Skip to content
2000
image of Revolutionizing Drug Delivery: The Promise of Self-emulsifying Systems in Overcoming Bioavailability Challenges

Abstract

Introduction

The oral route is a preferred method for drug administration; however, lipophilic drugs often suffer from poor water solubility, significantly limiting their therapeutic effectiveness. Traditional approaches like complexation, micronization, and solid dispersion have been explored, but each comes with inherent limitations.

Methods

Self-Emulsifying Drug Delivery Systems (SEDDS) have emerged as a promising strategy to address solubility challenges. These systems incorporate drug molecules into a mixture of oils, surfactants, and cosolvents to enhance solubility. Ternary phase diagrams are frequently utilized to determine optimal component ratios for effective formulation.

Results

SEDDS maintain drugs in a solubilized form within gastrointestinal fluids and protect peptide drugs from enzymatic degradation-a common issue in conventional formulations. They also facilitate the formation of stable emulsions at the target site, enhancing drug absorption. Additionally, the ability of SEDDS to traverse the blood-brain barrier (BBB) increases their applicability in treating neurological disorders.

Discussion

The findings emphasize the utility of SEDDS in overcoming the solubility and stability challenges faced by poorly water-soluble drugs. Their capacity to enhance drug absorption and protect bioactive molecules from degradation aligns with current efforts to improve oral drug delivery systems. However, formulation complexities and variability in performance remain areas requiring further investigation.

Conclusion

This review outlines the formulation strategies, characterization methods, and evaluation techniques for SEDDS, emphasizing their potential in enhancing the bioavailability of poorly soluble drugs, particularly those aimed at the central nervous system. SEDDS offer a promising platform for improving therapeutic outcomes across diverse clinical settings.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775386780250813111412
2025-08-25
2025-10-19
Loading full text...

Full text loading...

References

  1. Abuhelwa A.Y. Williams D.B. Upton R.N. Foster D.J.R. Food, gastrointestinal pH, and models of oral drug absorption. Eur. J. Pharm. Biopharm. 2017 112 234 248 10.1016/j.ejpb.2016.11.034 27914234
    [Google Scholar]
  2. Raj R.A. Das A. Formulation and evaluation of verapamil solid dispersion tablets for solubility enhancement. Res Rev J Pharm Sci 2016 7 39 54
    [Google Scholar]
  3. Censi R. Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules 2015 20 10 18759 18776 10.3390/molecules201018759 26501244
    [Google Scholar]
  4. Rehman M. Tahir N. Sohail M.F. Lipid-based nanoformulations for drug delivery: An ongoing perspective. Pharmaceutics 2024 16 11 1376 10.3390/pharmaceutics16111376 39598500
    [Google Scholar]
  5. Neslihan Gursoy R. Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed. Pharmacother. 2004 58 3 173 182 10.1016/j.biopha.2004.02.001 15082340
    [Google Scholar]
  6. Mahajan N Mujtaba MA Fule R Self-emulsifying drug delivery system for enhanced oral delivery of tenofovir: Formulation, physicochemical characterization, and bioavailability assessment. ACS Omega 20249 7 acsomega.3c08565 10.1021/acsomega.3c08565 38405505
    [Google Scholar]
  7. Salawi A. Self-emulsifying drug delivery systems: A novel approach to deliver drugs. Drug Deliv. 2022 29 1 1811 1823 10.1080/10717544.2022.2083724 35666090
    [Google Scholar]
  8. Chaulang G. Patel P. Hardikar S. Kelkar M. Bhosale A. Bhise S. Formulation and evaluation of solid dispersions of furosemide in sodium starch glycolate. Trop. J. Pharm. Res. 2009 8 1 43 51 10.4314/tjpr.v8i1.14711
    [Google Scholar]
  9. Chella N. Tadikonda R. Melt dispersion granules: Formulation and evaluation to improve oral delivery of poorly soluble drugs – a case study with valsartan. Drug Dev. Ind. Pharm. 2015 41 6 888 897 10.3109/03639045.2014.911308 24796274
    [Google Scholar]
  10. Vasconcelos T. Sarmento B. Costa P. Solid dispersions as strategy to improve oral bioavailability of poor water soluble drugs. Drug Discov. Today 2007 12 23-24 1068 1075 10.1016/j.drudis.2007.09.005 18061887
    [Google Scholar]
  11. de Castro L.M.L. de Souza J. Caldeira T.G. The evaluation of valsartan biopharmaceutics properties. Curr. Drug Res. Rev. 2020 12 1 52 62 10.2174/2589977511666191210151120 31820707
    [Google Scholar]
  12. Dhiman S. Babbar R. Singh T.G. Anand S. Mannan A. Arora S. Development and characterization of oro-dispersible tablets of Metformin Hydrochloride using Cajanus cajan starch as a natural superdisintegrant: Oro-dispersible and superdisintegrant. Int J Appl Pharm 2021 14 1 1 5 10.22159/ijap.2022v14i1.42904
    [Google Scholar]
  13. Duret C. Wauthoz N. Sebti T. Vanderbist F. Amighi K. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties. Int. J. Pharm. 2012 428 1-2 103 113 10.1016/j.ijpharm.2012.03.002 22414388
    [Google Scholar]
  14. Madhyastha P. Jain R. On model stability as a function of random seed. Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL) 2019 929 939 10.18653/v1/K19‑1087
    [Google Scholar]
  15. Elkhodairy K.A. Hassan M.A. Afifi S.A. Formulation and optimization of orodispersible tablets of flutamide. Saudi Pharm. J. 2014 22 1 53 61 10.1016/j.jsps.2013.01.009 24493974
    [Google Scholar]
  16. Gidwani B. Vyas A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int. 2015 2015 1 15 10.1155/2015/198268 26582104
