Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Introduction

Antimicrobial resistance (AMR), according to the World Health Organization, is one of the most serious risks to global public health and development. It is a serious health hazard, with over 10 million deaths expected by 2050. New treatment materials and ways to remove AMR pathogens are in great demand to combat illnesses caused by such bacteria. Hence, the current work focused on virtual screening of the therapeutic potential of new oxindole derivatives against the targeted enzymes for antibacterial activity.

Materials and Methods

A series of 120 novel 3-substituted-2-oxindole derivatives were designed based on the literature and SAR study, which were screened for their binding affinity against targeted enzymes, such as (1PFV) and (1JIL) using AutoDock Vina software. Compounds with significant binding energy were identified and filtered for appropriate ADME properties using the SwissADME program. Furthermore, the top fifteen hit compounds were evaluated for toxicity risk and drug score with the pkCSM online tool and OSIRIS Property Explorer, respectively.

Results and Discussion

The docking analysis of the top two hits revealed that compounds 4 and 6 had a binding affinity of -10.1 kcal/mol and -10.0 kcal/mol against the targeted enzymes, respectively, compared to the standard (Tetracycline -9.3 kcal/mol and Mupirocin -7.5 kcal/mol).

Conclusion

Hence, the best-hit compound 4 underwent MD simulation, validating its stability and successfully satisfying all parameters, necessitating further synthesis and screening for antimicrobial activity. These novel oxindole scaffolds could thus serve as promising leads for effective antibacterial drugs.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638362089250210075934
2025-02-18
2025-11-01
Loading full text...

Full text loading...

