Skip to content
2000
Volume 17, Issue 2
  • ISSN: 2589-9775
  • E-ISSN: 2589-9783

Abstract

Background

Sickle cell disease is a severe genetic disorder, and searching for therapeutic strategies is indispensable for prolonged and improved life for people affected by this condition.

Objectives

This qualitative systematic review aimed to highlight the therapeutic potential of omega-3 (n-3) in people with sickle cell disease.

Methods

The search was performed by combining sickle cell disease and n-3 descriptors in DeCS/MeSH databases, including Scopus, PubMed, ScienceDirect, Web of Science, and Virtual Health Library. The risk of bias assessment in the primary studies was performed using the Cochrane risk of bias tool for randomized controlled trials. The evidence quality was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) tool.

Results

From the 187 records identified, seven were selected for data collection. Based on the evidence, n-3 supplementation contributes to lower activation of pro-inflammatory biomarkers, improves the concentration of docosahexaenoic and eicosapentaenoic acids in the erythrocyte membrane, provides better hemostatic response, and helps in vaso-occlusive crisis, pain episodes, and hospitalization reduction.

Conclusion

The findings suggest that n-3 adjuvant therapy favors the clinical and general aspects of people with sickle cell disease.

Loading

Article metrics loading...

/content/journals/cdrr/10.2174/0125899775286425240129110903
2024-02-15
2025-09-25
Loading full text...

Full text loading...