    [Google Scholar]
  17. Bhagawati S.T. Chonkar A.D. Dengale S.J. Reddy S.M. Bhat K. Bioavailability enhancement of rizatriptan benzoate by oral disintegrating strip: In vitro and in vivo evaluation. Curr. Drug Deliv. 2016 13 3 462 470 10.2174/15672018113109990048 26310617
    [Google Scholar]
  18. Balata G. Eassa E. Shamrool H. Zidan S. Abdo Rehab M. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des. Devel. Ther. 2016 10 117 128 10.2147/DDDT.S95905 26792979
    [Google Scholar]
  19. Meirinho S. Rodrigues M. Santos A.O. Falcão A. Alves G. Self-emulsifying drug delivery systems: An alternative approach to improve brain bioavailability of poorly water-soluble drugs through intranasal administration. Pharmaceutics 2022 14 7 1487 10.3390/pharmaceutics14071487 35890385
    [Google Scholar]
  20. Hirasawa N. Ishise S. Miyata H. Danjo K. Application of nilvadipine solid dispersion to tablet formulation and manufacturing using crospovidone and methylcellulose as dispersion carriers. Chem. Pharm. Bull. 2004 52 2 244 247 10.1248/cpb.52.244 14758011
    [Google Scholar]
  21. Homayun B. Lin X. Choi H.J. Challenges and recent progress in oral drug delivery systems for biopharmaceuticals. Pharmaceutics 2019 11 3 129 10.3390/pharmaceutics11030129 30893852
    [Google Scholar]
  22. Jambhekar S.S. Breen P.J. Drug dissolution: Significance of physicochemical properties and physiological conditions. Drug Discov. Today 2013 18 23-24 1173 1184 10.1016/j.drudis.2013.08.013 24042023
    [Google Scholar]
  23. Jana S. Sen K.K. Chitosan — Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int. J. Biol. Macromol. 2017 102 878 884 10.1016/j.ijbiomac.2017.04.097 28456644
    [Google Scholar]
  24. Kim H.J. Yoon K.A. Hahn M. Park E.S. Chi S.C. Preparation and in vitro evaluation of self-microemulsifying drug delivery systems containing idebenone. Drug Dev. Ind. Pharm. 2000 26 5 523 529 10.1081/DDC‑100101263 10789064
    [Google Scholar]
  25. Werle M. Natural and synthetic polymers as inhibitors of drug efflux pumps. Pharm. Res. 2008 25 3 500 511 10.1007/s11095‑007‑9347‑8 17896100
    [Google Scholar]
  26. Nguyen V.H. Thuy V.N. Van T.V. Dao A.H. Lee B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. Open Nano 2022 8 3 100064 10.1016/j.onano.2022.100064
    [Google Scholar]
  27. Hoosain F.G. Choonara Y.E. Tomar L.K. Bypassing P-Glycoprotein drug efflux mechanisms: Possible applications in pharmacoresistant schizophrenia therapy. BioMed Res. Int. 2015 2015 484963 10.1155/2015/484963
    [Google Scholar]
  28. Joseph A. Simo G.M. Gao T. Surfactants influence polymer nanoparticle fate within the brain. Biomaterials 2021 277 121086 10.1016/j.biomaterials.2021.121086 34481289
    [Google Scholar]
  29. Vaidya S. Ganguli A.K. Microemulsion Methods for Synthesis of Nanostructured Materials. In: Andrews DL, Lipson RH, Nann T, Eds. Comprehensive Nanoscience and Nanotechnology. 2nd ed Oxford Academic Press 2019 1 12 10.1016/B978‑0‑12‑803581‑8.11321‑9
    [Google Scholar]
  30. Smail S.S. Ghareeb M.M. Omer H.K. Al-Kinani A.A. Alany R.G. Studies on surfactants, cosurfactants, and oils for prospective use in formulation of ketorolac tromethamine ophthalmic nanoemulsions. Pharmaceutics 2021 13 4 467 10.3390/pharmaceutics13040467 33808316
    [Google Scholar]
  31. Wu D. Chen Q. Chen X. Han F. Chen Z. Wang Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduct. Target. Ther. 2023 8 1 217 10.1038/s41392‑023‑01481‑w 37231000
    [Google Scholar]
  32. Bachynsky M.O. Shah N.H. Patel C.I. Malick A.W. Factors affecting the efficiency of a self-emulsifying oral delivery system. Drug Dev. Ind. Pharm. 1997 23 8 809 816 10.3109/03639049709150551
    [Google Scholar]
  33. Garg V. Kaur P. Singh S.K. Solid self-nanoemulsifying drug delivery systems for oral delivery of polypeptide-k: Formulation, optimization, in-vitro and in-vivo antidiabetic evaluation. Eur. J. Pharm. Sci. 2017 109 297 315 10.1016/j.ejps.2017.08.022 28842349
    [Google Scholar]
  34. Ujhelyi Z. Vecsernyés M. Fehér P. Physico-chemical characterization of self-emulsifying drug delivery systems. Drug Discov. Today. Technol. 2018 27 81 86 10.1016/j.ddtec.2018.06.005 30103867
    [Google Scholar]
  35. Kumar A. Sharma S. Kamble R. Self emulsifying drug delivery system (SEDDS): Future aspects. Int. J. Pharm. Pharm. Sci. 2010 2 7 13
    [Google Scholar]
  36. Christiansen A. Backensfeld T. Denner K. Weitschies W. Effects of non-ionic surfactants on cytochrome P450-mediated metabolism in vitro. Eur. J. Pharm. Biopharm. 2011 78 1 166 172 10.1016/j.ejpb.2010.12.033 21220010
    [Google Scholar]
  37. Reiss H. Entropy-induced dispersion of bulk liquids. J. Colloid Interface Sci. 1975 53 1 61 70 10.1016/0021‑9797(75)90035‑1
    [Google Scholar]
  38. Rang M.J. Miller C.A. Spontaneous emulsification of oils containing hydrocarbon, nonionic surfactant, and oleyl alcohol. J. Colloid Interface Sci. 1999 209 1 179 192 10.1006/jcis.1998.5865 9878151
    [Google Scholar]
  39. Khedekar K. Mittal S. Self emulsifying drug delivery system: A review. Int. J. Pharm. Sci. Res. 2013 4 4494 4507
    [Google Scholar]
  40. Leonaviciute G. Bernkop-Schnürch A. Self-emulsifying drug delivery systems in oral (poly)peptide drug delivery. Expert Opin. Drug Deliv. 2015 12 11 1703 1716 10.1517/17425247.2015.1068287 26477549
    [Google Scholar]
  41. Kohli K. Chopra S. Dhar D. Arora S. Khar R.K. Self-emulsifying drug delivery systems: An approach to enhance oral bioavailability. Drug Discov. Today 2010 15 21-22 958 965 10.1016/j.drudis.2010.08.007 20727418
