Skip to content
2000
Volume 22, Issue 6
  • ISSN: 1570-1638
  • E-ISSN: 1875-6220

Abstract

Background

Cardiovascular disease continues to be a major global health challenge, characterized by high rates of mortality and morbidity. Medicinal plants, rich in bioactive compounds, offer potential avenues for reducing the incidence of cardiovascular disease.

Objective

The objective of this research was to evaluate the efficacy of () aqueous extract in preventing hyperlipidemia induced by a (HFSD) in a rat model.

Methods

Male Wistar rats were divided into three groups (n=5). The first group (normal control group) received a normal basal diet. The second group (HFSD group) received a HFSD containing a normal diet (68.5%), fat (15%), cholesterol (1.5%), and sucrose (15%). The third group (HFSD treated with thyme extract) received the HFSD and was administered orally with extract (500 mg/kg bw). After 8 weeks, blood and liver samples were taken for biochemical analysis.

Results

The results showed that HFSD intake elevated plasmatic lipids, blood fasting glucose, hepatic biochemical parameters, and inflammation. Moreover, HFSD resulted in increased liver weight, hepatic lipids, and oxidative stress. However, the treatment with extract attenuated the altered parameters by lowering or restoring the levels of plasmatic lipids (TGs: -12.21%; LDL-C: -21.49%), glycated hemoglobin (-23.33%), hepatic parameters (AST: -25.04%; ALT: -10.42%; ALP: -42.81%), and inflammation. Additionally, thyme extract reduced the levels of hepatic lipids (TGs: -21.13%; TC: -12.77%) and ameliorated hepatic oxidative status by reducing malondialdehyde levels (-10.87%) and enhancing the antioxidant effect (+25.71%) of hepatic extract.

Conclusion

We conclude that the traditionally used aqueous extract of protected against the detrimental effects of HFSD intake, and its supplementation would be an effective strategy to protect the liver and cardiovascular system. While promising, these benefits need to be validated through clinical trials.

Loading

Article metrics loading...

/content/journals/cddt/10.2174/0115701638335977241228171318
2025-05-07
2025-10-19
Loading full text...

Full text loading...

