Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-403X
  • E-ISSN: 1875-6557

Abstract

Atherosclerosis stands as the primary cause of CVD, characterized by the accumulation of cholesterol deposits within macrophages in medium and large arteries. This deposition promotes the proliferation of specific cell types within the arterial wall, gradually narrowing the vessel lumen and impeding blood flow. Intra-plaque hemorrhages are recognized as critical events in atherosclerotic plaques, leading to the deposition of red blood cells (RBCs) and the release of hemoglobin (Hb). Approximately 40% of high-risk plaques exhibit intra-plaque hemorrhage. Recent studies have demonstrated that intra-plaque hemorrhage is closely linked to plaque progression and increased vulnerability, establishing it as a critical factor in the development of acute clinical symptoms associated with atherosclerosis. The presence of RBC membranes within atherosclerotic plaques contributes significantly to lipid accumulation, indicating a pivotal role in plaque instability. Upon RBC degradation, cholesterol from both the membrane and its interior can profoundly impact atherosclerotic plaque development. Considering that red blood cells (RBCs) can contribute to the excretion of cholesterol through the hepatobiliary system alongside HDL, and given that elevated cholesterol levels are a risk factor for the development and progression of atherosclerotic plaques, RBCs may play a protective role in cardiovascular health. However, when bleeding occurs within a plaque, RBCs that are trapped in the plaque environment, an environment rich in oxidant compounds, can rupture. The cholesterol released from these ruptured RBCs can significantly promote inflammatory reactions. This study aims to explore the inconsistent role of RBCs and their cholesterol content in the progression of atherosclerotic plaques.

Loading

Article metrics loading...

/content/journals/ccr/10.2174/011573403X358572250128104335
2025-02-11
2025-10-31
Loading full text...

Full text loading...

