Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Introduction

Pediatric heart failure (HF) poses diagnostic challenges, especially in emergency settings, where misdiagnoses are common.

Aim

This study aimed to investigate the causes of HF in children with congenital heart disease (CHD) and provide insights into age-related disparities and clinical classifications.

Methods

A prospective observational cohort study was conducted on 402 pediatric patients with CHD during the years 2019-2020. Ultimately, 45 pediatric patients diagnosed with HF by two pediatric cardiologists based on clinical symptoms and radiographic changes were included in the study. Information from the patients' files, including epidemiological findings, clinical examinations, paraclinical findings, and interventions performed, was recorded. Etiological factors and clinical classifications were analyzed using statistical tests.

Results and Discussion

Among 402 pediatric patients with CHD, 45 (11.19%) were diagnosed with HF, with a median age of 7.5 months. The predominant etiological factors included ventricular septal defect (VSD), atrial septal defect (ASD), and cardiomyopathy. Analysis of etiological factors revealed that single structural defects accounted for 71.11% of HF cases, while concurrent defects contributed to a significant portion of the remaining cases. Clinical classifications revealed age-related differences, emphasizing the heterogeneity of pediatric HF presentations.

Conclusion

Given that all patients with HF in our study had CHD, more investigations into the causes and mechanisms of this issue are necessary, which will be possible with genetic studies. A significant difference was observed between Class II and Class IV, with Class II patients being older and heavier, and having a lower heart rate compared to those in Class IV. This aligns with the classifications, where Class II indicates mild symptoms during ordinary activity, while Class IV signifies severe symptoms at rest.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X345783250128052038
2025-02-11
2025-09-27
Loading full text...

Full text loading...

