Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

It is a known fact that Alzheimer's disease causes degeneration of the central nervous system, which progresses and causes memory loss as well as loss of cognition. For many years, extensive research has been undertaken to find out newer possibilities to fight this disease at a molecular level along with many long-standing and expensive clinical trials. Many scientific research programs have either been discarded or unsuccessful. However, the research has not stopped and in the process, many heterocyclic scaffolds have been tried to build up novel drug molecules to combat this disease. A literature survey reveals that many heterocycles have been explored and were found to be very useful in treating many neurodegenerative disorders, including Alzheimer’s disease, Parkinsonism and a few more. This review explains the journey and highlights the various strategies to develop new anti-Alzheimer drug candidates. It is a concise and rigorous literature excerpt involving research findings on heterocyclic scaffolds for treating this disease.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775290026240612104933
2024-06-28
2025-09-26
Loading full text...

Full text loading...

References

  1. AnandR. GillK.D. MahdiA.A. Therapeutics of Alzheimer’s disease: Past, present and future.Neuropharmacology201476Pt A275010.1016/j.neuropharm.2013.07.00423891641
    [Google Scholar]
  2. UmarT. ShaliniS. RazaM.K. GusainS. KumarJ. SethP. TiwariM. HodaN. A multifunctional therapeutic approach: Synthesis, biological evaluation, crystal structure and molecular docking of diversified 1H-pyrazolo[3,4-b]pyridine derivatives against Alzheimer’s disease.Eur. J. Med. Chem.201917521910.1016/j.ejmech.2019.04.03831055149
    [Google Scholar]
  3. SarıkayaGörkem ÇobanGüneş ParlarSülünay TarikogullariAyse H. ArmaganGüliz ErdoğanMümin A. AlptüzünVildan AlpanAyşe S. Multifunctional cholinesterase inhibitors for Alzheimer's disease: Synthesis, biological evaluations, and docking studies of o/p-propoxyphenylsubstituted-1H-benzimidazole derivatives.Arch Pharm Chem Life Sci2018118
    [Google Scholar]
  4. ScarpiniE. ScheltensP. FeldmanH. Treatment of Alzheimer’s disease: Current status and new perspectives.Neurology: Alzheimer’s Disease treatment200329539547
    [Google Scholar]
  5. FrancisP.T. PangalosM.N. BowenD.M. Animal and drug modelling for Alzheimer synaptic pathology.Prog. Neurobiol.199239551754510.1016/0301‑0082(92)90005‑Y1529103
    [Google Scholar]
  6. NewhouseP.A. PotterA. LevinE.D. Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics.Drugs Aging199711320622810.2165/00002512‑199711030‑000059303280
    [Google Scholar]
  7. FunicelloM. CerminaraI. ChiummientoL. Heterocycles for alzheimer disease: 4-and 5-substituted benzothiophenes as starting scaffold in the construction of potential new inhibitors of BACE 1.Med. Chem.20166377384
    [Google Scholar]
  8. JeongH.J. YoonU.Y. JangS.H. YooU.A. KimS.N. TruongB.T. ShinS.C. YoonY.J. A new Zn/TiCl4/LiAlH4 mediated approach to 2-aryl-or 2-alkyl-substituted benzothiophenes via intramolecular cyclization.Synlett20070914071410
    [Google Scholar]