    [Google Scholar]
  42. Guzman M.L. Marques M.R. Olivera M.E.M.E. Stippler E.S. Enzymatic activity in the presence of surfactants commonly used in dissolution media, Part 1: Pepsin. Results Pharma Sci. 2016 6 15 19 10.1016/j.rinphs.2016.02.002 27047734
    [Google Scholar]
  43. Zupančič O. Partenhauser A. Lam H.T. Rohrer J. Bernkop-Schnürch A. Development and in vitro characterisation of an oral self-emulsifying delivery system for daptomycin. Eur J Pharm Sci Off J Eur Fed Pharm Sci 2016 81 129 136 26485536
    [Google Scholar]
  44. Karamanidou T Karidi K Bourganis V Kontonikola K Kammona O Kiparissides C Effective incorporation of insulin in mucus permeating self-nanoemulsifying drug delivery systems. Eur J Pharm Biopharm 2015 97 Pt A 223 9 10.1016/j.ejpb.2015.04.013
    [Google Scholar]
  45. Menzel C. Holzeisen T. Laffleur F. In vivo evaluation of an oral self-emulsifying drug delivery system (SEDDS) for exenatide. J. Control. Release 2018 277 165 172 10.1016/j.jconrel.2018.03.018 29574041
    [Google Scholar]
  46. Hao S. Yang H. Hu J. Luo L. Yuan Y. Liu L. Bioactive compounds and biological functions of medicinal plant-derived extracellular vesicles. Pharmacol. Res. 2024 200 107062 10.1016/j.phrs.2024.107062 38211637
    [Google Scholar]
  47. Yang C. Zhang W. Bai M. Edible plant-derived extracellular vesicles serve as promising therapeutic systems. Nano TransMed 2023 2 2-3 100004 10.1016/j.ntm.2023.100004
    [Google Scholar]
  48. Regente M. Pinedo M. San Clemente H. Balliau T. Jamet E. de la Canal L. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J. Exp. Bot. 2017 68 20 5485 5495 10.1093/jxb/erx355 29145622
    [Google Scholar]
  49. Fleisher D. Li C. Zhou Y. Pao L. Karim A. Drug, meal and formulation interactions influencing drug absorption after oral administration. Clinical implications. Clin. Pharmacokinet. 1999 36 3 233 254 10.2165/00003088‑199936030‑00004 10223170
    [Google Scholar]
  50. Kang M.J. Jung S.Y. Song W.H. Immediate release of ibuprofen from Fujicalin ® -based fast-dissolving self-emulsifying tablets. Drug Dev. Ind. Pharm. 2011 37 11 1298 1305 10.3109/03639045.2011.571695 21476949
    [Google Scholar]
  51. Lavra Z.M.M. Pereira de Santana D. Ré M.I. Solubility and dissolution performances of spray-dried solid dispersion of Efavirenz in Soluplus. Drug Dev. Ind. Pharm. 2017 43 1 42 54 10.1080/03639045.2016.1205598 27349377
    [Google Scholar]
  52. Mazzeti A.L. Oliveira L.T. Gonçalves K.R. Schaun G.C. Mosqueira V.C.F. Bahia M.T. Benznidazole self-emulsifying delivery system: A novel alternative dosage form for Chagas disease treatment. Eur. J. Pharm. Sci. 2020 145 105234 10.1016/j.ejps.2020.105234 31978590
    [Google Scholar]
  53. Date A.A. Desai N. Dixit R. Nagarsenker M. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine 2010 5 10 1595 1616 10.2217/nnm.10.126 21143036
    [Google Scholar]
  54. Sierra Villar A.M. Calpena Campmany A.C. Bellowa L.H. Trenchs M.A. Naveros B.C. Validated spectrofluorometric method for determination of gemfibrozil in self nanoemulsifying drug delivery systems (SNEDDS). Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013 113 22 27 10.1016/j.saa.2013.04.092 23708373
    [Google Scholar]
  55. Mohanalakshmi S. Bhatt S. Ashok Kumar C.K. Enhanced antihyperlipidemic potential of gemfibrozil under co-administration with piperine. Curr Res Pharmacol Drug Discov 2021 2 100021 10.1016/j.crphar.2021.100021 34909656
    [Google Scholar]
  56. Seo Y.G. Kim D.H. Ramasamy T. Development of docetaxel-loaded solid self-nanoemulsifying drug delivery system (SNEDDS) for enhanced chemotherapeutic effect. Int. J. Pharm. 2013 452 1-2 412 420 10.1016/j.ijpharm.2013.05.034 23707964
    [Google Scholar]
  57. Bhattacharyya A. Bajpai M. Oral bioavailability and stability study of a self-emulsifying drug delivery system (SEDDS) of amphotericin B. Curr. Drug Deliv. 2013 10 5 542 547 10.2174/15672018113109990001 23675913
    [Google Scholar]
  58. Heshmati N. Cheng X. Dapat E. In vitro and in vivo evaluations of the performance of an indirubin derivative, formulated in four different self-emulsifying drug delivery systems. J. Pharm. Pharmacol. 2014 66 11 1567 1575 10.1111/jphp.12286 24961657
    [Google Scholar]
  59. Balakumar K. Raghavan C.V. selvan NT, prasad RH, Abdu S. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids Surf. B Biointerfaces 2013 112 337 343 10.1016/j.colsurfb.2013.08.025 24012665
    [Google Scholar]
  60. Beg S. Jena S.S. Patra C.N. Development of solid self-nanoemulsifying granules (SSNEGs) of ondansetron hydrochloride with enhanced bioavailability potential. Colloids Surf. B Biointerfaces 2013 101 414 423 10.1016/j.colsurfb.2012.06.031 23010049
    [Google Scholar]
  61. Mahmoud D.B. Shukr M.H. Bendas E.R. In vitro and in vivo evaluation of self-nanoemulsifying drug delivery systems of cilostazol for oral and parenteral administration. Int. J. Pharm. 2014 476 1-2 60 69 10.1016/j.ijpharm.2014.09.045 25269009
    [Google Scholar]
  62. Jain A.K. Thanki K. Jain S. Novel self-nanoemulsifying formulation of quercetin: Implications of pro-oxidant activity on the anticancer efficacy. Nanomedicine 2014 10 5 e959 e969 10.1016/j.nano.2013.12.010 24407148
    [Google Scholar]
  63. Hintzen F. Perera G. Hauptstein S. Müller C. Laffleur F. Bernkop-Schnürch A. In vivo evaluation of an oral self-microemulsifying drug delivery system (SMEDDS) for leuprorelin. Int. J. Pharm. 2014 472 1-2 20 26 10.1016/j.ijpharm.2014.05.047 24879935
    [Google Scholar]