References

  1. Momeni-MoghaddamM.A. AsadikaramG. AkbariH. AbolhassaniM. MasoumiM. NadimyZ. KhaksariM. CD36 gene polymorphism rs1761667 (G > A) is associated with hypertension and coronary artery disease in an Iranian population.BMC Cardiovasc. Disord.201919114010.1186/s12872‑019‑1111‑631185924
    [Google Scholar]
  2. VakiliS. SavardashtakiA. Momeni MoghaddamM.A. NowrouziP. Khabbaz ShiraziM. EbrahimiG. The effects of saffron consumption on lipid profile, liver enzymes, and oxidative stress in male hamsters with high fat diet.Trends Pharmacol. Sci.20173201208
    [Google Scholar]
  3. BadimonL. VilahurG. Thrombosis formation on atherosclerotic lesions and plaque rupture.J. Intern. Med.2014276661863210.1111/joim.1229625156650
    [Google Scholar]
  4. PoznyakA.V. SadykhovN.K. KartuesovA.G. BorisovE.E. MelnichenkoA.A. GrechkoA.V. OrekhovA.N. Hypertension as a risk factor for atherosclerosis: Cardiovascular risk assessment.Front. Cardiovasc. Med.2022995928510.3389/fcvm.2022.95928536072873
    [Google Scholar]
  5. Momeni-MoghaddamM.A. AsadikaramG. MasoumiM. SadeghiE. AkbariH. AbolhassaniM. FarsinejadA. KhaleghiM. NematollahiM.H. DabiriS. ArababadiM.K. Opium may affect coronary artery disease by inducing inflammation but not through the expression of CD9, CD36, and CD68.J. Investig. Med.20227081728173510.1136/jim‑2021‑00193534872933
    [Google Scholar]
  6. StockerR. KeaneyJ.F.Jr Role of oxidative modifications in atherosclerosis.Physiol. Rev.20048441381147810.1152/physrev.00047.200315383655
    [Google Scholar]
  7. MahdiA. WodajeT. KövameesO. TengbomJ. ZhaoA. JiaoT. HenricssonM. YangJ. ZhouZ. NieminenA.I. LevinM. ColladoA. BrinckJ. PernowJ. The red blood cell as a mediator of endothelial dysfunction in patients with familial hypercholesterolemia and dyslipidemia.J. Intern. Med.2023293222824510.1111/joim.1358036324273
    [Google Scholar]
  8. AsadaY. YamashitaA. SatoY. HatakeyamaK. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques.Pathol. Int.202070630932210.1111/pin.1292132166823
    [Google Scholar]
  9. TangC. DengL. LuoQ. HeG. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis.Front. Genet.20231399895410.3389/fgene.2022.99895436685865
    [Google Scholar]
  10. Momeni-MoghaddamM.A. AsadikaramG. NematollahiM.H. Esmaeili TarziM. Faramarz-GaznaghS. Mohammadpour-GharehbaghA. Kazemi ArababadiM. Effects of cigarette smoke and opium on the expression of CD9, CD36, and CD68 at mRNA and protein levels in human macrophage cell line THP-1.Iran. J. Allergy Asthma Immunol.2020191455510.18502/ijaai.v19i1.241732245320
    [Google Scholar]
  11. GwozdzinskiK. PieniazekA. GwozdzinskiL. Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease.Oxid. Med. Cell. Longev.202120211663919910.1155/2021/663919933708334
    [Google Scholar]
  12. PizzinoG. IrreraN. CucinottaM. PallioG. ManninoF. ArcoraciV. SquadritoF. AltavillaD. BittoA. Oxidative stress: Harms and benefits for human health.Oxid. Med. Cell. Longev.201720171841676310.1155/2017/841676328819546
    [Google Scholar]
  13. TziakasD.N. ChalikiasG.K. StakosD. BoudoulasH. The role of red blood cells in the progression and instability of atherosclerotic plaque.Int. J. Cardiol.201014212710.1016/j.ijcard.2009.10.03119906450
    [Google Scholar]
  14. ButtariB ProfumoE RiganòR Cross-talk between red blood cells and the immune system and its impact on atherosclerosis.Biomed. Res. Int.2015201561683410.1155/2015/61683425722984
    [Google Scholar]
  15. CamaréC. PucelleM. Nègre-SalvayreA. SalvayreR. Angiogenesis in the atherosclerotic plaque.Redox Biol.201712183410.1016/j.redox.2017.01.00728212521
    [Google Scholar]
  16. MooreK.J. TabasI. Macrophages in the pathogenesis of atherosclerosis.Cell2011145334135510.1016/j.cell.2011.04.00521529710
    [Google Scholar]
  17. BerneckerC. KöfelerH. PabstG. TrötzmüllerM. KolbD. StrohmayerK. TrajanoskiS. HolzapfelG.A. SchlenkeP. DornI. Cholesterol deficiency causes impaired osmotic stability of cultured red blood cells.Front. Physiol.201910152910.3389/fphys.2019.0152931920725
    [Google Scholar]
  18. ClaessenM.J.A.G. YagciN. FuK. BrandsmaE. KerstenM.J. von LindernM. van den AkkerE. Production and stability of cultured red blood cells depends on the concentration of cholesterol in culture medium.Sci. Rep.20241411559210.1038/s41598‑024‑66440‑z38971841