  9. Alzheimer’s disease facts and figures special report more than normal aging: Understanding mild cognitive impairment.Neurology2022181118
    [Google Scholar]
  10. KapasiA. DeCarliC. SchneiderJ.A. Impact of multiple pathologies on the threshold for clinically overt dementia.Acta Neuropathol.2017134217118610.1007/s00401‑017‑1717‑728488154
    [Google Scholar]
  11. BrenowitzW.D. HubbardR.A. KeeneC.D. HawesS.E. LongstrethW.T.Jr WoltjerR.L. KukullW.A. Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample.Alzheimers Dement.201713665466210.1016/j.jalz.2016.09.01527870939
    [Google Scholar]
  12. HanseeuwB.J. BetenskyR.A. JacobsH.I.L. SchultzA.P. SepulcreJ. BeckerJ.A. CosioD.M.O. FarrellM. QuirozY.T. MorminoE.C. BuckleyR.F. PappK.V. AmariglioR.A. DewachterI. IvanoiuA. HuijbersW. HeddenT. MarshallG.A. ChhatwalJ.P. RentzD.M. SperlingR.A. JohnsonK. Association of amyloid and tau with cognition in preclinical Alzheimer disease: A longitudinal study.JAMA Neurol.201976891592410.1001/jamaneurol.2019.142431157827
    [Google Scholar]
  13. YiannopoulouK.G. AnastasiouA.I. ZachariouV. PelidouS.H. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research.Biomedicines2019749710.3390/biomedicines704009731835422
    [Google Scholar]
  14. Why do so many clinical trials of therapies for Alzheimer’s disease fail?Available from: www. Google.com
  15. GauthierS. AlbertM. FoxN. GoedertM. KivipeltoM. Mestre-FerrandizJ. MiddletonL.T. Why has therapy development for dementia failed in the last two decades?Alzheimers Dement.2016121606410.1016/j.jalz.2015.12.00326710325
    [Google Scholar]
  16. DuboisB. HampelH. FeldmanH.H. ScheltensP. AisenP. AndrieuS. BakardjianH. BenaliH. BertramL. BlennowK. BroichK. CavedoE. CrutchS. DartiguesJ.F. DuyckaertsC. EpelbaumS. FrisoniG.B. GauthierS. GenthonR. GouwA.A. HabertM.O. HoltzmanD.M. KivipeltoM. ListaS. MolinuevoJ.L. O’BryantS.E. RabinoviciG.D. RoweC. SallowayS. SchneiderL.S. SperlingR. TeichmannM. CarrilloM.C. CummingsJ. JackC.R.Jr Proceedings of the Meeting of the International Working Group (IWG) and the American Alzheimer’s Association on “The Preclinical State of AD”; July 23, 2015; Washington DC, USA Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria.Alzheimers Dement.201612329232310.1016/j.jalz.2016.02.00227012484
    [Google Scholar]
  17. HungS.Y. FuW.M. Drug candidates in clinical trials for Alzheimer’s disease.J. Biomed. Sci.20172414710.1186/s12929‑017‑0355‑728720101
    [Google Scholar]
  18. GodyńJ. JończykJ. PanekD. MalawskaB. Therapeutic strategies for Alzheimer’s disease in clinical trials.Pharmacol. Rep.201668112713810.1016/j.pharep.2015.07.00626721364
    [Google Scholar]
  19. HaigG.M. PritchettY. MeierA. OthmanA.A. HallC. GaultL.M. LenzR.A. A randomized study of H3 antagonist ABT-288 in mild-to-moderate Alzheimer’s dementia.J. Alzheimers Dis.201442395997110.3233/JAD‑14029125024314
    [Google Scholar]
  20. FoxG.B. EsbenshadeT.A. PanJ.B. RadekR.J. KruegerK.M. YaoB.B. BrowmanK.E. BuckleyM.J. BallardM.E. KomaterV.A. MinerH. ZhangM. FaghihR. RueterL.E. BitnerR.S. DrescherK.U. WetterJ. MarshK. LemaireM. PorsoltR.D. BennaniY.L. SullivanJ.P. CowartM.D. DeckerM.W. HancockA.A. Pharmacological properties of ABT-239 [4-(2-2-[(2R)-2-Methylpyrrolidinyl]ethyl-benzofuran-5-yl)benzonitrile]: II. Neurophysiological characterization and broad preclinical efficacy in cognition and schizophrenia of a potent and selective histamine H3 receptor antagonist.J. Pharmacol. Exp. Ther.2005313117619010.1124/jpet.104.07840215608077
