Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Gastrointestinal (GI) cancer represent significant health challenges, affecting the digestive system with often subtle symptoms that can delay diagnosis. GI cancers account for a higher global mortality rate than any other cancer, largely due to the limited availability of highly effective treatment options.” Due to next-generation sequencing and new preclinical model tools, that we have learned more regarding its pathophysiology and molecular changes. Every molecular subtype has been characterised molecularly and new treatment targets have been found. Furthermore, tumour xenografts and organoids are grown from patients and are increasingly powerful resources for investigating GI patients' genetic evolution, identifying biomarkers, screening drugs, and conducting preclinical evaluations of personalised medicine approaches. Gastrointestinal (GI) cancer research is rapidly evolving, with recent advancements in precision medicine and immunotherapy offering new treatment options. Cutting-edge therapies, such as immune checkpoint inhibitors and targeted therapies like BRAF and HER2 inhibitors, are showing promise in treating specific types of GI cancers. These changes are making it possible for the age of precision medicine to use a mix of clinical, genome-based, and phenotype-based methods to diagnose and treat each GI patient individually. Clinical trials are exploring novel combinations of therapies to enhance survival rates and reduce side effects for patients with GI cancers, including colorectal, gastric, and pancreatic cancers. These developments are reshaping the future of gastrointestinal oncology. The purpose of this review is to study the current state of knowledge about predictive biomarkers, prospective novel targeted treatments, potential causes of conflicting trial outcomes, and the prospects for precision medicine in gastric cancer in the future.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096333058241114064802
2025-01-10
2025-10-11
Loading full text...

Full text loading...

References

  1. RawlaP. BarsoukA. Epidemiology of gastric cancer: global trends, risk factors and prevention.Prz. Gastroenterol.2019141263810.5114/pg.2018.80001
    [Google Scholar]
  2. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic Significance of the Royal Marsden Hospital (RMH) Score in Patients with Cancer: A Systematic Review and Meta-Analysis.Cancers (Basel)20241610183510.3390/cancers16101835
    [Google Scholar]
  3. IwuC.D. Iwu-JajaC.J. Gastric Cancer Epidemiology: Current Trend and Future Direction.Hygiene20233325626810.3390/hygiene3030019
    [Google Scholar]
  4. LaiY. ShiH. WangZ. FengY. BaoY. LiY. LiJ. WuA. Incidence trends and disparities in Helicobacter pylori related malignancy among US adults, 2000–2019.Front. Public Health202210105615710.3389/fpubh.2022.1056157
    [Google Scholar]
  5. RicciA.D. RizzoA. BrandiG. DNA damage response alterations in gastric cancer: knocking down a new wall.Future Oncol.202117886586810.2217/fon‑2020‑0989
    [Google Scholar]
  6. Baccili Cury MegidT. FarooqA.R. WangX. ElimovaE. Gastric Cancer: Molecular Mechanisms, Novel Targets, and Immunotherapies: From Bench to Clinical Therapeutics.Cancers (Basel)20231520507510.3390/cancers15205075
    [Google Scholar]
  7. ReyesV.E. Helicobacter pylori and Its Role in Gastric Cancer.Microorganisms2023115131210.3390/microorganisms11051312
    [Google Scholar]
  8. MatsuokaT. YashiroM. Molecular-targeted therapy toward precision medicine for gastrointestinal caner: Current progress and challenges.World J. Gastrointest. Oncol.202113536639010.4251/wjgo.v13.i5.366
    [Google Scholar]
  9. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: a meta-analysis.Immunotherapy202113325727010.2217/imt‑2020‑0179
    [Google Scholar]
  10. WaartsM.R. StonestromA.J. ParkY.C. LevineR.L. Targeting mutations in cancer.J. Clin. Invest.20221328e15494310.1172/JCI154943