References

  1. KatoG.J. PielF.B. ReidC.D. GastonM.H. Ohene-FrempongK. KrishnamurtiL. SmithW.R. PanepintoJ.A. WeatherallD.J. CostaF.F. VichinskyE.P. Sickle cell disease.Nat. Rev. Dis. Primers2018411801010.1038/nrdp.2018.1029542687
    [Google Scholar]
  2. PielF.B. PatilA.P. HowesR.E. NyangiriO.A. GethingP.W. DewiM. TemperleyW.H. WilliamsT.N. WeatherallD.J. HayS.I. Global epidemiology of sickle haemoglobin in neonates: A contemporary geostatistical model-based map and population estimates.Lancet2013381986114215110.1016/S0140‑6736(12)61229‑X23103089
    [Google Scholar]
  3. DelesderrierE. CurioniC. OmenaJ. MacedoC.R. Cople-RodriguesC. CitelliM. Antioxidant nutrients and hemolysis in sickle cell disease.Clin. Chim. Acta202051038139010.1016/j.cca.2020.07.02032673671
    [Google Scholar]
  4. SteinbergM.H. Management of sickle cell disease.N. Engl. J. Med.1999340131021103010.1056/NEJM19990401340130710099145
    [Google Scholar]
  5. DaakA.A. Lopez-ToledanoM.A. HeeneyM.M. Biochemical and therapeutic effects of Omega-3 fatty acids in sickle cell disease.Complement. Ther. Med.20205210248210.1016/j.ctim.2020.10248232951732
    [Google Scholar]
  6. SettyB.N.Y. BetalS.G. MillerR.E. BrownD.S. MeierM. CahillM. LernerN.B. ApollonskyN. StuartM.J. Relationship of Omega-3 fatty acids DHA and EPA with the inflammatory biomarker hs-CRP in children with sickle cell anemia.Prostaglandins Leukot. Essent. Fatty Acids2019146111810.1016/j.plefa.2019.05.00431186149
    [Google Scholar]
  7. MartinC.A. AlmeidaV.V. RuizM.R. VisentainerJ.E.L. MatshushitaM. SouzaN.E. VisentainerJ.V. Ácidos graxos poliinsaturados ômega-3 e ômega-6: Importância e ocorrência em alimentos.Rev. Nutr.200619676177010.1590/S1415‑52732006000600011
    [Google Scholar]
  8. ShivappaN. Diet and chronic diseases: Is there a mediating effect of inflammation?Nutrients2019117163910.3390/nu1107163931323738
    [Google Scholar]
  9. UmeakunneK. HibbertJ.M. Nutrition in sickle cell disease: Recent insights.Nutr. Diet. Suppl.20191191710.2147/NDS.S168257
    [Google Scholar]
  10. ShamseerL. MoherD. ClarkeM. GhersiD. LiberatiA. PetticrewM. ShekelleP. StewartL. A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation.BMJ2015349764710.1136/bmj.g7647
    [Google Scholar]
  11. MoherD. LiberatiA. TetzlaffJ. AltmanD.G. Reprint--preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement.Phys. Ther.200989987388010.1093/ptj/89.9.87319723669
    [Google Scholar]
  12. HigginsJ.P.T. AltmanD.G. GotzscheP.C. JuniP. MoherD. OxmanA. D. SavovicJ. SchulzK. F. WeeksL. SterneJ. A. C. The cochrane collaboration’s tool for assessing risk of bias in randomised trials.BMJ2011343d592810.1136/bmj.d5928
    [Google Scholar]
  13. GuyattG.H. OxmanA.D. VistG.E. KunzR. Falck-YtterY. Alonso-CoelloP. SchünemannH.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations.BMJ2008336765092492610.1136/bmj.39489.470347.AD18436948
    [Google Scholar]
  14. AwodaS. DaakA.A. HusainN.E. GhebremeskelK. ElbashirM.I. Coagulation profile of Sudanese children with homozygous sickle cell disease and the effect of treatment with omega-3 fatty acid on the coagulation parameters.BMC Hematol.20171711810.1186/s12878‑017‑0089‑529152307
    [Google Scholar]
  15. TomerA. KaseyS. ConnorW. ClarkS. HarkerL. EckmanJ. Reduction of pain episodes and prothrombotic activity in sickle cell disease by dietary n-3 fatty acids.Thromb. Haemost.200185696697410.1055/s‑0037‑161594811434703
    [Google Scholar]
  16. DaakA.A. GhebremeskelK. HassanZ. AttallahB. AzanH.H. ElbashirM.I. CrawfordM. Effect of omega-3 (n−3) fatty acid supplementation in patients with sickle cell anemia: Randomized, double-blind, placebo-controlled trial.Am. J. Clin. Nutr.2013971374410.3945/ajcn.112.03631923193009
    [Google Scholar]
  17. MuskietF.A. MuskietF.D. MeiborgG. SchermerJ.G. Supplementation of patients with homozygous sickle cell disease with zinc,α-tocopherol, vitamin C, soybean oil, and fish oil.Am. J. Clin. Nutr.199154473674410.1093/ajcn/54.4.7361716847
    [Google Scholar]
  18. DaakA.A. GhebremeskelK. MarinielloK. AttallahB. CloughP. ElbashirM.I. Docosahexaenoic and eicosapentaenoic acid supplementation does not exacerbate oxidative stress or intravascular haemolysis in homozygous sickle cell patients.Prostaglandins Leukot. Essent. Fatty Acids201389530531110.1016/j.plefa.2013.09.00624095588
    [Google Scholar]
  19. OkpalaI. IbegbulamO. DuruA. OcheniS. EmodiI. IkefunaA. UmarG. AsinobiI. MaduA. OkoyeA. NwaghaT. OguonuU. UamaiI. AgwuO. NonyeluC. AnikeU. AguK. AnigboC. ChukwuraA. UgwuO. HerradaS. Pilot study of omega-3 fatty acid supplements in sickle cell disease.Acta Pathol. Microbiol. Scand. Suppl.2011119744244810.1111/j.1600‑0463.2011.02751.x21635551
    [Google Scholar]
  20. DaakA.A. ElderderyA.Y. ElbashirL.M. MarinielloK. MillsJ. ScarlettG. ElbashirM.I. GhebremeskelK. Omega 3 (n-3) fatty acids down-regulate nuclear factor-kappa B (NF-κB) gene and blood cell adhesion molecule expression in patients with homozygous sickle cell disease.Blood Cells Mol. Dis.2015551485510.1016/j.bcmd.2015.03.01425976467