    [Google Scholar]
  21. SchneiderL.S. MangialascheF. AndreasenN. FeldmanH. GiacobiniE. JonesR. MantuaV. MecocciP. PaniL. WinbladB. KivipeltoM. Clinical trials and late‐stage drug development for A lzheimer’s disease: An appraisal from 1984 to 2014.J. Intern. Med.2014275325128310.1111/joim.1219124605808
    [Google Scholar]
  22. WildsmithK.R. HolleyM. SavageJ.C. SkerrettR. LandrethG.E. Evidence for impaired amyloid β clearance in Alzheimer’s disease.Alzheimers Res. Ther.2013543310.1186/alzrt18723849219
    [Google Scholar]
  23. MinersJ.S. BaruaN. KehoeP.G. GillS. LoveS. Aβ-degrading enzymes: Potential for treatment of Alzheimer disease.J. Neuropathol. Exp. Neurol.2011701194495910.1097/NEN.0b013e3182345e4622002425
    [Google Scholar]
  24. BatemanR.J. MunsellL.Y. MorrisJ.C. SwarmR. YarasheskiK.E. HoltzmanD.M. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo.Nat. Med.200612785686110.1038/nm143816799555
    [Google Scholar]
  25. CummingsJ. The role of biomarkers in Alzheimer’s disease drug development.Adv Exp Med Biol.20191118296110.1007/978‑3‑030‑05542‑4_2
    [Google Scholar]
  26. DayM. RutkowskiJ.L. FeuersteinG.Z. Translational medicine--a paradigm shift in modern drug discovery and development: the role of biomarkers.Adv. Exp. Med. Biol.200965511210.1007/978‑1‑4419‑1132‑2_120047030
    [Google Scholar]
  27. KrausV.B. Biomarkers as drug development tools: Discovery, validation, qualification and use.Nat. Rev. Rheumatol.201814635436210.1038/s41584‑018‑0005‑929760435
    [Google Scholar]
  28. FillitH. CummingsJ. Drug Development for Alzheimer’s Disease: An Historical Perspective.Cambridge University Press202212533
    [Google Scholar]
  29. CummingsJ.L. MorstorfT. ZhongK. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures.Alzheimers Res. Ther.2014643710.1186/alzrt26925024750
    [Google Scholar]
  30. CountsS.E. IkonomovicM.D. MercadoN. VegaI.E. MufsonE.J. Biomarkers for the early detection and progression of Alzheimer’s disease.Neurotherapeutics2017141355310.1007/s13311‑016‑0481‑z27738903
    [Google Scholar]
  31. KiddleS.J. StevesC.J. MehtaM. SimmonsA. XuX. NewhouseS. SattleckerM. AshtonN.J. BazenetC. KillickR. AdnanJ. WestmanE. NelsonS. SoininenH. KloszewskaI. MecocciP. TsolakiM. VellasB. CurtisC. BreenG. WilliamsS.C.R. LovestoneS. SpectorT.D. DobsonR.J.B. Plasma protein biomarkers of Alzheimer’s disease endophenotypes in asymptomatic older twins: Early cognitive decline and regional brain volumes.Transl. Psychiatry201556e584e58410.1038/tp.2015.7826080319
    [Google Scholar]
  32. O’BryantS.E. GuptaV. HenriksenK. EdwardsM. JerominA. ListaS. BazenetC. SoaresH. LovestoneS. HampelH. MontineT. BlennowK. ForoudT. CarrilloM. Graff-RadfordN. LaskeC. BretelerM. ShawL. TrojanowskiJ.Q. SchupfN. RissmanR.A. FaganA.M. OberoiP. UmekR. WeinerM.W. GrammasP. PosnerH. MartinsR. STAR-B and BBBIG working groups Guidelines for the standardization of preanalytic variables for blood‐based biomarker studies in Alzheimer’s disease research.Alzheimers Dement.201511554956010.1016/j.jalz.2014.08.09925282381