  64. Crouch M.A. Effective use of statins to prevent coronary heart disease. Am. Fam. Physician 2001 63 2 309 320 11201696
    [Google Scholar]
  65. Inugala S. Eedara B.B. Sunkavalli S. Solid self-nanoemulsifying drug delivery system (S-SNEDDS) of darunavir for improved dissolution and oral bioavailability: In vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2015 74 1 10 10.1016/j.ejps.2015.03.024 25845633
    [Google Scholar]
  66. Wu C. Kapoor A. Dutasteride for the treatment of benign prostatic hyperplasia. Expert Opin. Pharmacother. 2013 14 10 1399 1408 10.1517/14656566.2013.797965 23750593
    [Google Scholar]
  67. Yeom D.W. Son H.Y. Kim J.H. Development of a solidified self-microemulsifying drug delivery system (S-SMEDDS) for atorvastatin calcium with improved dissolution and bioavailability. Int. J. Pharm. 2016 506 1-2 302 311 10.1016/j.ijpharm.2016.04.059 27125455
    [Google Scholar]
  68. Soliman K.A. Ibrahim H.K. Ghorab M.M. Formulation of avanafil in a solid self-nanoemulsifying drug delivery system for enhanced oral delivery. Eur. J. Pharm. Sci. 2016 93 447 455 10.1016/j.ejps.2016.08.050 27590128
    [Google Scholar]
  69. Kassem A.A. Mohsen A.M. Ahmed R.S. Essam T.M. Self-nanoemulsifying drug delivery system (SNEDDS) with enhanced solubilization of nystatin for treatment of oral candidiasis: Design, optimization, in vitro and in vivo evaluation. J. Mol. Liq. 2016 218 219 232 10.1016/j.molliq.2016.02.081
    [Google Scholar]
  70. Zupančič O. Grieβinger J.A. Rohrer J. Development, in vitro and in vivo evaluation of a self-emulsifying drug delivery system (SEDDS) for oral enoxaparin administration. Eur. J. Pharm. Biopharm. 2016 109 113 121 10.1016/j.ejpb.2016.09.013 27693677
    [Google Scholar]
  71. Penjuri S.C.B. Damineni S. Ravouru N. Poreddy S.R. Self-emulsifying drug delivery system (SEDDS) of Ibuprofen: Formulation, in vitro and in vivo evaluation. Ceska Slov. Farm. 2017 66 1 23 34 10.36290/csf.2017.004 28569515
    [Google Scholar]
  72. Leichner C. Menzel C. Laffleur F. Bernkop-Schnürch A. Development and in vitro characterization of a papain loaded mucolytic self-emulsifying drug delivery system (SEDDS). Int. J. Pharm. 2017 530 1-2 346 353 10.1016/j.ijpharm.2017.08.059 28782582
    [Google Scholar]
  73. Elbahwy I.A. Lupo N. Ibrahim H.M. Mucoadhesive self-emulsifying delivery systems for ocular administration of econazole. Int. J. Pharm. 2018 541 1-2 72 80 10.1016/j.ijpharm.2018.02.019 29458206
    [Google Scholar]
  74. Hood R. Valentine V. Mac S. Polonsky W.H. Use of exenatide in patients with type 2 diabetes. Diabetes Spectr. 2006 19 3 181 186 10.2337/diaspect.19.3.181
    [Google Scholar]
  75. Zaichik S. Steinbring C. Menzel C. Development of self-emulsifying drug delivery systems (SEDDS) for ciprofloxacin with improved mucus permeating properties. Int. J. Pharm. 2018 547 1-2 282 290 10.1016/j.ijpharm.2018.06.005 29883790
    [Google Scholar]
  76. Shahzadi I. Dizdarević A. Efiana N.A. Matuszczak B. Bernkop-Schnürch A. Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. J. Colloid Interface Sci. 2018 531 253 260 10.1016/j.jcis.2018.07.057 30036849
    [Google Scholar]
  77. Jalil A. Asim M.H. Akkus Z.B. Schoenthaler M. Matuszczak B. Bernkop-Schnürch A. Self-emulsifying drug delivery systems comprising chlorhexidine and alkyl-EDTA: A novel approach for augmented antimicrobial activity. J. Mol. Liq. 2019 295 111649 10.1016/j.molliq.2019.111649
    [Google Scholar]
  78. Leichner C. Baus R.A. Jelkmann M. In vitro evaluation of a self-emulsifying drug delivery system (SEDDS) for nasal administration of dimenhydrinate. Drug Deliv. Transl. Res. 2019 9 5 945 955 10.1007/s13346‑019‑00634‑1 30877627
    [Google Scholar]
  79. Knaub K. Sartorius T. Dharsono T. Wacker R. Wilhelm M. Schön C. A novel self-emulsifying drug delivery system (SEDDS) based on vesisorb® formulation technology improving the oral bioavailability of cannabidiol in healthy subjects. Molecules 2019 24 16 2967 10.3390/molecules24162967 31426272
    [Google Scholar]
  80. Lupo N. Jalil A. Nazir I. Gust R. Bernkop-Schnürch A. In vitro evaluation of intravesical mucoadhesive self-emulsifying drug delivery systems. Int. J. Pharm. 2019 564 180 187 10.1016/j.ijpharm.2019.04.035 30981873
    [Google Scholar]
  81. Mandić J. Pirnat V. Luštrik M. Solidification of SMEDDS by fluid bed granulation and manufacturing of fast drug release tablets. Int. J. Pharm. 2020 583 119377 10.1016/j.ijpharm.2020.119377 32339633
    [Google Scholar]
  82. Diril M. Türkyılmaz G.Y. Karasulu H.Y. Formulation and in vitro evaluation of self microemulsifying drug delivery system containing atorvastatin calcium. Curr. Drug Deliv. 2019 16 8 768 779 10.2174/1567201816666190820143957 31429689
    [Google Scholar]
  83. Patel D. Wairkar S. Recent advances in cyclosporine drug delivery: Challenges and opportunities. Drug Deliv. Transl. Res. 2019 9 6 1067 1081 10.1007/s13346‑019‑00650‑1 31144214
    [Google Scholar]
  84. Zaichik S. Steinbring C. Caliskan C. Bernkop-Schnürch A. Development and in vitro evaluation of a self-emulsifying drug delivery system (SEDDS) for oral vancomycin administration. Int. J. Pharm. 2019 554 125 133 10.1016/j.ijpharm.2018.11.010 30408530
    [Google Scholar]
  85. Vasconcelos T. Araújo F. Lopes C. Multicomponent self nano emulsifying delivery systems of resveratrol with enhanced pharmacokinetics profile. Eur. J. Pharm. Sci. 2019 137 105011 10.1016/j.ejps.2019.105011 31330260
    [Google Scholar]