References

  1. MensahG.A. RothG.A. FusterV. The global burden of cardiovascular diseases and risk factors: 2020 and beyond.J. Am. Coll. Cardiol.201974202529253210.1016/j.jacc.2019.10.00931727292
    [Google Scholar]
  2. TonetE. CampanaR. CaglioniS. Tools for the assessment of the malnutrition status and possible interventions in elderly with cardiovascular diseases.J. Clin. Med.2021107150810.3390/jcm1007150833916645
    [Google Scholar]
  3. BahadoranZ. MirmiranP. AziziF. Fast food pattern and cardiometabolic disorders: A review of current studies.Health Promot. Perspect.20155423124010.15171/hpp.2015.02826933642
    [Google Scholar]
  4. SacksF.M. KatanM. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease.Am. J. Med.20021139Suppl. 9B132410.1016/S0002‑9343(01)00987‑112566134
    [Google Scholar]
  5. HansenC.D. Gram-KampmannE.M. HansenJ.K. Effect of calorie-unrestricted low-carbohydrate, high-fat diet versus high-carbohydrate, low-fat diet on type 2 diabetes and nonalcoholic fatty liver disease.Ann. Intern. Med.20231761102110.7326/M22‑178736508737
    [Google Scholar]
  6. SaravananD. KhatoonB.S. SabarathinamS. A narrative review on the impact of processed foods/junk foods/preserved foods: Why special attention is required to prevent metabolic syndrome?Obes. Med.20234210050710.1016/j.obmed.2023.100507
    [Google Scholar]
  7. Donado-PestanaC.M. PessoaÉ.V.M. RodriguesL. Polyphenols of cambuci (Campomanesia phaea (O. Berg.)) fruit ameliorate insulin resistance and hepatic steatosis in obese mice.Food Chem.202134012816910.1016/j.foodchem.2020.12816933007695
    [Google Scholar]
  8. LiuC. HuangY. Chinese herbal medicine on cardiovascular diseases and the mechanisms of action.Front. Pharmacol.2016746910.3389/fphar.2016.0046927990122
    [Google Scholar]
  9. ShaitoA. ThuanD.T.B. PhuH.T. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety.Front. Pharmacol.20201142210.3389/fphar.2020.0042232317975
    [Google Scholar]
  10. OzkanG. KamilogluS. OzdalT. BoyaciogluD. CapanogluE. Potential use of Turkish medicinal plants in the treatment of various diseases.Molecules201621325710.3390/molecules2103025726927038
    [Google Scholar]
  11. Baharvand-AhmadiB. BahmaniM. EftekhariZ. JelodariM. MirhoseiniM. Overview of medicinal plants used for cardiovascular system disorders and diseases in ethnobotany of different areas in Iran.J Herbmed Pharmacol201553944
    [Google Scholar]
  12. Dubois-DeruyE. PeugnetV. TurkiehA. PinetF. Oxidative stress in cardiovascular diseases.Antioxidants20209986410.3390/antiox909086432937950
    [Google Scholar]
  13. GuoQ. LiF. DuanY. Oxidative stress, nutritional antioxidants and beyond.Sci. China Life Sci.202063686687410.1007/s11427‑019‑9591‑531705360
    [Google Scholar]
  14. Cichoż-LachH. MichalakA. Oxidative stress as a crucial factor in liver diseases.World J. Gastroenterol.201420258082809110.3748/wjg.v20.i25.808225009380
    [Google Scholar]
  15. ShinS.M. YangJ.H. KiS.H. Role of the Nrf2-ARE pathway in liver diseases.Oxid. Med. Cell. Longev.201320131910.1155/2013/76325723766860
    [Google Scholar]
  16. HanK.H. HashimotoN. FukushimaM. Relationships among alcoholic liver disease, antioxidants, and antioxidant enzymes.World J. Gastroenterol.2016221374910.3748/wjg.v22.i1.3726755859
    [Google Scholar]
  17. Ramos-TovarE. MurielP. Free radicals, antioxidants, nuclear factor‐E2‐related factor‐2 and liver damage.J. Appl. Toxicol.202040115116810.1002/jat.388031389060
    [Google Scholar]
  18. ElbounyH. OuahziziI. BakaliA.H. SellamK. AlemC. A review on Moroccan thyme species.Egyptian Pharmaceutical Journal202221440141010.4103/epj.epj_83_22
    [Google Scholar]
  19. El YaagoubiM. MechqoqH. El HamdaouiA. A review on Moroccan Thymus species: Traditional uses, essential oils chemical composition and biological effects.J. Ethnopharmacol.202127811420510.1016/j.jep.2021.11420534000364
    [Google Scholar]
  20. OuahziziB. ElbounyH. SellamK. AlemC. Homrani BakaliA. Effects of temperature, provenance, drought stress and salinity on seed germination response and early seedling stage of Thymus atlanticus (Ball) Roussine.J. Appl. Res. Med. Aromat. Plants20233410048210.1016/j.jarmap.2023.100482