References

  1. KantorP.F. AbrahamJ.R. DipchandA.I. BensonL.N. RedingtonA.N. The impact of changing medical therapy on transplantation-free survival in pediatric dilated cardiomyopathy.J. Am. Coll. Cardiol.201055131377138410.1016/j.jacc.2009.11.05920338500
    [Google Scholar]
  2. MacicekS.M. MaciasC.G. JefferiesJ.L. KimJ.J. PriceJ.F. Acute heart failure syndromes in the pediatric emergency department.Pediatrics20091245e898e90410.1542/peds.2008‑219819841123
    [Google Scholar]
  3. MasaroneD. ValenteF. RubinoM. VastarellaR. GravinoR. ReaA. RussoM.G. PacileoG. LimongelliG. Pediatric heart failure: A practical guide to diagnosis and management.Pediatr. Neonatol.201758430331210.1016/j.pedneo.2017.01.00128279666
    [Google Scholar]
  4. DasB.B. Current state of pediatric heart failure.Children2018578810.3390/children507008829958420
    [Google Scholar]
  5. HollanderS.A. AddonizioL.J. ChinC. LamourJ.M. HsuD.T. BernsteinD. RosenthalD.N. Abdominal complaints as a common first presentation of heart failure in adolescents with dilated cardiomyopathy.Am. J. Emerg. Med.201331468468610.1016/j.ajem.2012.12.00923380118
    [Google Scholar]
  6. WatanabeK. ShihR. Update of pediatric heart failure.Pediatr. Clin. North Am.202067588990110.1016/j.pcl.2020.06.00432888688
    [Google Scholar]
  7. van der BomT. ZomerA.C. ZwindermanA.H. MeijboomF.J. BoumaB.J. MulderB.J.M. The changing epidemiology of congenital heart disease.Nat. Rev. Cardiol.201181506010.1038/nrcardio.2010.16621045784
    [Google Scholar]
  8. HochM NetzH Heart failure in pediatric patients.J Thorac. Cardiovasc. Surg.200553S1293410.1055/s‑2004‑830452
    [Google Scholar]
  9. RossanoJ.W. JangG.Y. Pediatric heart failure: Current state and future possibilities.Korean Circ. J.20154511810.4070/kcj.2015.45.1.125653697
    [Google Scholar]
  10. AuslenderM. Pathophysiology of pediatric heart failure.Prog. Pediatr. Cardiol.200011317518410.1016/S1058‑9813(00)00048‑510978710
    [Google Scholar]
  11. ConnollyD. RutkowskiM. AuslenderM. ArtmanM. The New York University pediatric heart failure index: A new method of quantifying chronic heart failure severity in children.J. Pediatr.2001138564464810.1067/mpd.2001.11402011343037
    [Google Scholar]
  12. MassinM.M. AstadickoI. DessyH. Epidemiology of heart failure in a tertiary pediatric center.Clin. Cardiol.200831838839110.1002/clc.2026218727063
    [Google Scholar]
  13. AuerbachS.R. RichmondM.E. LamourJ.M. BlumeE.D. AddonizioL.J. ShaddyR.E. MahonyL. PahlE. HsuD.T. BNP levels predict outcome in pediatric heart failure patients: Post hoc analysis of the Pediatric Carvedilol Trial.Circ. Heart Fail.20103560661110.1161/CIRCHEARTFAILURE.109.90687520573993
    [Google Scholar]
  14. AuslenderM. ArtmanM. Overview of the management of pediatric heart failure.Prog. Pediatr. Cardiol.200011323124110.1016/S1058‑9813(00)00055‑210978716
    [Google Scholar]
  15. KirkR. DipchandA.I. RosenthalD.N. AddonizioL. BurchM. ChrisantM. DubinA. EverittM. GajarskiR. MertensL. MiyamotoS. MoralesD. PahlE. ShaddyR. TowbinJ. WeintraubR. The International Society for heart and lung transplantation guidelines for the management of pediatric heart failure: Executive summary.J. Heart Lung Transplant.201433988890910.1016/j.healun.2014.06.00225110323
    [Google Scholar]
  16. WilkinsonJ.D. LandyD.C. ColanS.D. TowbinJ.A. SleeperL.A. OravE.J. CoxG.F. CanterC.E. HsuD.T. WebberS.A. LipshultzS.E. The pediatric cardiomyopathy registry and heart failure: Key results from the first 15 years.Heart Fail. Clin.201064401413, vii10.1016/j.hfc.2010.05.00220869642
    [Google Scholar]
  17. ShaddyR.E. GeorgeA.T. JaecklinT. LochlainnE.N. ThakurL. AgrawalR. Solar-YohayS. ChenF. RossanoJ.W. SeverinT. BurchM. Systematic literature review on the incidence and prevalence of heart failure in children and adolescents.Pediatr. Cardiol.201839341543610.1007/s00246‑017‑1787‑229260263
    [Google Scholar]
  18. MejiaE.J. O'ConnorM.J. LinK.Y. SongL. GriffisH. MascioC.E. ShamszadP. DonoghueA. RavishankarC. ShaddyR.E. RossanoJ.W. Characteristics and outcomes of pediatric heart failure-related emergency Department Visits in the United States: A Population-Based study.J. Pediatr.201819311411810.1016/j.jpeds.2017.10.009
    [Google Scholar]
  19. HsuD.T. PearsonG.D. Heart failure in children: Part I: history, etiology, and pathophysiology.Circ. Heart Fail.200921637010.1161/CIRCHEARTFAILURE.108.82021719808316
    [Google Scholar]