    [Google Scholar]
  11. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121
    [Google Scholar]
  12. RizzoA. SantoniM. MollicaV. LogulloF. RoselliniM. MarchettiA. FaloppiL. BattelliN. MassariF. Peripheral neuropathy and headache in cancer patients treated with immunotherapy and immuno-oncology combinations: the MOUSEION-02 study.Expert Opin. Drug Metab. Toxicol.202117121455146610.1080/17425255.2021.2029405
    [Google Scholar]
  13. GuanW.L. HeY. XuR.H. Gastric cancer treatment: recent progress and future perspectives.J. Hematol. Oncol.202316157[Internet].10.1186/s13045‑023‑01451‑3
    [Google Scholar]
  14. WangF. BaY. Treatment strategies for patients with HER2-positive gastric cancer.Cancer Biol. Med.2024201293494110.20892/j.issn.2095‑3941.2023.0480
    [Google Scholar]
  15. WeeP. WangZ. Epidermal Growth Factor Receptor Cell Proliferation Signaling Pathways.Cancers (Basel)20179552[PMID: 28513565 DOI: 10.3390/cancers9050052].10.3390/cancers9050052
    [Google Scholar]
  16. LièvreA. BachetJ.B. BoigeV. CayreA. Le CorreD. BucE. YchouM. BouchéO. LandiB. LouvetC. AndréT. BibeauF. DieboldM.D. RougierP. DucreuxM. TomasicG. EmileJ.F. Penault-LlorcaF. Laurent-PuigP. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab.J. Clin. Oncol.2008263374379[PMID: 18202412 DOI: 10.1200/JCO.2007.12.5906].10.1200/JCO.2007.12.5906
    [Google Scholar]
  17. AmadoR.G. WolfM. PeetersM. Van CutsemE. SienaS. FreemanD.J. JuanT. SikorskiR. SuggsS. RadinskyR. PattersonS.D. ChangD.D. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.J. Clin. Oncol.2008261016261634[PMID: 18316791 DOI: 10.1200/JCO.2007.14.7116].10.1200/JCO.2007.14.7116
    [Google Scholar]
  18. ZhaoB. WangL. QiuH. ZhangM. SunL. PengP. YuQ. YuanX. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer.Oncotarget20178339804000[PMID: 28002810 DOI: 10.18632/oncotarget.14012].10.18632/oncotarget.14012
    [Google Scholar]
  19. MontagutC. ArgilésG. CiardielloF. PoulsenT.T. DienstmannR. KraghM. KopetzS. LindstedT. DingC. VidalJ. Clausell-TormosJ. SiravegnaG. Sánchez-MartínF.J. KoefoedK. PedersenM.W. GrandalM.M. DvorkinM. WyrwiczL. RoviraA. CubilloA. SalazarR. DesseigneF. NadalC. AlbanellJ. ZagonelV. SienaS. FumiG. RospoG. NadlerP. HorakI.D. BardelliA. TaberneroJ. Efficacy of Sym004 in Patients With Metastatic Colorectal Cancer With Acquired Resistance to Anti-EGFR Therapy and Molecularly Selected by Circulating Tumor DNA Analyses.JAMA Oncol.201844e175245[PMID: 29423521 DOI: 10.1001/jamaoncol.2017.5245].10.1001/jamaoncol.2017.5245
    [Google Scholar]
  20. BettegowdaC. SausenM. LearyR.J. KindeI. WangY. AgrawalN. BartlettB.R. WangH. LuberB. AlaniR.M. AntonarakisE.S. AzadN.S. BardelliA. BremH. CameronJ.L. LeeC.C. FecherL.A. GalliaG.L. GibbsP. LeD. GiuntoliR.L. GogginsM. HogartyM.D. HoldhoffM. HongS.M. JiaoY. JuhlH.H. KimJ.J. SiravegnaG. LaheruD.A. LauricellaC. LimM. LipsonE.J. MarieS.K. NettoG.J. OlinerK.S. OliviA. OlssonL. RigginsG.J. Sartore-BianchiA. SchmidtK. Shih lM, Oba-Shinjo SM, Siena S, Theodorescu D, Tie J, Harkins TT, Veronese S, Wang TL, Weingart JD, Wolfgang CL, Wood LD, Xing D, Hruban RH, Wu J, Allen PJ, Schmidt CM, Choti MA, Velculescu VE, Kinzler KW, Vogelstein B, Papadopoulos N, Diaz LA Jr. Detection of circulating tumor DNA in early- and late- stage human malignancies.Sci. Transl. Med.20146224ra24[PMID: 24553385 DOI: 10.1126/scitranslmed.3007094].
    [Google Scholar]
  21. StricklerJ.H. LoreeJ.M. AhronianL.G. ParikhA.R. NiedzwieckiD. PereiraA.A.L. McKinneyM. KornW.M. AtreyaC.E. BanksK.C. NagyR.J. Meric-BernstamF. LanmanR.B. TalasazA. TsigelnyI.F. CorcoranR.B. KopetzS. Genomic Landscape of Cell-Free DNA in Patients with Colorectal Cancer.Cancer Discov.201882164173[PMID: 29196463 DOI: 10.1158/2159-8290.CD-17-1009].10.1158/2159‑8290.CD‑17‑1009
    [Google Scholar]