    [Google Scholar]
  19. SankaranarayananS. de la Llera-MoyaM. Drazul-SchraderD. PhillipsM.C. Kellner-WeibelG. RothblatG.H. Serum albumin acts as a shuttle to enhance cholesterol efflux from cells.J. Lipid Res.201354367167610.1194/jlr.M03133623288948
    [Google Scholar]
  20. LaiS.J. OhkawaR. HoriuchiY. KubotaT. TozukaM. Red blood cells participate in reverse cholesterol transport by mediating cholesterol efflux of high-density lipoprotein and apolipoprotein A-I from THP-1 macrophages.Biol. Chem.2019400121593160210.1515/hsz‑2019‑024431188743
    [Google Scholar]
  21. SchafferA. VerdoiaM. CassettiE. BarbieriL. Perrone-FilardiP. MarinoP. De LucaG. Impact of red blood cells count and high density lipoproteins with the prevalence and extent of coronary artery disease.J. Thromb. Thrombolysis2015401616810.1007/s11239‑015‑1174‑x25680891
    [Google Scholar]
  22. HungK.T. BerishaS.Z. RitcheyB.M. SantoreJ. SmithJ.D. Red blood cells play a role in reverse cholesterol transport.Arterioscler. Thromb. Vasc. Biol.20123261460146510.1161/ATVBAHA.112.24897122499994
    [Google Scholar]
  23. OhkawaR. LowH. MukhamedovaN. FuY. LaiS.J. SasaokaM. HaraA. YamazakiA. KamedaT. HoriuchiY. MeikleP.J. PernesG. LancasterG. DitiatkovskiM. NestelP. VaismanB. SviridovD. MurphyA. RemaleyA.T. SviridovD. TozukaM. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood.J. Lipid Res.202061121577158810.1194/jlr.RA12000063532907987
    [Google Scholar]
  24. ShirvaniM. Vakili SadeghiM. HosseiniS.R. BijaniA. GhadimiR. Does Serum lipid profile differ in anemia and non-anemic older subjects?Caspian J. Intern. Med.20178430531029201323
    [Google Scholar]
  25. ChoiJ.W. KimS.K. PaiS.H. Changes in serum lipid concentrations during iron depletion and after iron supplementation.Ann. Clin. Lab. Sci.200131215115611337904
    [Google Scholar]
  26. da Silva Garrote-FilhoM. Bernardino-NetoM. Penha-SilvaN. Influence of erythrocyte membrane stability in atherosclerosis.Curr. Atheroscler. Rep.20171941710.1007/s11883‑017‑0653‑228243806
    [Google Scholar]
  27. NikolićM. StanićD. BaričevićI. JonesD.R. NedićO. NiketićV. Efflux of cholesterol and phospholipids derived from the haemoglobin-lipid adduct in human red blood cells into plasma.Clin. Biochem.2007405-630530910.1016/j.clinbiochem.2006.11.00517291471
    [Google Scholar]
  28. MekkeJ.M. SakkersT.R. VerwerM.C. van den DungenN.A.M. SongY. MillerC.L. FinnA.V. PasterkampG. MokryM. den RuijterH.M. VinkA. de KleijnD.P.V. de BorstG.J. HaitjemaS. van der LaanS.W. The accumulation of erythrocytes quantified and visualized by Glycophorin C in carotid atherosclerotic plaque reflects intraplaque hemorrhage and pre-procedural neurological symptoms.Sci. Rep.20231311710410.1038/s41598‑023‑43369‑337816779
    [Google Scholar]
  29. Van Der LaanSW MekkeJM PasterkampG De KleijnDP De BorstGJ SakkersTR VerwerMC Van Den DungenNA SongY MillerCL Glycophorin C in carotid atherosclerotic plaque reflects intraplaque hemorrhage and pre-procedural neurological symptoms.medRxiv2023112710.1101/2021.07.15.21260570
    [Google Scholar]
  30. TurpinC. CatanA. MeilhacO. BourdonE. Canonne-HergauxF. RondeauP. Erythrocytes: Central actors in multiple scenes of atherosclerosis.Int. J. Mol. Sci.20212211584310.3390/ijms2211584334072544
    [Google Scholar]
  31. ArbustiniE. MorbiniP. D’ArminiA.M. RepettoA. MinzioniG. PiovellaF. ViganóM. TavazziL. Plaque composition in plexogenic and thromboembolic pulmonary hypertension: The critical role of thrombotic material in pultaceous core formation.Br. Heart J.200288217718210.1136/heart.88.2.17712117850
    [Google Scholar]
  32. KolodgieF.D. GoldH.K. BurkeA.P. FowlerD.R. KruthH.S. WeberD.K. FarbA. GuerreroL.J. HayaseM. KutysR. NarulaJ. FinnA.V. VirmaniR. Intraplaque hemorrhage and progression of coronary atheroma.N. Engl. J. Med.2003349242316232510.1056/NEJMoa03565514668457
    [Google Scholar]
  33. TziakasD.N. KaskiJ.C. ChalikiasG.K. RomeroC. FredericksS. TentesI.K. KortsarisA.X. HatserasD.I. HoltD.W. Total cholesterol content of erythrocyte membranes is increased in patients with acute coronary syndrome: A new marker of clinical instability?J. Am. Coll. Cardiol.200749212081208910.1016/j.jacc.2006.08.06917531656