  86. Jalil A. Asim M.H. Nazir I. Matuszczak B. Bernkop-Schnürch A. Self-emulsifying drug delivery systems containing hydrophobic ion pairs of polymyxin B and agaric acid: A decisive strategy for enhanced antimicrobial activity. J. Mol. Liq. 2020 311 113298 10.1016/j.molliq.2020.113298
    [Google Scholar]
  87. Kamal M.M. Akter S. Al Hagbani T. Salawi A. Nazzal S. Sustained release of curcumin self-emulsifying drug delivery system (SEDDS) from solvent-cast Soluplus ® films. Pharm. Dev. Technol. 2021 26 10 1102 1109 10.1080/10837450.2021.1993912 34645368
    [Google Scholar]
  88. Chen L. Lin X. Fan X. Qian Y. Lv Q. Teng H. Sonchus oleraceus Linn extract enhanced glucose homeostasis through the AMPK/Akt/GSK-3β signaling pathway in diabetic liver and HepG2 cell culture. Food Chem. Toxicol. 2020 136 111072 10.1016/j.fct.2019.111072 31877369
    [Google Scholar]
  89. Diefenthaeler H.S. Bianchin M.D. Marques M.S. Omeprazole nanoparticles suspension: Development of a stable liquid formulation with a view to pediatric administration. Int. J. Pharm. 2020 589 119818 10.1016/j.ijpharm.2020.119818 32866648
    [Google Scholar]
  90. Meena A.K. Sharma K. Kandaswamy M. Rajagopal S. Mullangi R. Formulation development of an albendazole self-emulsifying drug delivery system (SEDDS) with enhanced systemic exposure/Razvoj samoemulzifirajućeg sustava za isporuku albendazola (SEDDS) s pojačanom sistemskom apsorpcijom. Acta Pharm. 2012 62 4 563 580 10.2478/v10007‑012‑0031‑0 24000442
    [Google Scholar]
  91. Yahaya Z.S. Yahaya P.O. Mohammed B.B. Preliminary investigation on coconut oil-based self-emulsifying formulation for the delivery of Metronidazole. Niger J Pharm Appl Sci Res 2020 9 1 18 24
    [Google Scholar]
  92. Zhang N. Zhang F. Xu S. Yun K. Wu W. Pan W. Formulation and evaluation of luteolin supersaturatable self-nanoemulsifying drug delivery system (S-SNEDDS) for enhanced oral bioavailability. J. Drug Deliv. Sci. Technol. 2020 58 101783 10.1016/j.jddst.2020.101783
    [Google Scholar]
  93. Abou Assi R, M Abdulbaqi I, Seok Ming T, et al. Liquid and solid self-emulsifying drug delivery systems (sedds) as carriers for the oral delivery of azithromycin: Optimization, in vitro characterization and stability assessment. Pharmaceutics 2020 12 11 1052 10.3390/pharmaceutics12111052 33158058
    [Google Scholar]
  94. Liang X. Hua Y. Liu Q. Solid self-emulsifying drug delivery system (Solid SEDDS) for testosterone undecanoate: In vitro and in vivo evaluation. Curr. Drug Deliv. 2021 18 5 620 633 10.2174/1567201817666200904172626 32887542
    [Google Scholar]
  95. Jianxian C. Saleem K. Ijaz M. Ur-Rehman M. Murtaza G. Asim M.H. Development and in vitro evaluation of gastro-protective aceclofenac-loaded self-emulsifying drug delivery system. Int. J. Nanomedicine 2020 15 5217 5226 10.2147/IJN.S250242 32801687
    [Google Scholar]
  96. Yakushiji K. Sato H. Ogino M. Suzuki H. Seto Y. Onoue S. Self-emulsifying drug delivery system of celecoxib for avoiding delayed oral absorption in rats with impaired gastric motility. AAPS PharmSciTech 2020 21 5 135 10.1208/s12249‑020‑01686‑0 32419073
    [Google Scholar]
  97. Kommana N. Bharti K. Surekha D.B. Thokala S. Mishra B. Development, optimization and evaluation of losartan potassium loaded Self Emulsifying Drug Delivery System. J. Drug Deliv. Sci. Technol. 2020 60 102026 10.1016/j.jddst.2020.102026
    [Google Scholar]
  98. Dalal L. Allaf A.W. El-Zein H. Formulation and in vitro evaluation of self-nanoemulsifying liquisolid tablets of furosemide. Sci. Rep. 2021 11 1 1315 10.1038/s41598‑020‑79940‑5 33446749
    [Google Scholar]
  99. Kazi M. Alqahtani A. Ahmad A. Development and optimization of sitagliptin and dapagliflozin loaded oral self-nanoemulsifying formulation against type 2 diabetes mellitus. Drug Deliv. 2021 28 1 100 114 10.1080/10717544.2020.1859001 33345632
    [Google Scholar]
  100. Park S.Y. Jin C.H. Goo Y.T. Supersaturable self-micro] emulsifying drug delivery system enhances dissolution and bioavailability of telmisartan. Pharm. Dev. Technol. 2021 26 1 60 68 10.1080/10837450.2020.1834580 33032496
    [Google Scholar]
  101. Tekeli M.C. Aktas Y. Celebi N. Oral self-nanoemulsifying formulation of GLP-1 agonist peptide exendin-4: Development, characterization and permeability assesment on Caco-2 cell monolayer. Amino Acids 2021 53 1 73 88 10.1007/s00726‑020‑02926‑0 33398527
    [Google Scholar]
  102. Okawa S. Sumimoto Y. Masuda K. Ogawara K. Maruyama M. Higaki K. Improvement of lipid solubility and oral bioavailability of a poorly water- and poorly lipid-soluble drug, rebamipide, by utilizing its counter ion and SNEDDS preparation. Eur. J. Pharm. Sci. 2021 159 105721 10.1016/j.ejps.2021.105721 33482317
    [Google Scholar]
  103. Komesli Y. Burak Ozkaya A. Ugur Ergur B. Kirilmaz L. Karasulu E. Design and development of a self-microemulsifying drug delivery system of olmesartan medoxomil for enhanced bioavailability. Drug Dev. Ind. Pharm. 2019 45 8 1292 1305 10.1080/03639045.2019.1607868 30986085
    [Google Scholar]
  104. Duc Hanh N. Mitrevej A. Sathirakul K. Peungvicha P. Sinchaipanid N. Development of phyllanthin-loaded self-microemulsifying drug delivery system for oral bioavailability enhancement. Drug Dev. Ind. Pharm. 2015 41 2 207 217 10.3109/03639045.2013.858732 24237327
    [Google Scholar]
  105. McCartney F. Gleeson J.P. Brayden D.J. Safety concerns over the use of intestinal permeation enhancers: A mini-review. Tissue Barriers 2016 4 2 1176822 10.1080/21688370.2016.1176822 27358756
    [Google Scholar]