  22. SiravegnaG. MussolinB. BuscarinoM. CortiG. CassingenaA. CrisafulliG. PonzettiA. CremoliniC. AmatuA. LauricellaC. LambaS. HoborS. AvalloneA. ValtortaE. RospoG. MedicoE. MottaV. AntoniottiC. TatangeloF. BellosilloB. VeroneseS. BudillonA. MontagutC. RaccaP. MarsoniS. FalconeA. CorcoranR.B. Di NicolantonioF. LoupakisF. SienaS. Sartore-BianchiA. BardelliA. Erratum: Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients.Nat. Med.2015217827[PMID: 26151329 DOI: 10.1038/nm0715-827b].10.1038/nm0715‑827b
    [Google Scholar]
  23. PietrantonioF. VernieriC. SiravegnaG. MennittoA. BerenatoR. PerroneF. GloghiniA. TamboriniE. LonardiS. MoranoF. PiccianiB. BusicoA. VolpiC.C. MartinettiA. BattaglinF. BossiI. PellegrinelliA. MilioneM. CremoliniC. Di BartolomeoM. BardelliA. de BraudF. Heterogeneity of Acquired Resistance to Anti-EGFR Monoclonal Antibodies in Patients with Metastatic Colorectal Cancer.Clin. Cancer Res.2017231024142422[PMID: 27780856 DOI:10.1158/1078-0432.CCR-16-1863].10.1158/1078‑0432.CCR‑16‑1863
    [Google Scholar]
  24. RussoM. SiravegnaG. BlaszkowskyL.S. CortiG. CrisafulliG. AhronianL.G. MussolinB. KwakE.L. BuscarinoM. LazzariL. ValtortaE. TruiniM. JessopN.A. RobinsonH.E. HongT.S. Mino-KenudsonM. Di NicolantonioF. ThabetA. Sartore-BianchiA. SienaS. IafrateA.J. BardelliA. CorcoranR.B. Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer.Cancer Discov.201662147153[PMID: 26644315 DOI: 10.1158/2159-8290.CD-15-1283].10.1158/2159‑8290.CD‑15‑1283
    [Google Scholar]
  25. TranB. KopetzS. TieJ. GibbsP. JiangZ.Q. LieuC.H. AgarwalA. MaruD.M. SieberO. DesaiJ. Impact of BRAF mutation and microsatellite instability on the pattern of metastatic spread and prognosis in metastatic colorectal cancer.Cancer20111172046234632[PMID: 21456008 DOI: 10.1002/cncr.26086].10.1002/cncr.26086
    [Google Scholar]
  26. KarouliaZ. GavathiotisE. PoulikakosP.I. New perspectives for targeting RAF kinase in human cancer.Nat. Rev. Cancer20171711676691[PMID: 28984291 DOI: 10.1038/nrc.2017.79].10.1038/nrc.2017.79
    [Google Scholar]
  27. Laurent-PuigP. CayreA. ManceauG. BucE. BachetJ.B. LecomteT. RougierP. LievreA. LandiB. BoigeV. DucreuxM. YchouM. BibeauF. BouchéO. ReidJ. StoneS. Penault-LlorcaF. Analysis of PTEN, BRAF, and EGFR status in determining benefit from cetuximab therapy in wild-type KRAS metastatic colon cancer.J. Clin. Oncol.2009273559245930[PMID: 19884556 DOI: 10.1200/JCO.2008.21.6796].10.1200/JCO.2008.21.6796
    [Google Scholar]
  28. LoupakisF. RuzzoA. CremoliniC. VincenziB. SalvatoreL. SantiniD. MasiG. StasiI. CanestrariE. RulliE. FlorianiI. BencardinoK. GalluccioN. CatalanoV. ToniniG. MagnaniM. FontaniniG. BasoloF. FalconeA. GrazianoF. KRAS codon 61, 146 and BRAF mutations predict resistance to cetuximab plus irinotecan in KRAS codon 12 and 13 wild-type metastatic colorectal cancer.Br. J. Cancer20091014715721[PMID: 19603018 DOI: 10.1038/sj.bjc.6605177].10.1038/sj.bjc.6605177
    [Google Scholar]
  29. RothA.D. TejparS. DelorenziM. YanP. FioccaR. KlingbielD. DietrichD. BiesmansB. BodokyG. BaroneC. ArandaE. NordlingerB. CisarL. LabiancaR. CunninghamD. Van CutsemE. BosmanF. Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial.J. Clin. Oncol.2010283466474[PMID: 20008640 DOI: 10.1200/JCO.2009.23.3452].10.1200/JCO.2009.23.3452
    [Google Scholar]
  30. PrahalladA. SunC. HuangS. Di NicolantonioF. SalazarR. ZecchinD. BeijersbergenR.L. BardelliA. BernardsR. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR.Nature20124837387100103[PMID: 22281684 DOI: 10.1038/nature10868].10.1038/nature10868
    [Google Scholar]
  31. CorcoranR.B. AndréT. AtreyaC.E. SchellensJ.H.M. YoshinoT. BendellJ.C. HollebecqueA. McReeA.J. SienaS. MiddletonG. MuroK. GordonM.S. TaberneroJ. YaegerR. O’DwyerP.J. HumbletY. De VosF. JungA.S. BraseJ.C. JaegerS. BettingerS. MookerjeeB. RangwalaF. Van CutsemE. Combined BRAF, EGFR, and MEK Inhibition in Patients with BRAF V600E-Mutant Colorectal Cancer.Cancer Discov.201884428443[PMID: 29431699 DOI: 10.1158/2159-8290.CD-17-1226].10.1158/2159‑8290.CD‑17‑1226
    [Google Scholar]