    [Google Scholar]
  34. LinH. XuX. LuH. ZhangL. LiC. TangM. SunH. LiuY. ZhangY. Pathological mechanisms and dose dependency of erythrocyte-induced vulnerability of atherosclerotic plaques.J. Mol. Cell. Cardiol.200743327228010.1016/j.yjmcc.2007.05.02317628589
    [Google Scholar]
  35. UnruhD. SrinivasanR. BensonT. HaighS. CoyleD. BatraN. KeilR. SturmR. BlancoV. PalascakM. FrancoR.S. TongW. ChatterjeeT. HuiD.Y. DavidsonW.S. AronowB.J. KalfaT. MankaD. PeairsA. BlomkalnsA. FultonD.J. BrittainJ.E. WeintraubN.L. BogdanovV.Y. Red blood cell dysfunction induced by high-fat diet: Potential implications for obesity-related atherosclerosis.Circulation2015132201898190810.1161/CIRCULATIONAHA.115.01731326467254
    [Google Scholar]
  36. PurushothamanK.R. PurushothamanM. MuntnerP. LentoP.A. O’ConnorW.N. SharmaS.K. FusterV. MorenoP.R. Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: Implication for plaque progression in diabetic atherosclerosis.Vasc. Med.201116210310810.1177/1358863X1140224921511672
    [Google Scholar]
  37. CrombagG.A.J.C. AizazM. SchreuderF.H.B.M. BenaliF. van Dam-NolenD.H.K. LiemM.I. LucciC. van der SteenA.F. DaemenM.J.A.P. MessW.H. van der LugtA. NederkoornP.J. HendrikseJ. HofmanP.A.M. van OostenbruggeR.J. WildbergerJ.E. KooiM.E. Proximal region of carotid atherosclerotic plaque shows more intraplaque hemorrhage: The plaque at risk study.AJNR Am. J. Neuroradiol.202243226527110.3174/ajnr.A738435121587
    [Google Scholar]
  38. MuraM. Della SchiavaN. LongA. ChiricoE.N. PialouxV. MillonA. Carotid intraplaque haemorrhage: Pathogenesis, histological classification, imaging methods and clinical value.Ann. Transl. Med.2020819127310.21037/atm‑20‑197433178805
    [Google Scholar]
  39. de VriesM.R. QuaxP.H.A. Plaque angiogenesis and its relation to inflammation and atherosclerotic plaque destabilization.Curr. Opin. Lipidol.201627549950610.1097/MOL.000000000000033927472406
    [Google Scholar]
  40. MichelJ-B. LibbyP. FranckG. Internal bleeding: Is intraplaque hemorrhage a decoration or a driver?Washington, DCAmerican College of Cardiology Foundation2018481484
    [Google Scholar]
  41. ShoeibiS. MozdziakP. MohammadiS. Important signals regulating coronary artery angiogenesis.Microvasc. Res.20181171910.1016/j.mvr.2017.12.00229247718
    [Google Scholar]
  42. FongG.H. Potential contributions of intimal and plaque hypoxia to atherosclerosis.Curr. Atheroscler. Rep.20151763210.1007/s11883‑015‑0510‑025876920
    [Google Scholar]
  43. SeddingD.G. BoyleE.C. DemandtJ.A.F. SluimerJ.C. DutzmannJ. HaverichA. BauersachsJ. Vasa vasorum angiogenesis: Key player in the initiation and progression of atherosclerosis and potential target for the treatment of cardiovascular disease.Front. Immunol.2018970610.3389/fimmu.2018.0070629719532
    [Google Scholar]
  44. JeneyV. BallaG. BallaJ.Ã. Red blood cell, hemoglobin and heme in the progression of atherosclerosis.Front. Physiol.2014537910.3389/fphys.2014.0037925324785
    [Google Scholar]
  45. GuoM. CaiY. YaoX. LiZ. Mathematical modeling of atherosclerotic plaque destabilization: Role of neovascularization and intraplaque hemorrhage.J. Theor. Biol.2018450536510.1016/j.jtbi.2018.04.03129704490
    [Google Scholar]
  46. MorenoP.R. PurushothamanK.R. SirolM. LevyA.P. FusterV. Neovascularization in human atherosclerosis.Circulation2006113182245225210.1161/CIRCULATIONAHA.105.57895516684874
    [Google Scholar]
  47. MichelJ.B. VirmaniR. ArbustiniE. PasterkampG. Intraplaque haemorrhages as the trigger of plaque vulnerability.Eur. Heart J.2011321619771985, 1985a, 1985b, 1985c10.1093/eurheartj/ehr05421398643
    [Google Scholar]
  48. SakamotoA. SuwaK. KawakamiR. FinnA.V. MaekawaY. VirmaniR. FinnA.V. Significance of intra-plaque hemorrhage for the development of high-risk vulnerable plaque: Current understanding from basic to clinical points of view.Int. J. Mol. Sci.202324171329810.3390/ijms24171329837686106
    [Google Scholar]