    [Google Scholar]
  33. KaracaŞ. OsmaniyeD. SağlıkB.N. LeventS. IlgınS. ÖzkayY. KaraburunA.Ç. KaplancıklıZ.A. Gundogdu-KaraburunN. Synthesis of novel benzothiazole derivatives and investigation of their enzyme inhibitory effects against Alzheimer’s disease.RSC Advances20221236236262363610.1039/D2RA03803J36090440
    [Google Scholar]
  34. HusseinW. SağlıkB. LeventS. KorkutB. IlgınS. ÖzkayY. KaplancıklıZ. Synthesis and biological evaluation of new cholinesterase inhibitors for Alzheimer’s disease.Molecules2018238203310.3390/molecules2308203330110946
    [Google Scholar]
  35. LatifA. BibiS. AliS. AmmaraA. AhmadM. KhanA. Al-HarrasiA. UllahF. AliM. New multitarget directed benzimidazole‐2‐thiol‐based heterocycles as prospective anti‐radical and anti‐Alzheimer 's agents.Drug Dev. Res.202182220721610.1002/ddr.2174032897587
    [Google Scholar]
  36. Aboul-EneinH.Y. RashedyE.l. Benzimidazole derivatives as antidiabetic agents.Med. Chem.201557318325
    [Google Scholar]
  37. LalutJ. PayanH. DavisA. LecouteyC. LegayR. Sopkova-de Oliveira SantosJ. ClaeysenS. DallemagneP. RochaisC. Rational design of novel benzisoxazole derivatives with acetylcholinesterase inhibitory and serotoninergic 5-HT4 receptors activities for the treatment of Alzheimer’s disease.Sci. Rep.2020101301410.1038/s41598‑020‑59805‑732080261
    [Google Scholar]
  38. KowalN. IndurthiD. AhringP. ChebibM. OlafsdottirE. BalleT. Novel approach for the search for chemical scaffolds with activity at both acetylcholinesterase and the α7 nicotinic acetylcholine receptor: A perspective on scaffolds with dual activity for the treatment of neurodegenerative disorders.Molecules201924344610.3390/molecules2403044630691196
    [Google Scholar]
  39. SağlıkB.N. OsmaniyeD. Acar ÇevikU. LeventS. Kaya ÇavuşoğluB. ÖzkayY. KaplancıklıZ.A. Design, synthesis, and structure–activity relationships of thiazole analogs as anticholinesterase agents for Alzheimer’s disease.Molecules20202518431210.3390/molecules2518431232962239
    [Google Scholar]
  40. Demir ÖzkayÜ. CanÖ.D. SağlıkB.N. Acar ÇevikU. LeventS. ÖzkayY. IlgınS. AtlıÖ. Design, synthesis, and AChE inhibitory activity of new benzothiazole–piperazines.Bioorg. Med. Chem. Lett.201626225387539410.1016/j.bmcl.2016.10.04127789142
    [Google Scholar]
  41. AlpanA.S. SarıkayaG. ÇobanG. ParlarS. ArmaganG. AlptüzünV. Mannich‐benzimidazole derivatives as antioxidant and anticholinesterase inhibitors: Synthesis, biological evaluations, and molecular docking study.Arch. Pharm.20173507e160035110.1002/ardp.20160035128379621
    [Google Scholar]
  42. DemirayakŞ. Abu MohsenU. Çağri KaraburunA. Synthesis and anticancer and anti-HIV testing of some pyrazino[1,2-a]benzimidazole derivatives.Eur. J. Med. Chem.200237325526010.1016/S0223‑5234(01)01313‑711900869
    [Google Scholar]
  43. KushwahaP. FatimaS. UpadhyayA. GuptaS. BhagwatiS. BaghelT. SiddiqiM.I. NazirA. SashidharaK.V. Synthesis, biological evaluation and molecular dynamic simulations of novel Benzofuran-tetrazole derivatives as potential agents against Alzheimer’s disease.Bioorg. Med. Chem. Lett.2019291667210.1016/j.bmcl.2018.11.00530455151