  106. Kommuru T.R. Gurley B. Khan M.A. Reddy I.K. Self-emulsifying drug delivery systems (SEDDS) of coenzyme Q10: Formulation development and bioavailability assessment. Int. J. Pharm. 2001 212 2 233 246 10.1016/S0378‑5173(00)00614‑1 11165081
    [Google Scholar]
  107. Hanke U. May K. Rozehnal V. Nagel S. Siegmund W. Weitschies W. Commonly used nonionic surfactants interact differently with the human efflux transporters ABCB1 (p-glycoprotein) and ABCC2 (MRP2). Eur. J. Pharm. Biopharm. 2010 76 2 260 268 10.1016/j.ejpb.2010.06.008 20600890
    [Google Scholar]
  108. Charman S.A. Charman W.N. Rogge M.C. Wilson T.D. Dutko F.J. Pouton C.W. Self-emulsifying drug delivery systems: Formulation and biopharmaceutic evaluation of an investigational lipophilic compound. Pharm. Res. 1992 9 1 87 93 10.1023/A:1018987928936 1589415
    [Google Scholar]
  109. Siedenbiedel F. Tiller J.C. Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers 2012 4 1 46 71 10.3390/polym4010046
    [Google Scholar]
  110. Musakhanian J. Rodier J.D. Dave M. Oxidative stability in lipid formulations: A review of the mechanisms, drivers, and inhibitors of oxidation. AAPS PharmSciTech 2022 23 5 151 10.1208/s12249‑022‑02282‑0 35596043
    [Google Scholar]
  111. Joyce P. Dening T.J. Meola T.R. Solidification to improve the biopharmaceutical performance of SEDDS: Opportunities and challenges. Adv. Drug Deliv. Rev. 2019 142 102 117 10.1016/j.addr.2018.11.006 30529138
    [Google Scholar]
  112. Camilleri M. Leaky gut: Mechanisms, measurement and clinical implications in humans. Gut 2019 68 8 1516 1526 10.1136/gutjnl‑2019‑318427 31076401
    [Google Scholar]
  113. Subramaniam S. Elz A. Wignall A. Self-emulsifying drug delivery systems (SEDDS) disrupt the gut microbiota and trigger an intestinal inflammatory response in rats. Int. J. Pharm. 2023 648 123614 10.1016/j.ijpharm.2023.123614 37979632
    [Google Scholar]
  114. Irizarry L.D. Luu T.H. McKoy J.M. Cremophor EL-containing paclitaxel-induced anaphylaxis: A call to action. Community Oncol. 2009 6 3 132 134 10.1016/S1548‑5315(11)70224‑8 36643961
    [Google Scholar]
  115. Kim Y.N. Kim J.Y. Kim J.W. The hidden culprit: A case of repeated anaphylaxis to cremophor. Allergy Asthma Immunol. Res. 2016 8 2 174 177 10.4168/aair.2016.8.2.174 26739412
    [Google Scholar]
  116. Little T.J. Horowitz M. Feinle-Bisset C. Modulation by high-fat diets of gastrointestinal function and hormones associated with the regulation of energy intake: Implications for the pathophysiology of obesity. Am. J. Clin. Nutr. 2007 86 3 531 541 10.1093/ajcn/86.3.531 17823414
    [Google Scholar]
  117. Okamura T. Hashimoto Y. Majima S. Trans fatty acid intake induces intestinal inflammation and impaired glucose tolerance. Front. Immunol. 2021 12 669672 10.3389/fimmu.2021.669672 33995404
    [Google Scholar]
  118. Verkijk M. Vecht J. Gielkens H.A.J. Lamers C.B.H.W. Masclee A.A.M. Effects of medium-chain and long-chain triglycerides on antroduodenal motility and small bowel transit time in man. Dig. Dis. Sci. 1997 42 9 1933 1939 10.1023/A:1018823512901 9331158
    [Google Scholar]
  119. Vockley J. Long-chain fatty acid oxidation disorders and current management strategies. Am. J. Manag. Care 2020 26 7 S147 S154 32840329
    [Google Scholar]
  120. Grauso M. Lan A. Andriamihaja M. Bouillaud F. Blachier F. Hyperosmolar environment and intestinal epithelial cells: Impact on mitochondrial oxygen consumption, proliferation, and barrier function in vitro. Sci. Rep. 2019 9 1 11360 10.1038/s41598‑019‑47851‑9 31388052
    [Google Scholar]
  121. Hammer H.F. Santa Ana C.A. Schiller L.R. Fordtran J.S. Studies of osmotic diarrhea induced in normal subjects by ingestion of polyethylene glycol and lactulose. J. Clin. Invest. 1989 84 4 1056 1062 10.1172/JCI114267 2794043
    [Google Scholar]
  122. Buya A.B. Beloqui A. Memvanga P.B. Préat V. Self-nano-emulsifying drug-delivery systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics 2020 12 12 1194 10.3390/pharmaceutics12121194 33317067
    [Google Scholar]
  123. Griesser J. Hetényi G. Federer C. Highly mucus permeating and zeta potential changing self-emulsifying drug delivery systems: A potent gene delivery model for causal treatment of cystic fibrosis. Int. J. Pharm. 2019 557 124 134 10.1016/j.ijpharm.2018.12.048 30594687
    [Google Scholar]
  124. Mahmood A. Bernkop-Schnürch A. SEDDS: A game changing approach for the oral administration of hydrophilic macromolecular drugs. Adv. Drug Deliv. Rev. 2019 142 91 101 10.1016/j.addr.2018.07.001 29981355
    [Google Scholar]
  125. Friedl J.D. Jörgensen A.M. Nguyen Le N.M. Steinbring C. Bernkop-Schnürch A. Replacing PEG-surfactants in self-emulsifying drug delivery systems: Surfactants with polyhydroxy head groups for advanced cytosolic drug delivery. Int. J. Pharm. 2022 618 121633 10.1016/j.ijpharm.2022.121633 35304244
    [Google Scholar]
  126. Haddadzadegan S. Dorkoosh F. Bernkop-Schnürch A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Adv. Drug Deliv. Rev. 2022 182 114097 10.1016/j.addr.2021.114097 34999121
    [Google Scholar]
  127. Mahmood S. Bhattarai P. Khan N.R. An investigation for skin tissue regeneration enhancement/augmentation by curcumin-loaded self-emulsifying drug delivery system (SEDDS). Polymers 2022 14 14 2904 10.3390/polym14142904 35890680
    [Google Scholar]
  128. Pan-On S. Pham D.T. Tiyaboonchai W. Development of curcumin-loaded solid SEDDS using solid self-emulsifying drug delivery systems to enhance oral delivery. J. Appl. Pharm. Sci. 2024 14 9 111 119
    [Google Scholar]