References

  1. Antimicrobial resistance. 2024. Available from:https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  2. MercerA. Protection against severe infectious disease in the past.In: Pathog. Glob. Health2021115315116710.1080/20477724.2021.1878443 33573529
    [Google Scholar]
  3. ShahM. KumarA. SinghA.K. SinghH. NarasimhanB. KumarP. In silico studies of indole derivatives as antibacterial agents.J. Pharmacopuncture202326214715710.3831/KPI.2023.26.2.147 37405113
    [Google Scholar]
  4. SmithW.P.J. WucherB.R. NadellC.D. FosterK.R. Bacterial defences: Mechanisms, evolution and antimicrobial resistance.Nat. Rev. Microbiol.202321851953410.1038/s41579‑023‑00877‑3 37095190
    [Google Scholar]
  5. QureshiK.A. ImtiazM. ParvezA. In vitro and in silico approaches for the evaluation of antimicrobial activity, time-kill kinetics, and anti-biofilm potential of thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione) against selected human pathogens.Antibiotics20221117910.3390/antibiotics11010079 35052956
    [Google Scholar]
  6. ShinM.K. ParkH.R. HwangI.W. In silico-based design of a hybrid peptide with antimicrobial activity against multidrug-resistant Pseudomonas aeruginosa using a spider toxin peptide.Toxins2023151266810.3390/toxins15120668 38133172
    [Google Scholar]
  7. NorouzbahariM. SalarinejadS. GüranM. Design, synthesis, molecular docking study, and antibacterial evaluation of some new fluoroquinolone analogues bearing a quinazolinone moiety.Daru202028266167210.1007/s40199‑020‑00373‑6 33030668
    [Google Scholar]
  8. Tamay-CachF. Villa-TanacaM.L. Trujillo-FerraraJ.G. In silico studies most employed in the discovery of new antimicrobial agents.Curr. Med. Chem.201623293360337310.2174/0929867323666160210141912 26860996
    [Google Scholar]
  9. TrejosM. AristizabalY. Aragón-MurielA. Oñate-GarzónJ. LiscanoY. Characterization and classification in silico of peptides with dual activity (Antimicrobial and wound healing).Int. J. Mol. Sci.202324171309110.3390/ijms241713091 37685896
    [Google Scholar]
  10. CassellG.H. MekalanosJ. Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance.JAMA2001285560160510.1001/jama.285.5.601
    [Google Scholar]
  11. VentolaL.C. The antibiotic resistance crisis: Part 1: Causes and threats.P&T2015404277283 25859123
    [Google Scholar]
  12. QiuX. JansonC.A. SmithW.W. Crystal structure of Staphylococcus aureus tyrosyl-tRNA synthetase in complex with a class of potent and specific inhibitors.Protein Sci.200110102008201610.1110/ps.18001
    [Google Scholar]
  13. DewanV. ReaderJ. ForsythK.M. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development.Top. Curr. Chem.201334429332910.1007/128_2013_425 23666077
    [Google Scholar]
  14. PangL. WeeksS.D. AerschotV.A. Aminoacyl-tRNA synthetases as valuable targets for antimicrobial drug discovery.Int. J. Mol. Sci.20212241750
    [Google Scholar]
  15. KwonN.H. FoxP.L. KimS. Aminoacyl-tRNA synthetases as therapeutic targets.Nat. Rev. Drug Discov.201918862965010.1038/s41573‑019‑0026‑3 31073243
    [Google Scholar]
  16. BouzG. ZitkoJ. Inhibitors of aminoacyl-tRNA synthetases as antimycobacterial compounds: An up-to-date review.Bioorg. Chem.202111010480610.1016/j.bioorg.2021.104806 33799176
    [Google Scholar]
  17. XiaoZ.P. WeiW. WangP.F. Synthesis and evaluation of new tyrosyl-tRNA synthetase inhibitors as antibacterial agents based on a N2-(arylacetyl)glycinanilide scaffold.Eur. J. Med. Chem.201510263163810.1016/j.ejmech.2015.08.025 26318069
    [Google Scholar]
  18. TahaM. IsmailN.H. KhanA. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies.Bioorg. Med. Chem. Lett.201525163285328910.1016/j.bmcl.2015.05.069 26077497
    [Google Scholar]
  19. MillemaggiA. TaylorR.J.K. 3-Alkenyl-oxindoles: Natural products, pharmaceuticals, and recent synthetic advances in tandem/telescoped approaches.Eur. J. Org. Chem.20102010244527454710.1002/ejoc.201000643
    [Google Scholar]
  20. YagnamS. ReddyR.E. TrivediR. 1,2,3‐Triazole derivatives of 3‐ferrocenylidene‐2‐oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation.Appl. Organomet. Chem.2019334e481710.1002/aoc.4817
    [Google Scholar]
  21. SampathS. VadiveluM. RavindranR. PerumalP.T. VelkannanV. KarthikeyanK. Synthesis of 1,2,3‐Triazole tethered 3‐hydroxy‐2‐oxindoles: Promising corrosion inhibitors for steel in acidic medium and their anti‐microbial evaluation.ChemistrySelect2020572130213410.1002/slct.201904320
    [Google Scholar]
  22. SalemM.A. RagabA. El-KhalafawyA. MakhloufA.H. AskarA.A. AmmarY.A. Design, synthesis, in vitro antimicrobial evaluation and molecular docking studies of indol-2-one tagged with morpholinosulfonyl moiety as DNA gyrase inhibitors.Bioorg. Chem.20209610361910.1016/j.bioorg.2020.103619 32036161