  49. de VriesM.R. ParmaL. PetersH.A.B. SchepersA. HammingJ.F. JukemaJ.W. GoumansM.J.T.H. GuoL. FinnA.V. VirmaniR. OzakiC.K. QuaxP.H.A. Blockade of vascular endothelial growth factor receptor 2 inhibits intraplaque haemorrhage by normalization of plaque neovessels.J. Intern. Med.20192851597410.1111/joim.1282130102798
    [Google Scholar]
  50. BalligandJ.L. FeronO. DessyC. eNOS activation by physical forces: From short-term regulation of contraction to chronic remodeling of cardiovascular tissues.Physiol. Rev.200989248153410.1152/physrev.00042.200719342613
    [Google Scholar]
  51. PerrottaP. Emini VeseliB. Van der VekenB. RothL. MartinetW. De MeyerG.R.Y. Pharmacological strategies to inhibit intra-plaque angiogenesis in atherosclerosis.Vascul. Pharmacol.2019112727810.1016/j.vph.2018.06.01429933080
    [Google Scholar]
  52. KimY.W. ByzovaT.V. Oxidative stress in angiogenesis and vascular disease.Blood2014123562563110.1182/blood‑2013‑09‑51274924300855
    [Google Scholar]
  53. PuylaertP. RothL. Van PraetM. PintelonI. DumitrascuC. van NuijsA. KlejborowskaG. GunsP.J. BergheT.V. AugustynsK. De MeyerG.R.Y. MartinetW. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques.Angiogenesis202326450552210.1007/s10456‑023‑09877‑637120604
    [Google Scholar]
  54. LiuW. ÖstbergN. YalcinkayaM. DouH. Endo-UmedaK. TangY. HouX. XiaoT. FidlerT.P. AbramowiczS. Erythroid lineage Jak2 V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis.J. Clin. Invest.202213213e155724
    [Google Scholar]
  55. GuoX. MaL. Inflammation in coronary artery disease-clinical implications of novel HDL-cholesterol-related inflammatory parameters as predictors.Coron. Artery Dis.2023341667736317383
    [Google Scholar]
  56. JanoudiA. ShamounF.E. KalavakuntaJ.K. AbelaG.S. Cholesterol crystal induced arterial inflammation and destabilization of atherosclerotic plaque.Eur. Heart J.201637251959196710.1093/eurheartj/ehv65326705388
    [Google Scholar]
  57. SalloumZ. DaunerK. LiY. VermaN. Valdivieso-GonzálezD. Almendro-VediaV. ZhangJ.D. NakkaK. ChenM.X. McDonaldJ. CorleyC.D. SoriskyA. SongB.L. López-MonteroI. LuoJ. DilworthJ.F. ZhaX. Statin-mediated reduction in mitochondrial cholesterol primes an anti-inflammatory response in macrophages by upregulating Jmjd3.eLife202413e8596410.7554/eLife.8596438602170
    [Google Scholar]
  58. YalcinkayaM. LiuW. XiaoT. AbramowiczS. WangR. WangN. WesterterpM. TallA.R. Cholesterol trafficking to the ER leads to the activation of CaMKII/JNK/NLRP3 and promotes atherosclerosis.J. Lipid Res.202465410053410.1016/j.jlr.2024.10053438522750
    [Google Scholar]
  59. PilelyK. BakkeS.S. PalarasahY. SkjoedtM.O. BartelsE.D. EspevikT. GarredP. Alpha-cyclodextrin inhibits cholesterol crystal-induced complement-mediated inflammation: A potential new compound for treatment of atherosclerosis.Atherosclerosis2019283354210.1016/j.atherosclerosis.2019.01.03430772772
    [Google Scholar]
  60. GrebeA. LatzE. Cholesterol crystals and inflammation.Curr. Rheumatol. Rep.201315331310.1007/s11926‑012‑0313‑z23412688
    [Google Scholar]
  61. KomatsuS. YutaniC. TakahashiS. TakewaM. IwaN. OharaT. KodamaK. Cholesterol crystals as the main trigger of interleukin-6 production through innate inflammatory response in human spontaneously ruptured aortic plaques.J. Atheroscler. Thromb.202330111715172610.5551/jat.6409837081615
    [Google Scholar]
  62. ZengX. LiuD. HuoX. WuY. LiuC. SunQ. Pyroptosis in NLRP3 inflammasome-related atherosclerosis.Cell Stress2022610798810.15698/cst2022.10.27236304814
    [Google Scholar]
  63. FirasG. DeepthiV. JagadeeshK. SrideviD. NoahT. PremS. ScottA. GeorgeS. Cholesterol crystal embolization following plaque rupture: A systemic disease with unusual features.J. Biomed. Res.2017312829410.7555/JBR.31.2016010028808190
    [Google Scholar]
  64. YalcinkayaM. FotakisP. LiuW. Endo-UmedaK. DouH. AbramowiczS. XiaoT. LibbyP. WangN. TallA.R. WesterterpM. Cholesterol accumulation in macrophages drives NETosis in atherosclerotic plaques via IL-1β secretion.Cardiovasc. Res.2023119496998110.1093/cvr/cvac18936537208
    [Google Scholar]
/content/journals/ccr/10.2174/011573403X358572250128104335
Loading

  • Article Type:
    Review Article
Keyword(s): angiogenesis; atherosclerosis; cardiovascular; cholesterol; plaque; Red blood cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test