    [Google Scholar]
  21. de CarvalhoC. CaramujoM. The various roles of fatty acids.Molecules20182310258310.3390/molecules2310258330304860
    [Google Scholar]
  22. van den BergJ.J.M. de FouwN.J. KuypersF.A. RoelofsenB. HoutsmullerU.M.T. den KampJ.A.F.O. Increased n-3 polyunsaturated fatty acid content of red blood cells from fish oil-fed rabbits increases in vitro lipid peroxidation, but decreases hemolysis.Free Radic. Biol. Med.199111439339910.1016/0891‑5849(91)90156‑W1797625
    [Google Scholar]
  23. AtagaK.I. BrittainJ.E. DesaiP. MayR. JonesS. DelaneyJ. StrayhornD. HinderliterA. KeyN.S. Association of coagulation activation with clinical complications in sickle cell disease.PLoS One201271e2978610.1371/journal.pone.002978622253781
    [Google Scholar]
  24. WanderseeN.J. MaciaszekJ.L. GigerK.M. HansonM.S. ZhengS. GuoY. MickelsonB. HilleryC.A. LykotrafitisG. LowP.S. HoggN. Dietary supplementation with docosahexanoic acid (DHA) increases red blood cell membrane flexibility in mice with sickle cell disease.Blood Cells Mol. Dis.201554218318810.1016/j.bcmd.2014.11.00425488613
    [Google Scholar]
  25. MillsD.E. GaleyW.R. DixonH. Effects of dietary fatty-acid supplementation on fatty-acid composition and deformability of young and old erythrocytes.Biochim. Biophys. Acta Biomembr.19931149231331810.1016/0005‑2736(93)90216‑M8323949
    [Google Scholar]
  26. CalderP.C. n -3 Fatty acids, inflammation and immunity: new mechanisms to explain old actions.Proc. Nutr. Soc.201372332633610.1017/S002966511300103123668691
    [Google Scholar]
  27. FahrmannJ.F. BallesterO.F. BallesterG. WitteT.R. SalazarA.J. KorduskyB. CowenK.G. IonG. PrimeranoD.A. BoskovicG. DenvirJ. HardmanW.E. Inhibition of nuclear factor kappa B activation in early-stage chronic lymphocytic leukemia by omega-3 fatty acids.Cancer Invest.2013311243810.3109/07357907.2012.74355323193970
    [Google Scholar]
  28. AtagaK.I. Novel therapies in sickle cell disease.Hematology (Am. Soc. Hematol. Educ. Program)200920091546110.1182/asheducation‑2009.1.5420008182
    [Google Scholar]
  29. KalishB.T. MatteA. AndolfoI. IolasconA. WeinbergO. GhigoA. CiminoJ. SicilianoA. HirschE. FedertiE. PuderM. BrugnaraC. De FranceschiL. Dietary -3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease.Haematologica2015100787088010.3324/haematol.2015.12458625934765
    [Google Scholar]
  30. BuchananG.R. HoltkampC.A. Evidence against enhanced platelet activity in sickle cell anaemia.Br. J. Haematol.198354459560310.1111/j.1365‑2141.1983.00573.x‑i16223655
    [Google Scholar]
  31. AmerJ. GhotiH. RachmilewitzE. KorenA. LevinC. FibachE. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants.Br. J. Haematol.2006132110811310.1111/j.1365‑2141.2005.05834.x16371026
    [Google Scholar]
  32. HasanatoR.M.W. Zinc and antioxidant vitamin deficiency in patients with severe sickle cell anemia.Ann. Saudi Med.2006261172110.5144/0256‑4947.2006.1716521870
    [Google Scholar]
  33. RenH. GhebremeskelK. OkpalaI. LeeA. IbegbulamO. CrawfordM. Patients with sickle cell disease have reduced blood antioxidant protection.Int. J. Vitam. Nutr. Res.200878313914710.1024/0300‑9831.78.3.13919003736
    [Google Scholar]
  34. ChiuD. VichinskyE. YeeM. KlemanK. LubinB. Peroxidation, vitamin e, and sickle-cell anemia.Ann N Y Acad Sci198239332333510.1111/j.1749‑6632.1982.tb31272.x
    [Google Scholar]
  35. NattaC.L. ChenL.C. ChowC.K. Selenium and glutathione peroxidase levels in sickle cell anemia.Acta Haematol.199083313013210.1159/0002051882109451
    [Google Scholar]
  36. BlackA. GrayJ. ShakarjianM. LaskinD. HeckD. LaskinJ. Increased oxidative stress and antioxidant expression in mouse keratinocytes following exposure to paraquat.Toxicol. Appl. Pharmacol.2008231338439210.1016/j.taap.2008.05.01418620719
    [Google Scholar]
  37. SharmaS. DewaldO. AdrogueJ. SalazarR.L. RazeghiP. CrapoJ.D. BowlerR.P. EntmanM.L. TaegtmeyerH. Induction of antioxidant gene expression in a mouse model of ischemic cardiomyopathy is dependent on reactive oxygen species.Free Radic. Biol. Med.200640122223223110.1016/j.freeradbiomed.2006.02.01916785036
    [Google Scholar]
  38. HamidN.A.A. HasrulM.A. RuzannaR.J. IbrahimI.A. BaruahP.S. MazlanM. YusofY.A.M. NgahW.Z.W. Effect of vitamin E (Tri E®) on antioxidant enzymes and DNA damage in rats following eight weeks exercise.Nutr. J.20111013710.1186/1475‑2891‑10‑3721513540
    [Google Scholar]
  39. WangQ. SunY. MaA. LiY. HanX. LiangH. Effects of vitamin E on plasma lipid status and oxidative stress in Chinese women with metabolic syndrome.Int. J. Vitam. Nutr. Res.201080317818710.1024/0300‑9831/a00001521234859
    [Google Scholar]
/content/journals/cdrr/10.2174/0125899775286425240129110903
Loading
/content/journals/cdrr/10.2174/0125899775286425240129110903
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test