  129. Malkawi A. Jalil A. Nazir I. Matuszczak B. Kennedy R. Bernkop-Schnürch A. Self-emulsifying drug delivery systems: Hydrophobic drug polymer complexes provide a sustained release in vitro. Mol. Pharm. 2020 17 10 3709 3719 10.1021/acs.molpharmaceut.0c00389 32841038
    [Google Scholar]
  130. Le N.T.T. Cao V.D. Nguyen T.N.Q. Le T.T.H. Tran T.T. Hoang Thi T.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications. Int. J. Mol. Sci. 2019 20 19 4706 10.3390/ijms20194706 31547569
    [Google Scholar]
  131. Leonaviciute G. Zupančič O. Prüfert F. Rohrer J. Bernkop-Schnürch A. Impact of lipases on the protective effect of SEDDS for incorporated peptide drugs towards intestinal peptidases. Int. J. Pharm. 2016 508 1-2 102 108 10.1016/j.ijpharm.2016.04.044 27143595
    [Google Scholar]
  132. Hetényi G. Griesser J. Moser M. Demarne F. Jannin V. Bernkop-Schnürch A. Comparison of the protective effect of self-emulsifying peptide drug delivery systems towards intestinal proteases and glutathione. Int. J. Pharm. 2017 523 1 357 365 10.1016/j.ijpharm.2017.03.027 28347848
    [Google Scholar]
  133. Cardona M.I. Nguyen Le N.M. Zaichik S. Aragón D.M. Bernkop-Schnürch A. Development and in vitro characterization of an oral self-emulsifying delivery system (SEDDS) for rutin fatty ester with high mucus permeating properties. Int. J. Pharm. 2019 562 180 186 10.1016/j.ijpharm.2019.03.036 30898639
    [Google Scholar]
  134. Sultana A. Zare M. Thomas V. Kumar T.S.S. Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. Med Drug Discov 2022 15 100134 10.1016/j.medidd.2022.100134
    [Google Scholar]
  135. Zahir-Jouzdani F. Lupo N. Hermann M. Prüfert F. Atyabi F. Bernkop Schnürch A. Glyceryl ester surfactants: Promising excipients to enhance the cell permeating properties of SEDDS. Eur. J. Pharm. Biopharm. 2018 129 154 161 10.1016/j.ejpb.2018.05.032 29852274
    [Google Scholar]
  136. Mahmood A. Prüfert F. Efiana N.A. Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opin. Drug Deliv. 2016 13 11 1503 1512 10.1080/17425247.2016.1213236 27458781
    [Google Scholar]
  137. Chen Y.S. Chiu Y.H. Li Y.S. Integration of PEG 400 into a self-nanoemulsifying drug delivery system improves drug loading capacity and nasal mucosa permeability and prolongs the survival of rats with malignant brain tumors. Int. J. Nanomedicine 2019 14 3601 3613 10.2147/IJN.S193617 31190814
    [Google Scholar]
  138. Meirinho S. Rodrigues M. Ferreira C.L. Intranasal delivery of lipid-based nanosystems as a promising approach for brain targeting of the new-generation antiepileptic drug perampanel. Int. J. Pharm. 2022 622 121853 10.1016/j.ijpharm.2022.121853 35623483
    [Google Scholar]
  139. Nagaraja S. Basavarajappa G.M. Karnati R.K. Bakir E.M. Pund S. Ion-triggered in situ gelling nanoemulgel as a platform for nose-to-brain delivery of small lipophilic molecules. Pharmaceutics 2021 13 8 1216 10.3390/pharmaceutics13081216 34452177
    [Google Scholar]
  140. Baloch J. Sohail M.F. Sarwar H.S. Self-nanoemulsifying drug delivery system (SNEDDS) for improved oral bioavailability of chlorpromazine: In vitro and in vivo evaluation. Medicina 2019 55 5 210 10.3390/medicina55050210 31137751
    [Google Scholar]
  141. Abdelmonem R. Azer M.S. Makky A. Zaghloul A. El-Nabarawi M. Nada A. Development, characterization, and in-vivo pharmacokinetic study of lamotrigine solid self-nanoemulsifying drug delivery system. Drug Des. Devel. Ther. 2020 14 4343 4362 10.2147/DDDT.S263898 33116420
    [Google Scholar]
  142. Poorani G. Uppuluri S. Uppuluri K.B. Formulation, characterization, in vitro and in vivo evaluation of castor oil based self-nano emulsifying levosulpiride delivery systems. J. Microencapsul. 2016 33 6 535 543 10.1080/02652048.2016.1223199 27599558
    [Google Scholar]
  143. Puri R. Mahajan M. Sahajpal N.S. Singh H. Singh H. Jain S.K. Self-nanoemulsifying drug delivery system of docosahexanoic acid: Development, in vitro, in vivo characterization. Drug Dev. Ind. Pharm. 2016 42 7 1032 1041 10.3109/03639045.2015.1107089 26559059
    [Google Scholar]
  144. Srivastava R. Choudhury P.K. Dev S.K. Rathore V. Formulation and evaluation of α-pinene loaded self-emulsifying nanoformulation for in-vivo anti-parkinson’s activity. Recent Pat. Nanotechnol. 2022 16 2 139 159 10.2174/1872210515666210329161439 33781196
    [Google Scholar]
  145. Chen Y. Cheng G. Hu R. A nasal temperature and ph dual-responsive in situ gel delivery system based on microemulsion of huperzine a: Formulation, evaluation, and in vivo pharmacokinetic study. AAPS PharmSciTech 2019 20 7 301 10.1208/s12249‑019‑1513‑x 31485857
    [Google Scholar]
  146. Liu C.S. Chen L. Hu Y.N. Self-microemulsifying drug delivery system for improved oral delivery and hypnotic efficacy of ferulic acid. Int. J. Nanomedicine 2020 15 2059 2070 10.2147/IJN.S240449 32273702
    [Google Scholar]
  147. Sangsen Y. Sooksawate T. Likhitwitayawuid K. Sritularak B. Wiwattanapatapee R. A self-microemulsifying formulation of oxyresveratrol prevents amyloid beta protein-induced neurodegeneration in mice. Planta Med. 2018 84 11 820 828 10.1055/s‑0043‑125337 29301146
    [Google Scholar]
  148. Borkar N. Andersson D.R. Yang M. Müllertz A. Holm R. Mu H. Efficacy of oral lipid-based formulations of apomorphine and its diester in a Parkinson’s disease rat model. J. Pharm. Pharmacol. 2017 69 9 1110 1115 10.1111/jphp.12758 28620913
    [Google Scholar]
  149. He S. Cui Z. Mei D. A cremophor-free self-microemulsified delivery system for intravenous injection of teniposide: Evaluation in vitro and in vivo. AAPS PharmSciTech 2012 13 3 846 852 10.1208/s12249‑012‑9809‑0 22644709
