Current Drug Discovery Technologies - Volume 21, Issue 1, 2024
Volume 21, Issue 1, 2024
-
-
Liquisolid Technique: A Novel Technique with Remarkable Applications in Pharmaceutics
Authors: Sahibpreet Singh, Jyoti Singh and Disha AroraRecently, it has been observed that newly developed drugs are lipophilic and have low aqueous solubility issues, which results in a lower dissolution rate and bioavailability of the drugs. To overcome these issues, the liquisolid technique, an innovative and advanced approach, comes into play. This technique involves the conversion of the drug into liquid form by dissolving it in non-volatile solvent and then converting the liquid medication into dry, free-flowing, and compressible form by the addition of carrier and coating material. It offers advantages like low cost of production, easy method of preparation, and compactable with thermo labile and hygroscopic drugs. It has been widely applied for BCS II drugs to enhance dissolution profile. Improving bioavailability, providing sustained release, minimizing pH influence on drug dissolution, and improving drug photostability are some of the other promising applications of this technology. This review article presents an overview of the liquisolid technique and its applications in formulation development.
-
-
-
Drug Repositioning: A Monetary Stratagem to Discover a New Application of Drugs
Authors: Ankur Rohilla and Seema RohillaDrug repurposing, also referred to as drug repositioning or drug reprofiling, is a scientific approach to the detection of any new application for an already approved or investigational drug. It is a useful policy for the invention and development of new pharmacological or therapeutic applications of different drugs. The strategy has been known to offer numerous advantages over developing a completely novel drug for certain problems. Drug repurposing has numerous methodologies that can be categorized as target-oriented, drug-oriented, and problem-oriented. The choice of the methodology of drug repurposing relies on the accessible information about the drug molecule and like pharmacokinetic, pharmacological, physicochemical, and toxicological profile of the drug. In addition, molecular docking studies and other computer-aided methods have been known to show application in drug repurposing. The variation in dosage for original target diseases and novel diseases presents a challenge for researchers of drug repurposing in present times. The present review critically discusses the drugs repurposed for cancer, covid-19, Alzheimer's, and other diseases, strategies, and challenges of drug repurposing. Moreover, regulatory perspectives related to different countries like the United States (US), Europe, and India have been delineated in the present review.
-
-
-
Toxicological Assessment and Anti-diabetic Effects of Combined Extract of Chirata, Fenugreek and Sesame on Regulating TNF-α, TGF-β and Oxidative Stress in Streptozotocin Induced Diabetic Rats
Authors: Shivam and Asheesh K. GuptaBackground: Swertia chirayita, Trigonella foenum-gracum and Sesamum indicum are used as traditional medicines to treat diabetes mellitus. A collection of metabolic illnesses known as diabetes mellitus (DM) involves chronic hyperglycemia caused by flaws in insulin secretion, function, or both. Innate immunity and inflammation both play important roles in the etiology of diabetes- related microvascular problems. Objective: This study aims to examine the anti-diabetic effects and the acute toxicity of combined extract (1:1:1) of Swertia chirayita, Trigonella foenum-gracum and Sesamum indicum. To address the demand for higher effectiveness and safety, the current effort aims to construct anti-diabetic preparations containing methanolic extract from herbal medications. Methods: The OECD 423 method was used to investigate acute toxicity in rats. Rats were used as test subjects, and rats were given a 35 mg/kg BW injection of streptozotocin to develop diabetes. The diabetic control group was given Glibenclamide 0.25 mg/kg BW, while the experimental group's diabetic rats received 125 mg/kg BW and 250 mg/kg BW of a combined methanolic extract of all plants. Among the measurements looked at were acute oral toxicity, behavioral changes, body weight, serum glucose levels, lipid profiles, oxidative stress, renal function tests, and inflammatory mediators. All the rat groups' histopathologies of the kidney, liver, and stomach were compared. The data were evaluated using analysis of variance, and a post hoc test was then carried out. Results: The combined extracts' medium lethal doses (LD50) were higher than 2000 mg/kg, indicating that they are not poisonous under the conditions that can be observed. Streptozotocin-induced diabetic rats' elevated blood glucose was found to be considerably lower (p 0.01) in the treated group of rats. In the treated group of rats, it was discovered that the damage and disarray in the cells typical of Streptozotocin-induced DM had been repaired. The treated group of rats returned to normal levels of the lipid profile, hyperglycemia, decreased serum protein and liver glycogen, increased liver function, and kidney function markers seen in the rats of the DM control group. Conclusion: The evaluated combined methanolic extract can be considered safe for use in rats. Combining methanolic extract from all selected medicinal plants (Swertia chirayita, Trigonella foenum-gracum and Sesamum indicum) has a potential anti-diabetic effect and can be safely developed as an alternative medicine.