  32. RichmanS.D. SouthwardK. ChambersP. CrossD. BarrettJ. HemmingsG. TaylorM. WoodH. HutchinsG. FosterJ.M. OumieA. SpinkK.G. BrownS.R. JonesM. KerrD. HandleyK. GrayR. SeymourM. QuirkeP. HER2 overexpression and amplification as a potential therapeutic target in colorectal cancer: analysis of 3256 patients enrolled in the QUASAR, FOCUS and PICCOLO colorectal cancer trials.J. Pathol.20162384562570[PMID: 26690310 DOI: 10.1002/path.4679].10.1002/path.4679
    [Google Scholar]
  33. ShitaraK. BangY.J. IwasaS. SugimotoN. RyuM.H. SakaiD. ChungH.C. KawakamiH. YabusakiH. LeeJ. SaitoK. KawaguchiY. KamioT. KojimaA. SugiharaM. YamaguchiK. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer.N. Engl. J. Med.2020382252419243010.1056/NEJMoa2004413
    [Google Scholar]
  34. HainsworthJ.D. Meric-BernstamF. SwantonC. HurwitzH. SpigelD.R. SweeneyC. BurrisH.A. BoseR. YooB. SteinA. BeattieM. KurzrockR. Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results From MyPathway, an Open-Label, Phase IIa Multiple Basket Study.J. Clin. Oncol.2018366536542[PMID: 29320312 DOI: 10.1200/JCO.2017.75.3780].10.1200/JCO.2017.75.3780
    [Google Scholar]
  35. StricklerJ.H. CercekA. SienaS. AndréT. NgK. Van CutsemE. WuC. PaulsonA.S. HubbardJ.M. CovelerA.L. FountzilasC. KardoshA. KasiP.M. LenzH.J. CiomborK.K. ElezE. BajorD.L. CremoliniC. SanchezF. StecherM. FengW. Bekaii-SaabT.S. Van CutsemE. PeetersM. Van den EvndeM. AndréT. BorgC. SarabiM. GhiringhelliF. ChibaudelB. SienaS. CremoliniC. ZampinoM.G. ElezE. KeranenS.R. SalazarR. AlfonsoP. StricklerJ.H. CercekA. NgK. WuC. PaulsonA.S. HubbardJ.M. CovelerA.L. FountzilasC. KardoshA. KasiP.M. LenzH-J. CiomborK.K. BajorD.L. Bekaii-SaabT.S. GbolahanO. BolandP. BergD. SanchezF. GogginsT. SaeedA. BurrisH. BendellJ. OutlawD. TafurI. ShergillA. CatenacciD. GongJ. Garrido-LagunaI. FinleyG. WeinbergB. ShieldsA. PhilipP. TurkA. NguyenA. BraitehF. PatelV. HarwinW. AndersonI. KundraA. ChenC. FordJ. KundrandaM. NguyenD. RatnamS. RichardsD. NallapareddyS. BeeramS. McKenneyS. ShaoS. MOUNTAINEER investigators Tucatinib plus trastuzumab for chemotherapy-refractory, HER2-positive, RAS wild-type unresectable or metastatic colorectal cancer (MOUNTAINEER): a multicentre, open-label, phase 2 study.Lancet Oncol.202324549650810.1016/S1470‑2045(23)00150‑X
    [Google Scholar]
  36. FuchsC.S. DoiT. JangR.W. MuroK. SatohT. MachadoM. SunW. JalalS.I. ShahM.A. MetgesJ.P. GarridoM. GolanT. MandalaM. WainbergZ.A. CatenacciD.V. OhtsuA. ShitaraK. GevaR. BleekerJ. KoA.H. KuG. PhilipP. EnzingerP.C. BangY-J. LevitanD. WangJ. RosalesM. DalalR.P. YoonH.H. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical keynote-059 trial.JAMA Oncol.201845e180013[CrossRef].10.1001/jamaoncol.2018.0013
    [Google Scholar]
  37. ShitaraK. ÖzgüroğluM. BangY-J. Di BartolomeoM. MandalàM. RyuM-H. FornaroL. OlesińskiT. CaglevicC. ChungH.C. MuroK. GoekkurtE. MansoorW. McDermottR.S. Shacham-ShmueliE. ChenX. MayoC. KangS.P. OhtsuA. FuchsC.S. LerzoG. O’ConnorJ.M. MendezG.A. LynamJ. TebbuttN. WongM. StricklandA. KarapetisC. GoldsteinD. VaseyP. Van LaethemJ-L. Van CutsemE. BerryS. VincentM. MullerB. ReyF. ZambranoA. GuerraJ. KroghM. BaeksgaardL. YilmazM. ElmeA. MagiA. AuvinenP. AlankoT. MoehlerM. KunzmannV. SeufferleinT. Thuss-PatienceP. GoekkurtE. HoehlerT. HaagG. Al-BatranS-E. CastroH. LopezK. Aguilar VasquezM. SandovalM. LamK.O. CuffeS. KellyC. GevaR. Shacham-ShmueliE. HubertA. BenyA. BrennerB. GiuseppeA. FalconeA. MaielloE. PassalacquaR. MontesarchioV. HaraH. ChinK. NishinaT. KomatsuY. MachidaN. HironakaS. SatohT. TamuraT. SugimotoN. ChoH. OmuroY. KatoK. GotoM. HyodoI. YoshidaK. BabaH. EsakiT. FuruseJ. Wan MohammedW.Z. Hernandez HernandezC. Casas GarciaJ. Dominguez AndradeA. ClarkeK. HjortlandG. GlenjenN. KubiatowskiT. JacekJ. WojtukiewiczM. LazarevS. LancukhayY. AfanasayevS. MoiseyenkoV. KostorovV. ProtsenkoS. ShirinkinV. SakaevaD. FadeevaN. YongW.P. NgC.H.M. RobertsonB. RapaportB. CohenG. DreostiL. RuffP. JacobsC. LandersG. SzpakW. RohS-Y. LeeJ. KimY.H. BangY-J. ChungH.C. RyuM-H. Alsina MaquedaM. Longo MunozF. Cervantes AguilarA. Aranda AguilarE. Garcia AlfonsoP. RiveraF. Feliu BatleJ. Pazo CidR. YehK-H. ChenJ-S. ChaoY. YenC-J. ÖzgüroğluM. KaraO. YalcinS. HochhauserD. ChauI. BensonA. ShankaranV. ShaibW. PhilipP. SharmaV. SiegelR. SunW. WainbergZ. GeorgeB. BullockA. MyrickS. FaruolJ. SiegelR. LarsonT. BecerraC. RatnamS. RichardsD.A. RicheS.L. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial.Lancet201839210142123133[CrossRef].10.1016/S0140‑6736(18)31257‑1