    [Google Scholar]
  150. Li Y. Zhang T. Huai J. Pharmacokinetic study of three different formulations of l ‐tetrahydropalmatine in brain tissues of rats. Biomed. Chromatogr. 2021 35 5 5066 10.1002/bmc.5066 33452741
    [Google Scholar]
  151. Dai Q. Zhang P. Jin Y. Using self-nanoemulsifying system to improve oral bioavailability of a pediatric antiepileptic agent stiripentol: Formulation and pharmacokinetics studies. AAPS PharmSciTech 2020 21 5 192 10.1208/s12249‑020‑01730‑z 32661608
    [Google Scholar]
  152. Khalifa M.K.A. Salem H.A. Shawky S.M. Eassa H.A. Elaidy A.M. Enhancement of zaleplon oral bioavailability using optimized self-nano emulsifying drug delivery systems and its effect on sleep quality among a sample of psychiatric patients. Drug Deliv. 2019 26 1 1243 1253 10.1080/10717544.2019.1687613 31752566
    [Google Scholar]
  153. Ammar HO Ghorab MM Mostafa DM Spray dried selfnanoemulsifying drug delivery systems for sertraline HCl: Pharmacokinetic study in healthy volunteers. Int J Pharm Sci Dev Res 2018 Jun 27 4 1 009 19
    [Google Scholar]
  154. Ahmad N. Ahmad R. Naqvi A. Alam M. Abdur Rub R. Ahmad F. Enhancement of quercetin oral bioavailability by self-nanoemulsifying drug delivery system and their quantification through ultra high performance liquid chromatography and mass spectrometry in cerebral ischemia. Drug Res. (Stuttg.) 2017 67 10 564 575 10.1055/s‑0043‑109564 28561230
    [Google Scholar]
  155. Miao Y. Chen G. Ren L. Pingkai O. Characterization and evaluation of self-nanoemulsifying sustained-release pellet formulation of ziprasidone with enhanced bioavailability and no food effect. Drug Deliv. 2016 23 7 2163 2172 10.3109/10717544.2014.950768 25148542
    [Google Scholar]
  156. Vyas T.K. Babbar A.K. Sharma R.K. Singh S. Misra A. Intranasal mucoadhesive microemulsions of clonazepam: Preliminary studies on brain targeting. J. Pharm. Sci. 2006 95 3 570 580 10.1002/jps.20480 16419051
    [Google Scholar]
  157. Abd El-Halim S.M. Mamdouh M.A. Eid S.M. Ibrahim B.M.M. Aly Labib D.A. Soliman S.M. The potential synergistic activity of zolmitriptan combined in new self-nanoemulsifying drug delivery systems: Atr-ftir real-time fast dissolution monitoring and pharmacodynamic assessment. Int. J. Nanomedicine 2021 16 6395 6412 10.2147/IJN.S325697 34566412
    [Google Scholar]
  158. Khattab A. Ahmed-Farid O.A. Nasr S.A. Enhanced brain biodistribution of Ginsenoside Rg1 based self-nanoemulsifying drug delivery system to ameliorate metabolic syndromes and keep homeostatic balance. J. Drug Deliv. Sci. Technol. 2021 61 102276 10.1016/j.jddst.2020.102276
    [Google Scholar]
  159. Ye J. Gao Y. Ji M. Oral SMEDDS promotes lymphatic transport and mesenteric lymph nodes target of chlorogenic acid for effective T-cell antitumor immunity. J. Immunother. Cancer 2021 9 7 002753 10.1136/jitc‑2021‑002753 34272308
    [Google Scholar]
  160. Wang H. Li L. Ye J. Improved safety and anti-glioblastoma efficacy of cat3-encapsulated smedds through metabolism modification. Molecules 2021 26 2 484 10.3390/molecules26020484 33477555
    [Google Scholar]
  161. Aswar M. Bhalekar M. Trimukhe A. Aswar U. Self-microemulsifying drug delivery system (SMEDDS) of curcumin attenuates depression in olfactory bulbectomized rats. Heliyon 2020 6 8 04482 10.1016/j.heliyon.2020.e04482 32817886
    [Google Scholar]
  162. Yi T. Tang D. Wang F. Enhancing both oral bioavailability and brain penetration of puerarin using borneol in combination with preparation technologies. Drug Deliv. 2017 24 1 422 429 10.1080/10717544.2016.1259372 28165806
    [Google Scholar]
  163. Sharma S. Rabbani S.A. Agarwal T. Baboota S. Pottoo F.H. Kadian R. Nanotechnology driven approaches for the management of parkinson’s dis-ease: Current status and future perspectives. Curr. Drug Metab. 2021 22 4 287 298 10.2174/18755453MTExhNzY00 33234098
    [Google Scholar]
  164. Ahmad S. Hafeez A. Formulation and development of curcumin–piperine-loaded s-snedds for the treatment of alzheimer’s disease. Mol. Neurobiol. 2023 60 2 1067 1082 10.1007/s12035‑022‑03089‑7 36414909
    [Google Scholar]
  165. Uttreja P. Karnik I. Adel Ali Youssef A. Self-emulsifying drug delivery systems (SEDDS): Transition from liquid to solid—a comprehensive review of formulation, characterization, applications, and future trends. Pharmaceutics 2025 17 1 63 10.3390/pharmaceutics17010063 39861711
    [Google Scholar]
  166. Bianco A. Kostarelos K. Prato M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol. 2005 9 6 674 679 10.1016/j.cbpa.2005.10.005 16233988
    [Google Scholar]
  167. Zhou L. Forman H.J. Ge Y. Lunec J. Multi-walled carbon nanotubes: A cytotoxicity study in relation to functionalization, dose and dispersion. Toxicol. In Vitro 2017 42 292 298 10.1016/j.tiv.2017.04.027 28483489
    [Google Scholar]
  168. Diaz Varela J.Y. Burciaga Jurado L.G. Olivas Armendáriz I. Martínez Pérez C.A. Chapa González C. The role of multi-walled carbon nanotubes in enhancing the hydrolysis and thermal stability of PLA. Sci. Rep. 2024 14 1 8405 10.1038/s41598‑024‑58755‑8 38600178
    [Google Scholar]
  169. Bhupinder M. Gs R. Bs B. Sandeep K. Self emulsified drug delivery system for the enhancement of oral bioavailability of poorly water soluble drugs. Available from 2013
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775386780250813111412
Loading
/content/journals/cdrr/10.2174/0125899775386780250813111412
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test