    [Google Scholar]
  23. RomoP.E. InsuastyB. AboniaR. CrespoM.P. QuirogaJ. Synthesis of new oxindoles and determination of their antibacterial properties.Heteroatom Chem.202020201910.1155/2020/8021920
    [Google Scholar]
  24. PatelM.D. In silico Studies and assessment of antimicrobial activities for synthesised nitrobenzimidazole derivetives.Orient. J. Chem.202238243243810.13005/ojc/380227
    [Google Scholar]
  25. TahaM. ImranS. RahimF. WadoodA. KhanK.M. Oxindole based oxadiazole hybrid analogs: Novel α-glucosidase inhibitors.Bioorg. Chem.20187627328010.1016/j.bioorg.2017.12.001 29223804
    [Google Scholar]
  26. KimD.E. ShinY.H. ChoJ.E. Identification of 3-oxindole derivatives as small molecule HIV-1 inhibitors targeting tat-mediated viral transcription.Molecules20222715492110.3390/molecules27154921 35956872
    [Google Scholar]
  27. ContiI. MorigiR. LocatelliA. Synthesis of 3-(Imidazo[2,1-b]thiazol-6-yl)-2H-chromen-2-one derivatives and study of their antiviral activity against parvovirus B19.Molecules2019246103710.3390/molecules24061037 30875983
    [Google Scholar]
  28. YousufM. MukherjeeD. DeyS. Synthesis and biological evaluation of polyhydroxylated oxindole derivatives as potential antileishmanial agent.Bioorg. Med. Chem. Lett.20182861056106210.1016/j.bmcl.2018.02.023 29478704
    [Google Scholar]
  29. HublikarM. KaduV. RautD. 3-Substituted-2-oxindole derivatives: Design, synthesis and their anti-tuberculosis and radical scavenging dual-action studies.J. Mol. Struct.2022126113290313290310.1016/j.molstruc.2022.132903
    [Google Scholar]
  30. NaiduK.M. GajananR.N. SekharC.K.V.G. Design, synthesis and biological evaluation of 5-(2-(4-(substituted benzo[d]isoxazol-3-yl)piperazin-1-yl)acetyl)indolin-2-one and 5-(2-(4-substitutedpiperazin-1-yl)acetyl)indolin-2-one analogues as novel anti-tubercular agents.Arab. J. Chem.20191282418242910.1016/j.arabjc.2015.02.025
    [Google Scholar]
  31. KashyapA. SinghP.K. SilakariO. In silico designing of domain B selective gyrase inhibitors for effective treatment of resistant tuberculosis.Tuberculosis2018112838810.1016/j.tube.2018.08.005 30205973
    [Google Scholar]
  32. HirataY. ItoY. TakashimaM. Novel oxindole–curcumin hybrid compound for antioxidative stress and neuroprotection.ACS Chem. Neurosci.2020111768510.1021/acschemneuro.9b00619 31799835
    [Google Scholar]
  33. GuoJ. ZhaoF. YinW. Design, synthesis, structure-activity relationships study and X-ray crystallography of 3-substituted-indolin-2-one-5-carboxamide derivatives as PAK4 inhibitors.Eur. J. Med. Chem.201815519720910.1016/j.ejmech.2018.05.051 29886323
    [Google Scholar]
  34. KaurM. SinghM. SilakariO. Oxindole-based SYK and JAK3 dual inhibitors for rheumatoid arthritis: Designing, synthesis and biological evaluation.Future Med. Chem.20179111193121110.4155/fmc‑2017‑0037 28722479
    [Google Scholar]
  35. ChenG. JiangL. DongL. Synthesis and biological evaluation of novel indole-2-one and 7-aza-2-oxindole derivatives as anti-inflammatory agents.Drug Des. Devel. Ther.2014818691892 25378906
    [Google Scholar]
  36. ChristodoulouM.S. NicolettiF. ManganoK. Novel 3, 3-disubstituted oxindole derivatives. Synthesis and evaluation of the anti-proliferative activity.Bioorg. Med. Chem. Lett.2020302126845
    [Google Scholar]
  37. Al-WarhiT. KerdawyE.A.M. AljaeedN. Synthesis, biological evaluation and in silico studies of certain oxindole–indole conjugates as anticancer CDK inhibitors.Molecules2020259203110.3390/molecules25092031 32349307
    [Google Scholar]
  38. KumarG.B. NayakV.L. SayeedI.B. Design, synthesis of phenstatin/isocombretastatin-oxindole conjugates as antimitotic agents.Bioorg. Med. Chem.20162481729174010.1016/j.bmc.2016.02.047 26970659
    [Google Scholar]
  39. SharmaP. ThummuriD. ReddyT.S. New (E)-1-alkyl-1 H -benzo[d]imidazol-2-yl)methylene)indolin-2-ones: Synthesis, in vitro cytotoxicity evaluation and apoptosis inducing studies.Eur. J. Med. Chem.201612258460010.1016/j.ejmech.2016.07.019 27448916
    [Google Scholar]
  40. DipeshK. NoolviM.N. Synthesis, characterization and evaluation of some benzothiazole derivatives bearing oxindole moiety as potential anticancer agents.Inter J Pharm Chem Anal20163314310.5958/2394‑2797.2016.00022.8
    [Google Scholar]
  41. ZaryanovaE.V. LozinskayaN.A. BeznosO.V. Oxindole-based intraocular pressure reducing agents.Bioorg. Med. Chem. Lett.201727163787379310.1016/j.bmcl.2017.06.065
    [Google Scholar]
  42. KhanK. KhanM. AmbreenN. Oxindole derivatives: Synthesis and antiglycation activity.Med. Chem.20139568168810.2174/1573406411309050007 23190000
    [Google Scholar]
