Skip to content
2000
Volume 8, Issue 4
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

The design of macromolecules able to generate a stable binding with nucleic acids is of great interest for their possible application in gene delivery. During the last years particular attention has been addressed to the use of dendritic scaffolds as a base to construct efficient DNA and siRNA nano-carriers. Dendrimers and dendrons are hyperbranched polymers characterized by a well-defined structure and by the possibility to functionalize their surface in many different ways. In particular, their multivalent character allows the creation of multiple binding sites between the positively charged groups that decorate the surface of cationic dendrons and dendrimers and the negatively charged phosphate groups present on the strands of DNA and siRNA. The engineering of “ideal dendritic candidates” to deliver and release genetic materials into cells is, however, not trivial due to the huge distance that exists between the design phase and the real application of such molecules. A differentarchitecture of the dendritic scaffold (flexible or rigid) can strongly modify the binding efficiency, but, at the same time, is influenced by the interactions with the external solution. In this context, molecular simulation can represent a “virtual bridge” between the design and the comprehension of the real behavior of such macromolecules.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/157016311798109416
2011-12-01
2025-09-08
Loading full text...

Full text loading...

/content/journals/cddt/10.2174/157016311798109416
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test