-
-
-
Virtual Screening, Docking, and Designing of New VEGF Inhibitors as Anti-cancer Agents
Authors: Shivkant Patel, Vinay R. Singh, Ashok Kumar Suman, Surabhi Jain and Ashim Kumar SenBackground: VEGFR-2 tyrosine kinase inhibitors are receiving a lot of attention as prospective anticancer medications in the current drug discovery process. Objective: This work aims to explore the PubChem library for novel VEGFR-2 kinase inhibitors. 1H-Indazole-containing drug AXITINIB, or AG-013736 (FDA approved), is chosen as a rational molecule for drug design. This scaffold proved its efficiency in treating cancer and other diseases as well. Methods: The present study used the virtual screening of the database, protein preparation, grid creation, and molecular docking analyses. Results: The protein was validated on different parameters like the Ramachandran plot, the ERRAT score, and the ProSA score. The Ramachandran plot revealed that 92.1% of the amino acid residues were located in the most favorable region; this was complemented by an ERRAT score (overall quality factor) of 96.24 percent and a ProSA (Z score) of -9.24 percent. The Lipinski rule of five was used as an additional filter for screening molecules. The docking results showed values of binding affinity between -14.08 and -12.34 kcal/mol. The molecule C1 showed the highest docking value of -14.08 Kcal/mol with the maximum number of strong H-bonds by -NH of pyridine to amino acid Cys104 (4.22Å), -NH of indazole to Glu108 (4.72), and Glu70 to bridge H of -NH. These interactions are similar to Axitinib docking interactions like Glu70, Cys104, and Glu102. The docking studies revealed that pi-alkyl bonds are formed with unsubstituted pyridine, whereas important H-bonds are observed with different substitutions around -NH. Based on potential findings, we designed new molecules, and molecular docking studies were performed on the same protein along with ADMET studies. The designed molecules (M1–M4) also showed comparable docking results similar to Axitinib, along with a synthetic accessibility score of less than 4.5. Conclusion: The docking method employed in this work opens up new possibilities for the design and synthesis of novel compounds that can act as VEGFR-2 tyrosine kinase inhibitors and treat cancer.
-
-
-
A Review on the Role of Phytoconstituents Chrysin on the Protective Effect on Liver and Kidney
Authors: Debika Sarmah and Rupa SenguptaBackground: The chance of contracting significant diseases increases due to an unhealthy and contemporary lifestyle. Chrysin is a flavonoid of the flavone class in numerous plants, including Passiflora and Pelargonium. Chrysin has long been used to treat a variety of illnesses. Chrysin, an essential flavonoid, has many pharmacological actions, including anticancer, antiviral, anti-inflammatory, anti-arthritic, depressive, hypolipidemic, hepatoprotective, and nephroprotective activity. Purpose: This explorative review was commenced to provide a holistic review of flavonoids confirming that Chrysin has a therapeutic potential on the liver and kidney and reduces the hepatotoxicity and nephrotoxicity induced by diverse toxicants, which can be helpful for the toxicologists, pharmacologists, and chemists to develop new safer pharmaceutical products with chrysin and other toxicants. Study Design: The most relevant studies that were well-explained and fit the chosen topic best were picked. The achieved information was analyzed to determine the outcome by screening sources by title, abstract, and whole work. Between themselves, the writers decided on the studies to be considered. The necessary details were systematically organized into titles and subtitles and compressively discussed. Method: The information presented in this review is obtained using targeted searches on several online platforms, including Google Scholar, Scifinder, PubMed, Science Direct, ACS publications, and Wiley Online Library. The works were chosen based on the inclusion criteria agreed upon by all authors. Results: Chrysin is a promising bioactive flavonoid with significant health benefits, and its synthetic replacements are being utilized as pharmaceuticals to treat various diseases. Findings revealed that Chrysin exhibits hepatoprotective actions against several hepatotoxicants like 2,3,7,8 tetrachlorodibenzo- p-dioxin, carbon tetrachloride (CCl4), cisplatin, and others by lowering the levels of liver toxicity biomarkers and enhancing antioxidant levels. Additionally, chrysin has potential nephroprotective properties against various nephrotoxicants, like Cisplatin, Doxorubicin, Paracetamol, Gentamicin, Streptazosin, and others by dropping kidney toxicity marker levels, reducing oxidative stress, and improving the antioxidant level. Conclusion: According to this revised study, chrysin is a promising phytoconstituent that can be utilized as an alternate treatment for various medications that cause hepatotoxicity and nephrotoxicity. With active chrysin, several dosage forms targeting the liver and kidneys can be formulated.
-
-
-
Assessment of the In VivoReprotoxicity of Isotretinoin in Sprague-Dawley Male Rat
Authors: Ahmad Khalil, Mai Daradkeh, Amneh Alrabie and Hasan Abo SiamBackground: Isotretinoin (ISO) belongs to a family of drugs called retinoids. It is the most effective drug prescribed by dermatologists for the treatment of the inflammatory disease, acne vulgaris. A significant barrier to the use of ISO has worries regarding its adverse effect profile. Despite the well-recognized reproductive toxicity and teratogenicity in females, there is no warning related to the use by male patients in the medication prospectus. Current data on the effects on human male fertility is contradictory and inconclusive. Objectives: This study was undertaken to investigate the potential effects of ISO oral doses in the Sprague-Dawley male rat germ cells using the sperm morphology assay. Also, the serum levels of the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone were measured. Methods: The rat groups were given varying ISO doses via gastric gavage for seven consecutive days. The epididymis sperm specimens were microscopically examined for the following reproductive toxicity parameters: sperm concentration, examined viability, motility, and morphology. The serum FSH, LH, and testosterone levels were measured by using the corresponding enzyme-linked immunosorbent assay (ELISA) kit. The data were analyzed statistically by one-way analysis of variance (ANOVA) followed by the Tukey test at P ≤ 0.05 significance level. Results: The results indicated that the drug did not significantly increase the sex hormone levels but notably affected both the sperm quantity and quality. Conclusion: These observations suggest that ISO was reprotoxic, and future therapies should be further reassessed.