  43. ShinJ. MagarK.B.S. LeeJ. KimK. LeeY.R. Design, synthesis, and discovery of novel oxindoles bearing 3-heterocycles as species-specific and combinatorial agents in eradicating Staphylococcus species.Sci. Rep.201991801210.1038/s41598‑019‑44304‑1 31527598
    [Google Scholar]
  44. PandeyS. SinghB.K. De-novo drug design, molecular docking and in-silico molecular prediction of AChEI analogues through cadd approaches as anti-Alzheimer’s agents.Curr Comput Drug Des2020161547210.2174/1573409915666190301124210 30827255
    [Google Scholar]
  45. BatoolM. AhmadB. ChoiS. A structure-based drug discovery paradigm.In: Inter J Mole Sci MDPI201920(11)2783.10.3390/ijms20112783 31174387
    [Google Scholar]
  46. AtanasovaM. DimitrovI. IvanovS. Virtual screening and hit selection of natural compounds as acetylcholinesterase inhibitors.Molecules20222710313910.3390/molecules27103139 35630613
    [Google Scholar]
  47. ChalkhaM. ChebbacK. NourH. In vitro and in silico evaluation of the antimicrobial and antioxidant activities of spiropyrazoline oxindole congeners.Arab. J. Chem.202417110546510.1016/j.arabjc.2023.105465
    [Google Scholar]
  48. KhetmalisY.M. ShivaniM. MurugesanS. SekharC.K.V.G. Oxindole and its derivatives: A review on recent progress in biological activities.Biomed. Pharmacother.202114111184210.1016/j.biopha.2021.111842 34174506
    [Google Scholar]
  49. SurajambikaR.R. PalanikarasuP. 2D-QSAR modeling, docking, synthesis and in-vitro evaluation of novel flavone derivatives as anticancer agents.Curr. Bioact. Compd.2024203e22052321715310.2174/1573407219666230522112102
    [Google Scholar]
  50. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  51. AnzaM. EndaleM. CardonaL. Antimicrobial activity, in silico molecular docking, admet and dft analysis of secondary metabolites from roots of three ethiopian medicinal plants.Adv. Appl. Bioinform. Chem.20211411713210.2147/AABC.S323657 34447254
    [Google Scholar]
  52. BabaN. AkahoE. Antimicrobial activity, in silico molecular docking, ADMET and DFT analysis of secondary metabolites from roots of three ethiopian medicinal plants.Bioinform201161038738810.6026/97320630006387 21976864
    [Google Scholar]
  53. SinghS. BajpaiU. LynnA.M. Structure based virtual screening to identify inhibitors against mure enzyme of Mycobacterium tuberculosis using AutoDock Vina.Bioinform2011101169770210.6026/97320630010697 25512687
    [Google Scholar]
  54. JaghooriM.M. BleijlevensB. OlabarriagaS.D. 1001 ways to run AutoDock Vina for virtual screening.J. Comput. Aided Mol. Des.201630323724910.1007/s10822‑016‑9900‑9 26897747
    [Google Scholar]
  55. HaddaT.B. RastijaV. AlMalkiF. Petra/Osiris/Molinspiration and molecular docking analyses of 3-hydroxy-indolin-2-one derivatives as potential antiviral agents.Curr Comput Drug Des202117112313310.2174/1573409916666191226110029 31878861
    [Google Scholar]
  56. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  57. OsmanW. IsmailE.M.O.A. ShantierS.W. In silico assessment of potential leads identified from Bauhinia rufescens Lam. as α-glucosidase and α-amylase inhibitors.J. Recept. Signal Transduct. Res.202141215916910.1080/10799893.2020.1800734 32718219
    [Google Scholar]
  58. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  59. HalderD. DasS. R A, S RJ. Molecular docking and dynamics based approach for the identification of kinase inhibitors targeting PI3Kα against non-small cell lung cancer: A computational study.RSC Advances20221233214522146710.1039/D2RA03451D 35975074
    [Google Scholar]
  60. FerreiraL.G. SantosD.R.N. OlivaG. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules200713384 26205061
    [Google Scholar]
  61. HildebrandP.W. RoseA.S. TiemannJ.K.S. Bringing molecular dynamics simulation data into view.Trends Biochem. Sci.2019441190291310.1016/j.tibs.2019.06.004 31301982
    [Google Scholar]
  62. RasheedM.A. IqbalM.N. SaddickS. Identification of lead compounds against scm (Fms10) in Enterococcus faecium using computer aided drug designing.Life20211127710.3390/life11020077 33494233
    [Google Scholar]
  63. ShivakumarD. WilliamsJ. WuY. DammW. ShelleyJ. ShermanW. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the opls force field.J. Chem. Theory Comput.2010651509151910.1021/ct900587b 26615687
    [Google Scholar]
  64. ShivanikaC. KumarD. RagunathanV. TiwariP. SumithaA. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease.J. Biomol. Struct. Dyn.202240258561110.1080/07391102.2020.1815584 32897178
    [Google Scholar]
  65. OpoF.A.D.M. RahmanM.M. AhammadF. Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein.Sci. Rep.20211114049
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638362089250210075934
Loading
/content/journals/cddt/10.2174/0115701638362089250210075934
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test