    [Google Scholar]
  38. ShitaraK. Van CutsemE. BangY.J. FuchsC. WyrwiczL. LeeK.W. KudabaI. GarridoM. ChungH.C. LeeJ. CastroH.R. MansoorW. BraghiroliM.I. KarasevaN. CaglevicC. VillanuevaL. GoekkurtE. SatakeH. EnzingerP. AlsinaM. BensonA. ChaoJ. KoA.H. WainbergZ.A. KherU. ShahS. KangS.P. TaberneroJ. Efficacy and Safety of Pembrolizumab or Pembrolizumab Plus Chemotherapy vs Chemotherapy Alone for Patients With First-line, Advanced Gastric Cancer.JAMA Oncol.202061015711580[CrossRef].10.1001/jamaoncol.2020.3370
    [Google Scholar]
  39. WainbergZ.A. FuchsC.S. TaberneroJ. ShitaraK. MuroK. Van CutsemE. BangY.J. ChungH.C. YamaguchiK. VargaE. ChenJ-S. HochhauserD. Thuss-PatienceP.C. Al-BatranS-E. GarridoM. KherU. ShihC-S. ShahS. BhagiaP. ChaoJ. Efficacy of pembrolizumab (pembro) monotherapy versus chemotherapy for PD-L1–positive (CPS ≥10) advanced G/GEJ cancer in the phase II KEYNOTE-059 (cohort 1) and phase III KEYNOTE-061 and KEYNOTE-062 studies.J. Clin. Oncol.2020384_suppl427[CrossRef].10.1200/JCO.2020.38.4_suppl.427
    [Google Scholar]
  40. MoehlerM. DvorkinM. BokuN. ÖzgüroğluM. RyuM-H. MunteanA.S. LonardiS. NechaevaM. BragagnoliA.C. CoşkunH.S. Cubillo GracianA. TakanoT. WongR. SafranH. VaccaroG.M. WainbergZ.A. SilverM.R. XiongH. HongJ. TaiebJ. BangY-J. Phase III Trial of Avelumab Maintenance After First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients With Gastric Cancers: Results From JAVELIN Gastric 100.J. Clin. Oncol.2021399966977[CrossRef].10.1200/JCO.20.00892
    [Google Scholar]
  41. FongC. PatelB. PeckittC. BourmpakiE. von LogaK. BegumR. DavidsonM. AnandappaG. CafferkeyC. WatkinsD.J. RaoS. WaddellT. WadsleyJ. CoxonF. RoquesT. MorganC. ReesC. StarlingN. ChauI. CunninghamD. Maintenance durvalumab after first-line platinum-based chemotherapy in advanced oesophago-gastric (OG) adenocarcinoma: Results from the PLATFORM trial.J. Clin. Oncol.20213915_suppl4015[CrossRef].10.1200/JCO.2021.39.15_suppl.4015
    [Google Scholar]
  42. JanjigianY.Y. ShitaraK. MoehlerM. GarridoM. SalmanP. ShenL. WyrwiczL. YamaguchiK. SkoczylasT. Campos BragagnoliA. LiuT. SchenkerM. YanezP. TehfeM. KowalyszynR. KaramouzisM.V. BrugesR. ZanderT. Pazo-CidR. HitreE. FeeneyK. ClearyJ.M. PoulartV. CullenD. LeiM. XiaoH. KondoK. LiM. AjaniJ.A. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial.Lancet2021398102942740[CrossRef].10.1016/S0140‑6736(21)00797‑2
    [Google Scholar]
  43. YoonH.H. JinZ. KourO. Kankeu FonkouaL.A. ShitaraK. GibsonM.K. ProkopL.J. MoehlerM. KangY.K. ShiQ. AjaniJ.A. Association of pd-l1 expression and other variables with benefit from immune checkpoint inhibition in advanced gastroesophageal cancer: Systematic review and meta-analysis of 17 phase 3 randomized clinical trials.JAMA Oncol.202281014561465[CrossRef].10.1001/jamaoncol.2022.3707
    [Google Scholar]
  44. ParkY. KohJ. NaH.Y. KwakY. LeeK.W. AhnS.H. ParkD.J. KimH.H. LeeH.S. PD-L1 Testing in Gastric Cancer by the Combined Positive Score of the 22C3 PharmDx and SP263 Assay with Clinically Relevant Cut-offs.Cancer Res. Treat.2020523661670[CrossRef].10.4143/crt.2019.718
    [Google Scholar]
  45. AhnS. KimK.M. PD-L1 expression in gastric cancer: interchangeability of 22C3 and 28-8 pharmDx assays for responses to immunotherapy.Mod. Pathol.202134917191727[CrossRef].10.1038/s41379‑021‑00823‑9
    [Google Scholar]
