Skip to content
2000
Volume 5, Issue 1
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

MicroRNAs (miRNAs) are endogenous, short, double-stranded and noncoding RNA molecules that have been identified in a variety of organisms and certain viruses. This group of new molecules is transcribed mainly from the introns and/or exons or intergenic regions and plays important regulatory roles in development and gene expression. Mature miRNAs are typically 20-24 nucleotides in length and regulate target mRNAs post transcriptionally by interactions with partially mismatched sequences in the 3’untraslated regions of these messengers. These interactions result in the suppression of translation or degradation of target mRNAs. At the present, although the biological functions of miRNAs are not completely revealed, a growing body of evidence implicates that miRNA pathway is a new mechanism of gene regulation in both normal and diseased conditions and therefore investigation of miRNA biogenesis and function may add new tools for gene functional study and drug development. In this article, we will briefly review the structure, biogenesis and basic mechanism of action of miRNAs identified in higher organisms and viruses and then focus on the recent progress in research for drug development using the miRNA pathway as a strategy. Particularly, we will discuss the advance, challenge and future directions on antiviral drug development using miRNA as a target or a gene silencing tool for the treatment of viral infections.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/157016308783769478
2008-03-01
2025-09-09
Loading full text...

Full text loading...

/content/journals/cddt/10.2174/157016308783769478
Loading

  • Article Type:
    Research Article
Keyword(s): antisense oligonucleotides; gene regulation antiviral; miRNA; RNAi; siRNA; therapeutics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test