  20. OhuchiH. TakasugiH. OhashiH. OkadaY. YamadaO. OnoY. YagiharaT. EchigoS. Stratification of pediatric heart failure on the basis of neurohormonal and cardiac autonomic nervous activities in patients with congenital heart disease.Circulation2003108192368237610.1161/01.CIR.0000101681.27911.FA14597592
    [Google Scholar]
  21. JefferiesJ.L. DenfieldS.W. PriceJ.F. DreyerW.J. McMahonC.J. GrenierM.A. KimJ.J. DimasV.V. ClunieS.K. MoffettB.S. ChangA.C. WannT.I. SmithE.O. TowbinJ.A. A prospective evaluation of nesiritide in the treatment of pediatric heart failure.Pediatr. Cardiol.200627440240710.1007/s00246‑005‑1294‑816830089
    [Google Scholar]
  22. ŠamánekM. Children with congenital heart disease: Probability of natural survival.Pediatr. Cardiol.199213315215810.1007/BF007939471603715
    [Google Scholar]
  23. LewisK.D. ConwayJ. CunninghamC. LarsenB.M.K. Optimizing nutrition in pediatric heart failure: The crisis is over and now it’s time to feed.Nutr. Clin. Pract.201833339740310.1177/088453361771250228659014
    [Google Scholar]
  24. YuerekM. RossanoJ.W. MascioC.E. ShaddyR.E. Postoperative management of heart failure in pediatric patients.Expert Rev. Cardiovasc. Ther.201614220121510.1586/14779072.2016.111738826560361
    [Google Scholar]
  25. RossR.D. The Ross classification for heart failure in children after 25 years: A review and an age-stratified revision.Pediatr. Cardiol.20123381295130010.1007/s00246‑012‑0306‑822476605
    [Google Scholar]
  26. RossR.D. BollingerR.O. PinskyW.W. Grading the severity of congestive heart failure in infants.Pediatr. Cardiol.1992132727510.1007/BF007982071614922
    [Google Scholar]
  27. HironoK. HataY. MiyaoN. OkabeM. TakaradaS. NakaokaH. IbukiK. OzawaS. YoshimuraN. NishidaN. IchidaF. Left ventricular noncompaction and congenital heart disease increases the risk of congestive heart failure.J. Clin. Med.20209378510.3390/jcm903078532183154
    [Google Scholar]
  28. GilljamT. MandalenakisZ. DellborgM. LappasG. ErikssonP. SkoglundK. RosengrenA. Development of heart failure in young patients with congenital heart disease: A nation-wide cohort study.Open Heart201961e00085810.1136/openhrt‑2018‑00085830997118
    [Google Scholar]
  29. HintonR.B. WareS.M. Heart failure in pediatric patients with congenital heart disease.Circ. Res.2017120697899410.1161/CIRCRESAHA.116.30899628302743
    [Google Scholar]
  30. NoroziK. WesselA. AlpersV. ArnholdJ.O. GeyerS. ZoegeM. BuchhornR. Incidence and risk distribution of heart failure in adolescents and adults with congenital heart disease after cardiac surgery.Am. J. Cardiol.20069781238124310.1016/j.amjcard.2005.10.06516616033
    [Google Scholar]
  31. ForseyJ. FriedbergM.K. MertensL. Speckle tracking echocardiography in pediatric and congenital heart disease.Echocardiography201330444745910.1111/echo.1213123551605
    [Google Scholar]
  32. DorobantuD.M. WadeyC.A. AmirN.H. StuartA.G. WilliamsC.A. PielesG.E. The role of speckle tracking echocardiography in the evaluation of common inherited cardiomyopathies in children and adolescents: A systematic review.Diagnostics202111463510.3390/diagnostics1104063533915862
    [Google Scholar]
  33. DorobantuD.M. AmirN.H. WadeyC.A. SharmaC. StuartA.G. WilliamsC.A. PielesG.E. The role of speckle-tracking echocardiography in predicting mortality and morbidity in patients with congenital heart disease: A systematic review and meta-analysis.J. Am. Soc. Echocardiogr.202437221622510.1016/j.echo.2023.11.00337972793
    [Google Scholar]
  34. ChanJ.C. MenonA.P. RottaA.T. ChooJ.T.L. HornikC.P. LeeJ.H. Use of speckle-tracking echocardiography in septic cardiomyopathy in critically Ill children: A narrative review.Crit. Care Explor.202467e111410.1097/CCE.000000000000111438916605
    [Google Scholar]
  35. Mohammad NijresB. BokowskiJ. Al-KubaisiM. AbdullaR. MurphyJ.J. AwadS. DiabK.A. Use of speckle tracking echocardiography to assess left ventricular systolic function in patients with surgically repaired tetralogy of Fallot: Global and segmental assessment.Pediatr. Cardiol.20183981669167510.1007/s00246‑018‑1950‑430105466
    [Google Scholar]
  36. LuisS.A. ChanJ. PellikkaP.A. Echocardiographic assessment of left ventricular systolic function: An overview of contemporary techniques, including speckle-tracking echocardiography.Mayo. Clin. Proc.201994112513810.1016/j.mayocp.2018.07.017
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X345783250128052038
Loading
/content/journals/ccr/10.2174/011573403X345783250128052038
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test