  46. ChuL. ChenY. LiuQ. LiangF. WangS. LiuQ. YuH. WuX. ZhangJ. DengJ. AiD. ZhuZ. NieY. ZhaoK. A phase II study of apatinib in patients with chemotherapy-refractory esophageal squamous cell carcinoma (ESO-Shanghai 11).Oncologist2015266e925e93510.1002/onco.13668
    [Google Scholar]
  47. HewittL.C. InamI.Z. SaitoY. YoshikawaT. QuaasA. HoelscherA. BollschweilerE. FazziG.E. MelotteV. LangleyR.E. NankivellM. CunninghamD. AllumW. HutchinsG.G. GrabschH.I. Epstein-Barr virus and mismatch repair deficiency status differ between oesophageal and gastric cancer: A large multi-centre study.Eur. J. Cancer201894104114[CrossRef].10.1016/j.ejca.2018.02.014
    [Google Scholar]
  48. PietrantonioF. RandonG. Di BartolomeoM. LucianiA. ChaoJ. SmythE.C. PetrelliF. Predictive role of microsatellite instability for PD-1 blockade in patients with advanced gastric cancer: a meta-analysis of randomized clinical trials.ESMO Open202161100036[CrossRef].10.1016/j.esmoop.2020.100036
    [Google Scholar]
  49. YoonH.H. JinZ. KourO. ShitaraK. GibsonM.K. ProkopL. KangY.K. ShiQ. AjaniJ.A. Association of magnitude and consistency of PD-L1 expression and other variables associated with benefit from immune checkpoint inhibition (ICI): Systematic review and meta-analysis of 14 phase 3 trials in advanced gastroesophageal cancer (GEC).J. Clin. Oncol.2022404_suppl344[CrossRef].10.1200/JCO.2022.40.4_suppl.344
    [Google Scholar]
  50. KwonM. AnM. KlempnerS.J. LeeH. KimK.M. SaJ.K. ChoH.J. HongJ.Y. LeeT. MinY.W. KimT.J. MinB-H. ParkW-Y. KangW.K. KimK-T. KimS.T. LeeJ. Determinants of Response and Intrinsic Resistance to PD-1 Blockade in Microsatellite Instability–High Gastric Cancer.Cancer Discov.202111921682185[CrossRef].10.1158/2159‑8290.CD‑21‑0219
    [Google Scholar]
  51. KawakamiH. HironakaS. EsakiT. ChayamaK. TsudaM. SugimotoN. KadowakiS. MakiyamaA. MachidaN. HiranoH. HirataK. HaraH. YabusakiH. KomatsuY. MuroK. An Investigator-Initiated Phase 2 Study of Nivolumab Plus Low-Dose Ipilimumab as First-Line Therapy for Microsatellite Instability—High Advanced Gastric or Esophagogastric Junction Cancer (NO LIMIT, WJOG13320G/CA209-7W7).Cancers (Basel)2021134805[CrossRef].10.3390/cancers13040805
    [Google Scholar]
  52. MarabelleA. FakihM.G. LopezJ. ShahM. Shapira-FrommerR. NakagawaK. ChungH.C. KindlerH.L. Lopez-MartinJ.A. MillerW. ItalianoA. KaoS. Piha-PaulS.A. DelordJ-P. McWilliamsR.R. Aurora-GargD. ChenM. JinF. NorwoodK. BangY-J. Association of tumour mutational burden with outcomes in patients with select advanced solid tumours treated with pembrolizumab in KEYNOTE-158.Ann. Oncol.201930v477v478[CrossRef].10.1093/annonc/mdz253.018
    [Google Scholar]
  53. ShitaraK. ÖzgüroğluM. BangY-J. Di BartolomeoM. MandalàM. RyuM-H. CaglevicC. ChungH.C. MuroK. Van CutsemE. KobieJ. CristescuR. Aurora-GargD. LuJ. ShihC-S. AdelbergD. CaoZ.A. FuchsC.S. Molecular determinants of clinical outcomes with pembrolizumab versus paclitaxel in a randomized, open-label, phase III trial in patients with gastroesophageal adenocarcinoma.Ann. Oncol.202132911271136[CrossRef].10.1016/j.annonc.2021.05.803
    [Google Scholar]
  54. CuriglianoG. ShahR.R. Safety and Tolerability of Phosphatidylinositol-3-Kinase (PI3K) Inhibitors in Oncology.Drug Saf.2019422247262[PMID: 30649751 DOI: 10.1007/s40264-018-0778-4].10.1007/s40264‑018‑0778‑4
    [Google Scholar]
  55. Weldon GilcreaseG. StenehjemD.D. WadeM.L. WeisJ. McGregorK. WhisenantJ. BoucherK.M. ThorneK. OrgainN. Garrido-LagunaI. SharmaS. Phase I/II study of everolimus combined with mFOLFOX-6 and bevacizumab for first–line treatment of metastatic colorectal cancer.Invest. New Drugs2019373482489[PMID: 30302599 DOI: 10.1007/s10637-018-0645-2].10.1007/s10637‑018‑0645‑2
    [Google Scholar]