    [Google Scholar]
  21. ElbounyH. OuahziziB. El-guourramiO. Chemical profile and biological properties of the essential oil of Thymus atlanticus (Ball) Roussine.S. Afr. J. Bot.202215147548010.1016/j.sajb.2022.10.028
    [Google Scholar]
  22. HmidaniA. BouhlaliE.D.T. KhouyaT. Antioxidant, anti-inflammatory and anticoagulant activities of three Thymus species grown in southeastern Morocco.Future Journal of Pharmaceutical Sciences201951410.1186/s43094‑019‑0005‑x
    [Google Scholar]
  23. HmidaniA. BouhlaliE.T. KhouyaT. Effect of extraction methods on antioxidant and anticoagulant activities of Thymus atlanticus aerial part.Sci. Am.20195e0014310.1016/j.sciaf.2019.e00143
    [Google Scholar]
  24. KhouyaT. RamchounM. HmidaniA. BouhlaliE.T. AmraniS. AlemC. Phytochemical analysis and bioactivity evaluation of Moroccan Thymus atlanticus (Ball) fractions.Sci. Am.202111e0071610.1016/j.sciaf.2021.e00716
    [Google Scholar]
  25. BakshiA. BavikarJ. AsegaonkarS. Comparative study of calculated lipid indices viz atherogenic index of plasma, atherogenic coefficient and lipid accumulation product over conventional lipid profile parameters as better predictors of atherosclerosis in obesity: A cross sectional study.Int J Clin Biochem Res2019612610.18231/2394‑6377.2019.0002
    [Google Scholar]
  26. RamchounM. KhouyaT. AlibrahimE.A. Thymus atlanticus polyphenol-rich extract regulates cholesterol metabolism by inhibiting its biosynthesis without affecting its excretion in hamsters fed a high-fat diet.Arch. Physiol. Biochem.2023129361862510.1080/13813455.2020.185430833320714
    [Google Scholar]
  27. NakhaeeA. BokaeianM. SaravaniM. FarhangiA. AkbarzadehA. Attenuation of oxidative stress in streptozotocin-induced diabetic rats by Eucalyptus globulus.Indian J. Clin. Biochem.200924441942510.1007/s12291‑009‑0075‑123105871
    [Google Scholar]
  28. BenzieI.F.F. StrainJ.J. The Ferric Reducing Ability of Plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay.Anal. Biochem.19962391707610.1006/abio.1996.02928660627
    [Google Scholar]
  29. TouissI. OuahhoudS. HarnafiM. Toxicological evaluation and hepatoprotective efficacy of rosmarinic acid-rich extract from Ocimum basilicum L.Evid. Based Complement. Alternat. Med.2021202111010.1155/2021/667699833603821
    [Google Scholar]
  30. AndersonA.S. HaynieK.R. McMillanR.P. Early skeletal muscle adaptations to short‐term high‐fat diet in humans before changes in insulin sensitivity.Obesity (Silver Spring)201523472072410.1002/oby.2103125820254
    [Google Scholar]
  31. PierardM. ConotteS. TassinA. Interactions of exercise training and high-fat diet on adiponectin forms and muscle receptors in mice.Nutr. Metab. (Lond.)20161317510.1186/s12986‑016‑0138‑227822289
    [Google Scholar]
  32. IsmailT.R. YapC.G. NaiduR. PamidiN. Environmental enrichment and metformin improve metabolic functions, hippocampal neuron survival, and hippocampal-dependent memory in high-fat/high-sucrose diet-induced type 2 diabetic rats.Biology (Basel)202312348010.3390/biology1203048036979171
    [Google Scholar]
  33. RamchounM. KhouyaT. HarnafiH. Effect of aqueous extract and polyphenol fraction derived from Thymus atlanticus leaves on acute hyperlipidemia in the syrian golden hamsters.Evid. Based Complement. Alternat. Med.202020201328259610.1155/2020/328259632308705
    [Google Scholar]
  34. ElbounyH. OuahziziB. SellamK. AlemC. In vitro investigations of biological activities of Thymus willdenowii and Thymus atlanticus polyphenol-rich extracts.Int J Sec Metabol202310485810.21448/ijsm.1110715
    [Google Scholar]
  35. KhouyaT. RamchounM. HmidaniA. Effect of supplementation with polyphenol extract of Thymus atlanticus on paraoxonase‐1 activity, insulin resistance, and lipid profile in high‐fat diet‐fed hamsters.J. Food Biochem.2022469e1422510.1111/jfbc.1422535575425
    [Google Scholar]
  36. NiroumandS. KhajedalueeM. Khadem-RezaiyanM. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease.Med. J. Islam. Repub. Iran201529240[PMID: 26793631
