https://www.webmd.com/diabetes/guide/types-of-diabetes-mellitus
  89. An Overview Available from:seases/7104-diabetes-mellitus 2025
  90. Rorsman P. Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 2003 46 8 1029 1045 10.1007/s00125‑003‑1153‑1 12879249
    [Google Scholar]
  91. Moynihan K.A. Grimm A.A. Plueger M.M. Increased dosage of mammalian Sir2 in pancreatic β cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2005 2 2 105 117 10.1016/j.cmet.2005.07.001 16098828
    [Google Scholar]
  92. Cook D.L. Hales N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 1984 311 5983 271 273 10.1038/311271a0 6090930
    [Google Scholar]
  93. Mears D. Regulation of insulin secretion in islets of Langerhans by Ca(2+)channels. J. Membr. Biol. 2004 200 2 57 66 10.1007/s00232‑004‑0692‑9 15520904
    [Google Scholar]
  94. Grill V Radtke M Qvigstad E Kollind M Björklund A. Beneficial effects of K‐ATP channel openers in diabetes: An update on mech10 anisms and clinical experiences. Diabetes Obes Metab 2009 11 s4 :143-8.(Suppl. 4) 10.1111/j.1463‑1326.2009.01119.x 19817796
    [Google Scholar]
  95. Zhang W.Y. Lee J.J. Kim Y. Kim I.S. Park J.S. Myung C.S. Amelioration of insulin resistance by scopoletin in high-glucose-induced, insulin-resistant HepG2 cells. Horm. Metab. Res. 2010 42 13 930 935 10.1055/s‑0030‑1265219 20886413
    [Google Scholar]
  96. Jang J.H. Park J.E. Han J.S. Scopoletin inhibits α-glucosidase in vitro and alleviates postprandial hyperglycemia in mice with diabetes. Eur. J. Pharmacol. 2018 834 152 156 10.1016/j.ejphar.2018.07.032 30031794
    [Google Scholar]
  97. Jang J.H. Park J.E. Han J.S. Scopoletin increases glucose uptake through activation of PI3K and AMPK signaling pathway and improves insulin sensitivity in 3T3-L1 cells. Nutr. Res. 2020 74 52 61 10.1016/j.nutres.2019.12.003 31945607
    [Google Scholar]
  98. Lake B. Grasso P. Comparison of the hepatotoxicity of coumarin in the rat, mouse, and Syrian hamster: A dose and time response study. Fundam. Appl. Toxicol. 1996 34 1 105 117 10.1006/faat.1996.0181 8937898
    [Google Scholar]
  99. Lake B.G. Coumarin metabolism, toxicity and carcinogenicity: Relevance for human risk assessment. Food Chem. Toxicol. 1999 37 4 423 453 10.1016/S0278‑6915(99)00010‑1 10418958
    [Google Scholar]
  100. Carlton B.D. Aubrun J-C. Simon G.S. Effects of coumarin following perinatal and chronic exposure in Sprague-Dawley rats and CD-1 mice. Toxicol. Sci. 1996 30 1 145 151 10.1093/toxsci/30.1.145
    [Google Scholar]
  101. Yao W. Chen J. Lin Z. Scopoletin induced metabolomic profile disturbances in zebrafish embryos. Metabolites 2022 12 10 934 10.3390/metabo12100934 36295836
    [Google Scholar]
  102. Njankouo Y.N. Nyegue M.A. Njingou I. Moundipa P.F. Mounjouenpou P. Toxic potential of crude extract from cassava cortex containing scopoletin and cyanide on wistar rats and broilers. Dose Response 2023 21 3 15593258231203587 10.1177/15593258231203587 37744654
    [Google Scholar]
  103. Chen Q. Zhou W. Huang Y. Umbelliferone and scopoletin target tyrosine kinases on fibroblast-like synoviocytes to block NF-κB signaling to combat rheumatoid arthritis. Front. Pharmacol. 2022 13 946210 10.3389/fphar.2022.946210 35959425
    [Google Scholar]
  104. Kundu S. Ghosh S. Sahu B.D. Scopoletin alleviates high glucose-induced toxicity in human renal proximal tubular cells via inhibition of oxidative damage, epithelial-mesenchymal transition, and fibrogenesis. Mol. Biol. Rep. 2024 51 1 620 10.1007/s11033‑024‑09579‑2 38709349
    [Google Scholar]
  105. He B.T. Liu Z.H. Li B.Z. Yuan Y.J. Advances in biosynthesis of scopoletin. Microb. Cell Fact. 2022 21 1 152 10.1186/s12934‑022‑01865‑7 35918699
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775358899250726213130
Loading
/content/journals/cdrr/10.2174/0125899775358899250726213130
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test