  56. van GeelR.M.J.M. TaberneroJ. ElezE. BendellJ.C. SpreaficoA. SchulerM. YoshinoT. DelordJ.P. YamadaY. LolkemaM.P. FarisJ.E. EskensF.A.L.M. SharmaS. YaegerR. LenzH.J. WainbergZ.A. AvsarE. ChatterjeeA. JaegerS. TanE. MaharryK. DemuthT. SchellensJ.H.M. A Phase Ib Dose-Escalation Study of Encorafenib and Cetuximab with or without Alpelisib in Metastatic BRAF -Mutant Colorectal Cancer.Cancer Discov.201776610619[PMID: 28363909 DOI:10.1158/2159-8290.CD-16-0795].10.1158/2159‑8290.CD‑16‑0795
    [Google Scholar]
  57. LorenzenS. KnorrenschildJ.R. PauligkC. BeckerS. SeraphinJ. PatienceP. KoppH.G. DechowT. VogelA. LuleyK.B. PinkD. StahlM. KullmannF. HebartH. SivekeJ. EggerM. HomannN. ProbstS. GoetzeT.O. Al-BatranS.E. Phase III randomized, double-blind study of paclitaxel with and without everolimus in patients with advanced gastric or esophagogastric junction carcinoma who have progressed after therapy with a fluoropyrimidine/platinum-containing regimen (RADPAC).Int. J. Cancer20201472493250210.1002/ijc.33025
    [Google Scholar]
  58. FritschC. HuangA. Chatenay-RivaudayC. SchnellC. ReddyA. LiuM. KauffmannA. GuthyD. ErdmannD. De PoverA. FuretP. GaoH. FerrettiS. WangY. TrappeJ. BrachmannS.M. MairaS.M. WilsonC. BoehmM. Garcia-EcheverriaC. CheneP. WiesmannM. CozensR. LeharJ. SchlegelR. CaravattiG. HofmannF. SellersW.R. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials.Mol. Cancer Ther.201413511171129[PMID: 24608574 DOI: 10.1158/1535-7163.MCT-13-0865].10.1158/1535‑7163.MCT‑13‑0865
    [Google Scholar]
  59. DaviesB.R. GreenwoodH. DudleyP. CrafterC. YuD.H. ZhangJ. LiJ. GaoB. JiQ. MaynardJ. RickettsS.A. CrossD. CosulichS. ChrestaC.C. PageK. YatesJ. LaneC. WatsonR. LukeR. OgilvieD. PassM. Preclinical pharmacology of AZD5363, an inhibitor of AKT: pharmacodynamics, antitumor activity, and correlation of monotherapy activity with genetic background.Mol. Cancer Ther.2012114873887[PMID: 22294718 DOI: 10.1158/1535-7163.MCT-11-0824-T].10.1158/1535‑7163.MCT‑11‑0824‑T
    [Google Scholar]
  60. Gonzalez-AnguloA.M. Meric-BernstamF. ChawlaS. FalchookG. HongD. AkcakanatA. ChenH. NaingA. FuS. WhelerJ. MoulderS. HelgasonT. LiS. EliasI. DesaiN. KurzrockR. Weekly nab- Rapamycin in patients with advanced nonhematologic malignancies: final results of a phase I trial.Clin. Cancer Res.2013191954745484[PMID: 24089446 DOI: 10.1158/1078-0432.CCR-12-3110].10.1158/1078‑0432.CCR‑12‑3110
    [Google Scholar]
  61. DimovaI. PopivanovG. DjonovV. Angiogenesis in cancer - general pathways and their therapeutic implications.J. BUON2014191521[PMID: 24659637].
    [Google Scholar]
  62. BattaglinF. PucciniA. IntiniR. SchirripaM. FerroA. BergamoF. LonardiS. ZagonelV. LenzH.J. LoupakisF. The role of tumor angiogenesis as a therapeutic target in colorectal cancer.Expert Rev. Anticancer Ther.2018183251266[PMID: 29338550 DOI: 10.1080/14737140.2018.1428092].10.1080/14737140.2018.1428092
    [Google Scholar]
  63. KabbinavarF.F. HambletonJ. MassR.D. HurwitzH.I. BergslandE. SarkarS. Combined analysis of efficacy: the addition of bevacizumab to fluorouracil/Leucovorin improves survival for patients with metastatic colorectal cancer.J. Clin. Oncol.2005231637063712[PMID: 15867200 DOI: 10.1200/JCO.2005.00.232].10.1200/JCO.2005.00.232
    [Google Scholar]
  64. PinedaE. SaludA. Vila-NavarroE. SafontM.J. LlorenteB. AparicioJ. VeraR. EscuderoP. CasadoE. BoschC. BohnU. Pérez-CarriónR. CarmonaA. AyusoJ.R. RipollésT. BouzasR. GironellaM. García-AlbénizX. FeliuJ. MaurelJ. Dynamic soluble changes in sVEGFR1, HGF, and VEGF promote chemotherapy and bevacizumab resistance: A prospective translational study in the BECOX (GEMCAD 09-01) trial.Tumour Biol.2017396[PMID: 28621236 DOI: 10.1177/1010428317705509].10.1177/1010428317705509
    [Google Scholar]
  65. CarboneC. PiroG. SimionatoF. LigorioF. CremoliniC. LoupakisF. AlìG. RossiniD. MerzV. SantoroR. ZecchettoC. ZanottoM. Di NicolantonioF. BardelliA. FontaniniG. TortoraG. MelisiD. Homeobox B9 Mediates Resistance to Anti-VEGF Therapy in Colorectal Cancer Patients.Clin. Cancer Res.2017231543124322[PMID: 28298545 DOI: 10.1158/1078-0432.CCR-16-3153].10.1158/1078‑0432.CCR‑16‑3153
    [Google Scholar]