    [Google Scholar]
  37. ZhaoY. QuH. WangY. XiaoW. ZhangY. ShiD. Small rodent models of atherosclerosis.Biomed. Pharmacother.202012911042610.1016/j.biopha.2020.11042632574973
    [Google Scholar]
  38. XiangdongL. YuanwuL. HuaZ. LimingR. QiuyanL. NingL. Animal models for the atherosclerosis research: A review.Protein Cell20112318920110.1007/s13238‑011‑1016‑321468891
    [Google Scholar]
  39. RessC. KaserS. Mechanisms of intrahepatic triglyceride accumulation.World J. Gastroenterol.20162241664167310.3748/wjg.v22.i4.166426819531
    [Google Scholar]
  40. ZhaoL. ZhongS. QuH. Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice.Sci. Rep.2015511022210.1038/srep1022225974206
    [Google Scholar]
  41. PaknahadZ. SoleimaniD. AskariG. IrajB. FeiziA. Effect of garlic powder consumption on body composition in patients with nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled trial.Adv. Biomed. Res.201651210.4103/2277‑9175.17496226955623
    [Google Scholar]
  42. SayinF. BuyukbasS. BasaraliM. AlpH. ToyH. UgurcuV. Effects of Silybum marianum extract on high-fat diet induced metabolic disorders in rats.Pol. J. Food Nutr. Sci.2016661434910.1515/pjfns‑2015‑0014
    [Google Scholar]
  43. BraudL. BattaultS. MeyerG. Antioxidant properties of tea blunt ROS-dependent lipogenesis: Beneficial effect on hepatic steatosis in a high fat-high sucrose diet NAFLD obese rat model.J. Nutr. Biochem.2017409510410.1016/j.jnutbio.2016.10.01227866076
    [Google Scholar]
  44. AranazP. Navarro-HerreraD. Romo-HualdeA. Broccoli extract improves high fat diet-induced obesity, hepatic steatosis and glucose intolerance in Wistar rats.J. Funct. Foods20195931932810.1016/j.jff.2019.05.054
    [Google Scholar]
  45. ElbounyH. OuahziziB. SellamK. AlemC. Antioxidant potential of Thymus willdenowii Boiss & Reut. Aqueous extract and effect of its supplementation on hyperlipidemia and paraoxonase-1 arylesterase activity in high-fat diet-fed rats.Curr. Drug Ther.2023181110.2174/1574885518666230724163758
    [Google Scholar]
  46. MousaviS. HadiF. AzarbaniF. In vitro evaluation of antioxidant capacity of Thymus kotschyanus hydro-alcoholic extracts and its effect on serum paraoxonase 1 activity in diabetic and healthy persons.Int. J. Diabetes Metab.202120157166
    [Google Scholar]
  47. SobhyH. HassanenN. AhmedM. Hepatoprotective activities of thyme (Thymus vulgaris L.) in rats suffering from obesity.Egypt. J. Chem.202063125087510110.21608/ejchem.2020.37364.2792
    [Google Scholar]
  48. LiuY. XuJ. GuoY. XueY. WangJ. XueC. Ameliorative effect of vanadyl(IV)–ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice.J. Trace Elem. Med. Biol.20153215516110.1016/j.jtemb.2015.07.00726302923
    [Google Scholar]
  49. XingY. ZhangT. WanS. LncRNA HEM2ATM improves obesity-associated adipose tissues meta-inflammation and insulin resistance by interacting with heterogeneous nuclear ribonucleoprotein U.Clin. Immunol.202324710923410.1016/j.clim.2023.10923436649749
    [Google Scholar]
  50. Suren GargS. KushwahaK. DubeyR. GuptaJ. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions.Diabetes Res. Clin. Pract.202320011069110.1016/j.diabres.2023.11069137150407
    [Google Scholar]
  51. KhouyaT. RamchounM. AmraniS. Anti-inflammatory and anticoagulant effects of polyphenol-rich extracts from Thymus atlanticus: An in vitro and in vivo study.J. Ethnopharmacol.202025211247510.1016/j.jep.2019.11247531843575
    [Google Scholar]
  52. van der SchaftN. SchoufourJ.D. NanoJ. Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: The Rotterdam study.Eur. J. Epidemiol.201934985386110.1007/s10654‑019‑00548‑931399939
    [Google Scholar]
  53. StraubL.G. EfthymiouV. GrandlG. Antioxidants protect against diabetes by improving glucose homeostasis in mouse models of inducible insulin resistance and obesity.Diabetologia201962112094210510.1007/s00125‑019‑4937‑731309261
    [Google Scholar]
/content/journals/cddt/10.2174/0115701638335977241228171318
Loading
/content/journals/cddt/10.2174/0115701638335977241228171318
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test