    [Google Scholar]
  44. Mehr-un-Nisa MunawarM.A. ChatthaF.A. KousarS. MunirJ. IsmailT. AshrafM. KhanM.A. Synthesis of novel triazoles and a tetrazole of escitalopram as cholinesterase inhibitors.Bioorg. Med. Chem.201523176014602410.1016/j.bmc.2015.06.05126189031
    [Google Scholar]
  45. MeiW. JiS. XiaoW. WangX. JiangC. MaW. ZhangH. GongJ. GuoY. Synthesis and biological evaluation of benzothiazol-based 1,3,4-oxadiazole derivatives as amyloid β-targeted compounds against Alzheimer’s disease.Monatsh. Chem.2017148101807181510.1007/s00706‑017‑1993‑x
    [Google Scholar]
  46. CarboneM. LiY. IraceC. MolloE. CastelluccioF. Di PascaleA. CiminoG. SantamariaR. GuoY.W. GavagninM. Structure and cytotoxicity of phidianidines A and B: first finding of 1,2,4-oxadiazole system in a marine natural product.Org. Lett.201113102516251910.1021/ol200234r21506595
    [Google Scholar]
  47. PalT. BhimaneniS. SharmaA. FloraS.J.S. Design, synthesis, biological evaluation and molecular docking study of novel pyridoxine–triazoles as anti-Alzheimer’s agents.RSC Advances20201044260062602110.1039/D0RA04942E35519785
    [Google Scholar]
  48. YangX. QiangX. LiY. LuoL. XuR. ZhengY. CaoZ. TanZ. DengY. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease.Bioorg. Chem.20177130531410.1016/j.bioorg.2017.02.01628267984
    [Google Scholar]
  49. GhotbiG. MahdaviM. NajafiZ. MoghadamF.H. Hamzeh-MivehroudM. DavaranS. DastmalchiS. Design, synthesis, biological evaluation, and docking study of novel dual-acting thiazole-pyridiniums inhibiting acetylcholinesterase and β-amyloid aggregation for Alzheimer’s disease.Bioorg. Chem.202010310418610.1016/j.bioorg.2020.10418632890993
    [Google Scholar]
  50. ShidoreM. MachhiJ. ShingalaK. MurumkarP. SharmaM.K. AgrawalN. TripathiA. ParikhZ. PillaiP. YadavM.R. Benzylpiperidine-linked diarylthiazoles as potential anti-Alzheimer’s agents: Synthesis and biological evaluation.J. Med. Chem.201659125823584610.1021/acs.jmedchem.6b0042627253679
    [Google Scholar]
  51. SahinZ. ErtasM. BenderC. BülbülE.F. BerkB. BiltekinS.N. YurttaşL. DemirayakŞ. Thiazole‐substituted benzoylpiperazine derivatives as acetylcholinesterase inhibitors.Drug Dev. Res.201879840642510.1002/ddr.2148130343499
    [Google Scholar]
  52. MohsenU. KaplancikliZ. ÖzkayY. YurttaşL. Synthesis and evaluation of anti-acetylcholinesterase activity of some benzothiazole based new piperazine-dithiocarbamate derivatives.Drug Res.2015654e110.1055/s‑0035‑154532024918348
    [Google Scholar]
  53. RehmanT.U. KhanI.U. AshrafM. TaraziH. RiazS. YarM. An efficient synthesis of bi ‐aryl pyrimidine heterocycles: potential new drug candidates to treat alzheimer’s disease.Arch. Pharm.20173503-4160030410.1002/ardp.20160030428220522
    [Google Scholar]
  54. BernierJ.L. HenichartJ.P. WarinV. BaertF. Synthesis and structure–activity relationship of a pyrimido[4,5-d]pyrimidine derivative with antidepressant activity.J. Pharm. Sci.198069111343134510.1002/jps.26006911286256515
    [Google Scholar]
  55. SunZ.Q. TuL.X. ZhuoF.J. LiuS.X. Design and discovery of novel thiazole acetamide derivatives as anticholinesterase agent for possible role in the management of alzheimer’s.Bioorg. Med. Chem. Lett.201626374775010.1016/j.bmcl.2016.01.00126783181