-
-
-
Modeling the Antiviral Activity of Ginkgo bilobaPolyphenols against Variola: In SilicoExploration of Inhibitory Candidates for VarTMPK and HssTMPK Enzymes
Authors: Hamdani Sarra, Bouchentouf Salim and Allali HocineBackground: The aim of this study is to use modeling methods to estimate the antiviral activity of natural molecules extracted from Ginkgo biloba for the treatment of variola which is a zoonotic disease posing a growing threat to human survival. The recent spread of variola in nonendemic countries and the possibility of its use as a bioterrorism weapon have made it a global threat once again. Therefore, the search for new antiviral therapies with reduced side effects is necessary. Methods: In this study, we examined the interactions between polyphenolic compounds from Ginkgo biloba, a plant known for its antiviral activity, and two enzymes involved in variola treatment, VarTMPK and HssTMPK, using molecular docking. Results: The obtained docking scores showed that among the 152 selected polyphenolic compounds; many ligands had high inhibitory potential according to the energy affinity. By considering Lipinski's rules, we found that Liquiritin and Olivil molecules are the best candidates to be developed into drugs that inhibit VarTMPK because of their high obtained scores compared to reference ligands, and zero violations of Lipinski’s rules. We also found that ginkgolic acids have good affinities with HssTMPK and acceptable physicochemical properties to be developed into drugs administered orally. Conclusion: Based on the obtained scores and Lipinski’s rules, Liquiritin, Olivil, and ginkgolic acids molecules showed interesting results for both studied enzymes, indicating the existence of promising and moderate activity of these polyphenols for the treatment of variola and for possible multi-targeting. Liquiritin has been shown to exhibit anti-inflammatory effects on various inflammation- related diseases such as skin injury, hepatic inflammatory injury, and rheumatoid arthritis. Olivil has been shown to have antioxidant activity. Olivil derivatives have also been studied for their potential use as anticancer agents. Ginkgolic acids have been shown to have antimicrobial and antifungal properties. However, ginkgolic acids are also known to cause allergic reactions in some people. Therefore, future studies should consider these results and explore the potential of these compounds as antiviral agents. Further experimental studies in-vitro and in-vivo are required to validate and scale up these findings.
-
-
-
Inhibitory Effects of Carvacrol on Biofilm Formation in Colistin Heteroresistant Acinetobacter baumanniiClinical Isolates
Authors: Iraj Pakzad, Fatemeh Yarkarami, Behrooz S. Kalani, Mahnaz Shafieian and Ali HematianBackground: The ability of bacteria to form biofilm is an essential strategy for creating stable infections. This issue is more critical in Acinetobacter bauamannii as a hospital pathogen. Today, the control of biofilm formation and solutions to prevent or remove biofilm is being developed. Carvacrol has been considered an anti-biofilm compound in significant bacteria. This study investigated the anti-biofilm effect of Carvacrol on biofilm formation in clinical colistin heteroresistant isolates of A. baumannii. Methods: 22 clinical strains of A. baumannii were collected from Motahari Hospital in Tehran, Iran, in 2019. Biochemical and genotypic methods confirmed these isolates. Colistin heteroresistance was determined by the Standard PAP method. Carvacrol's antibacterial and anti-biofilm activity was determined according to the standard protocol. Results: About 12 isolates were considered strong biofilm producers and were used for analysis. Six isolates had hetero-resistance to colistin. Carvacrol at a 512 g/ml concentration showed the best antibacterial activity against all isolates. The sub-MIC of Carvacrol (256 g/ml) reduced the biofilm formation capacity, which was statistically significant (p < 0.05). Conclusion: The results of this study showed that sub-MIC of Carvacrol has anti-biofilm effects in clinical A.baumannii colistin hetero-resistance isolates.
-
Volumes & issues
-
Volume 22 (2025)
-
Volume 21 (2024)
-
Volume 20 (2023)
-
Volume 19 (2022)
-
Volume 18 (2021)
-
Volume 17 (2020)
-
Volume 16 (2019)
-
Volume 15 (2018)
-
Volume 14 (2017)
-
Volume 13 (2016)
-
Volume 12 (2015)
-
Volume 11 (2014)
-
Volume 10 (2013)
-
Volume 9 (2012)
-
Volume 8 (2011)
-
Volume 7 (2010)
-
Volume 6 (2009)
-
Volume 5 (2008)
-
Volume 4 (2007)
-
Volume 3 (2006)
-
Volume 2 (2005)
-
Volume 1 (2004)
Most Read This Month