    [Google Scholar]
  56. HemaidaA.Y. HassanG.S. MaaroufA.R. JoubertJ. El-EmamA.A. Synthesis and biological evaluation of thiazole-based derivatives as potential acetylcholinesterase inhibitors.ACS Omega2021629192021921110.1021/acsomega.1c0254934337258
    [Google Scholar]
  57. RamosE. Palomino-AntolínA. BartoliniM. IriepaI. MoraledaI. Diez-IriepaD. SamadiA. CortinaC.V. ChiouaM. EgeaJ. RomeroA. Marco-ContellesJ. QuinoxalineTacrine QT78, a cholinesterase inhibitor as a potential ligand for Alzheimer’s disease therapy.Molecules2019248150310.3390/molecules2408150330999586
    [Google Scholar]
  58. PatockaJ. JunD. KucaK. Possible role of hydroxylated metabolites of tacrine in drug toxicity and therapy of Alzheimer’s disease.Curr. Drug Metab.20089433233510.2174/13892000878422061918473751
    [Google Scholar]
  59. TaraziH. OdehR.A. Al-QawasmehR. YousefI.A. VoelterW. Al-TelT.H. Design, synthesis and SAR analysis of potent BACE1 inhibitors: Possible lead drug candidates for Alzheimer’s disease.Eur. J. Med. Chem.20171251213122410.1016/j.ejmech.2016.11.02127871037
    [Google Scholar]
  60. ThompsonL. BronsonJ. ZusiF. Progress in the discovery of BACE inhibitors.Curr. Pharm. Des.200511263383340410.2174/13816120577437082516250843
    [Google Scholar]
  61. ElmegeedG.A. AhmedH.H. HashashM.A. Abd-ElhalimM.M. El-kadyD.S. Synthesis of novel steroidal curcumin derivatives as anti-Alzheimer’s disease candidates: Evidences-based on in vivo study.Steroids2015101788910.1016/j.steroids.2015.06.00326079653
    [Google Scholar]
  62. MohamedN.R. AbdelhalimM.M. KhadrawyY.A. ElmegeedG.A. Abdel-SalamO.M.E. One-pot three-component synthesis of novel heterocyclic steroids as a central antioxidant and anti-inflammatory agents.Steroids201277131469147610.1016/j.steroids.2012.09.00122999991
    [Google Scholar]
  63. SinghA. SharmaS. AroraS. AttriS. KaurP. Kaur GulatiH. BhagatK. KumarN. SinghH. Vir SinghJ. Mohinder Singh BediP. New coumarin-benzotriazole based hybrid molecules as inhibitors of acetylcholinesterase and amyloid aggregation.Bioorg. Med. Chem. Lett.2020302012747710.1016/j.bmcl.2020.12747732781220
    [Google Scholar]
  64. FanY.L. KeX. LiuM. Coumarin–triazole hybrids and their biological activities.J. Heterocycl. Chem.201855479180210.1002/jhet.3112
    [Google Scholar]
  65. CamporaM. CanaleC. GattaE. TassoB. LauriniE. ReliniA. PriclS. CattoM. TonelliM. Multitarget biological profiling of new naphthoquinone and anthraquinone-based derivatives for the treatment of Alzheimer’s disease.ACS Chem. Neurosci.202112344746110.1021/acschemneuro.0c0062433428389
    [Google Scholar]
  66. SinghV.K. VermaS.K. KaduR. MobinS.M. Identification of unusual C–Cl π contacts in 2-(alkylamino)-3-chloro-1,4-naphthoquinones: effect of N-substituents on crystal packing, fluorescence, redox and anti-microbial properties.RSC Advances2015554436694368610.1039/C5RA02295A
    [Google Scholar]
  67. LuoZ. ShengJ. SunY. LuC. YanJ. LiuA. LuoH. HuangL. LiX. Synthesis and evaluation of multi-target-directed ligands against Alzheimer’s disease based on the fusion of donepezil and ebselen.J. Med. Chem.201356229089909910.1021/jm401047q24160297
    [Google Scholar]
  68. ZhaoR. MasayasuH. HolmgrenA. Ebselen: A substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant.Proc. Natl. Acad. Sci. USA200299138579858410.1073/pnas.12206139912070343
    [Google Scholar]
  69. SugimotoH. YamanishY. IimuraY. KawakamiY. Donepezil hydrochloride (E2020) and other acetylcholinesterase inhibitors.Curr. Med. Chem.20007330333910.2174/092986700337519110637367
    [Google Scholar]
  70. YanG. HaoL. NiuY. HuangW. WangW. XuF. LiangL. WangC. JinH. XuP. 2-Substituted-thio- N -(4-substituted-thiazol/1 H -imidazol-2-yl)acetamides as BACE1 inhibitors: Synthesis, biological evaluation and docking studies.Eur. J. Med. Chem.201713746247510.1016/j.ejmech.2017.06.02028624701
    [Google Scholar]
  71. LiJ.T. LinZ.P. HanJ.F. LiT.S. One‐pot synthesis of 4‐oxo‐2‐thioxohexahydropyrimidines catalyzed by potassium carbonate under ultrasound.Synth. Commun.200434142623263110.1081/SCC‑200025624
    [Google Scholar]
  72. BaumannK. KordićL. MočibobM. ŠinkoG. TomićS. Synthesis and in vitro screening of novel heterocyclic β-d-Gluco-and β-d-galactoconjugates as butyrylcholinesterase inhibitors.Molecules20192415283310.3390/molecules2415283331382668
    [Google Scholar]
  73. BlaževićI. ĐulovićA. Čikeš ČulićV. BurčulF. LjubenkovI. RuščićM. Generalić MekinićI. GeneralićMekinić I. Bunias erucago L.: Glucosinolate profile and in vitro biological potential.Molecules201924474110.3390/molecules2404074130791395
    [Google Scholar]
  74. PasiekaA. PanekD. SzałajN. EspargaróA. WięckowskaA. MalawskaB. SabatéR. BajdaM. Dual inhibitors of amyloid-β and tau aggregation with amyloid-β disaggregating properties: Extended in cellulo, in silico, and kinetic studies of multifunctional anti-Alzheimer’s agents.ACS Chem. Neurosci.202112112057206810.1021/acschemneuro.1c0023534019757
    [Google Scholar]
  75. LvP. XiaC.L. WangN. LiuZ.Q. HuangZ.S. HuangS.L. Synthesis and evaluation of 1,2,3,4-tetrahydro-1-acridone analogues as potential dual inhibitors for amyloid-beta and tau aggregation.Bioorg. Med. Chem.201826164693470510.1016/j.bmc.2018.08.00730107970
    [Google Scholar]
  76. PatelD.V. PatelN.R. KanhedA.M. PatelS.P. SinhaA. KansaraD.D. MecwanA.R. PatelS.B. UpadhyayP.N. PatelK.B. ShahD.B. PrajapatiN.K. MurumkarP.R. PatelK.V. YadavM.R. Novel multitarget directed triazinoindole derivatives as anti-Alzheimer agents.ACS Chem. Neurosci.20191083635366110.1021/acschemneuro.9b0022631310717
    [Google Scholar]
  77. TahaM. AlshamraniF.J. RahimF. HayatS. UllahH. ZamanK. ImranS. KhanK.M. NazF. Synthesis of novel triazinoindole-based thiourea hybrid: A study on α-glucosidase inhibitors and their molecular docking.Molecules20192421381910.3390/molecules2421381931652777
    [Google Scholar]
  78. HaghighijooZ. AkramiS. SaeediM. ZonouziA. IrajiA. LarijaniB. FakherzadehH. SharifiF. ArzaghiS.M. MahdaviM. EdrakiN. N-Cyclohexylimidazo[1,2-a]pyridine derivatives as multi-target-directed ligands for treatment of Alzheimer’s disease.Bioorg. Chem.202010310414610.1016/j.bioorg.2020.10414632777579
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775290026240612104933
Loading
/content/journals/cdrr/10.2174/0125899775290026240612104933
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test