  66. MawallaB. YuanX. LuoX. ChalyaP.L. Treatment outcome of anti-angiogenesis through VEGF-pathway in the management of gastric cancer: a systematic review of phase II and III clinical trials.BMC Res. Notes201811121[PMID: 29329598 DOI: 10.1186/s13104-018-3137-8].10.1186/s13104‑018‑3137‑8
    [Google Scholar]
  67. De VitaF. BorgC. FarinaG. GevaR. CartonI. CukuH. WeiR. MuroK. Ramucirumab and paclitaxel in patients with gastric cancer and prior trastuzumab: subgroup analysis from RAINBOW study.Future Oncol.201915232723273110.2217/fon‑2019‑0243
    [Google Scholar]
  68. GoelG. Evolution of regorafenib from bench to bedside in colorectal cancer: Is it an attractive option or merely a “me too” drug?Cancer Manag. Res.20181042543710.2147/CMAR.S88825
    [Google Scholar]
  69. ShitaraK. YamanakaT. DendaT. TsujiY. ShinozakiK. KomatsuY. KobayashiY. FuruseJ. OkudaH. AsayamaM. AkiyoshiK. KagawaY. KatoT. OkiE. AndoT. HagiwaraY. OhashiY. YoshinoT. REVERCE: a randomized phase II study of regorafenib followed by cetuximab versus the reverse sequence for previously treated metastatic colorectal cancer patients.Ann. Oncol.2019302259265[PMID: 30508156 DOI: 10.1093/annonc/mdy526].10.1093/annonc/mdy526
    [Google Scholar]
  70. PavlakisN. SjoquistK.M. MartinA.J. TsobanisE. YipS. KangY.K. BangY.J. AlcindorT. O’CallaghanC.J. BurnellM.J. TebbuttN.C. RhaS.Y. LeeJ. ChoJ.Y. LiptonL.R. WongM. StricklandA. KimJ.W. ZalcbergJ.R. SimesJ. GoldsteinD. Regorafenib for the Treatment of Advanced Gastric Cancer (INTEGRATE): A Multinational Placebo-Controlled Phase II Trial.J. Clin. Oncol.2016342327282735[PMID: 27325864 DOI: 10.1200/JCO.2015.65.1901].10.1200/JCO.2015.65.1901
    [Google Scholar]
  71. LiJ. ZhaoX. ChenL. GuoH. LvF. JiaK. YvK. WangF. LiC. QianJ. ZhengC. ZuoY. Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies.BMC Cancer2010101529[PMID: 20923544 DOI: 10.1186/1471-2407-10-529].10.1186/1471‑2407‑10‑529
    [Google Scholar]
  72. WangF. YuanX. JiaJ. BiX. ZhouZ. ZhouQ. LiX. LuoC. DengM. YiL. LiY. LuJ. SuW. ChenH. ZhuY. WangS. Apatinib Monotherapy for Chemotherapy-Refractory Metastatic Colorectal Cancer: A Multi-centre, Single-Arm, Prospective Study.Sci. Rep.20201016058[PMID: 32269247 DOI: 10.1038/s41598-020-62961-5].10.1038/s41598‑020‑62961‑5
    [Google Scholar]
  73. CurtinN.J. The Development of Rucaparib/Rubraca®: A Story of the Synergy Between Science and Serendipity. Cancers (Basel). 2020 Feb 29;12(3):564. Xu Z, Hu C, Chen S, Zhang C, Yu J, Wang X, Lv H, Cheng X. Apatinib enhances chemosensitivity of gastric cancer to paclitaxel and 5-fluorouracil.Cancer Manag. Res.20191149054915[PMID: 31213909 DOI: 10.2147/CMAR.S196372].
    [Google Scholar]
  74. BellesoeurA. CartonE. AlexandreJ. GoldwasserF. HuillardO. Axitinib in the treatment of renal cell carcinoma: design, development, and place in therapy.Drug Des. Devel. Ther.20171128012811[PMID: 29033542 DOI: 10.2147/DDDT.S109640].10.2147/DDDT.S109640
    [Google Scholar]
  75. ZhangY. ZouJ.Y. WangZ. WangY. Fruquintinib: a novel antivascular endothelial growth factor receptor tyrosine kinase inhibitor for the treatment of metastatic colorectal cancer.Cancer Manag. Res.20191177877803[PMID: 31496821 DOI: 10.2147/CMAR.S215533].10.2147/CMAR.S215533
    [Google Scholar]
  76. LiJ. QinS. XuR.H. ShenL. XuJ. BaiY. YangL. DengY. ChenZ. ZhongH. PanH. GuoW. ShuY. YuanY. ZhouJ. XuN. LiuT. MaD. WuC. ChengY. ChenD. LiW. SunS. YuZ. CaoP. ChenH. WangJ. WangS. WangH. FanS. HuaY. SuW. Effect of Fruquintinib vs Placebo on Overall Survival in Patients With Previously Treated Metastatic Colorectal Cancer.JAMA20183192424862496[PMID: 29946728 DOI: 10.1001/jama.2018.7855].10.1001/jama.2018.7855
    [Google Scholar]
  77. CatenacciD.V.T. RascoD. LeeJ. RhaS.Y. LeeK.W. BangY.J. BendellJ. EnzingerP. MarinaN. XiangH. DengW. PowersJ. WainbergZ.A. PhaseI. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients With Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma.J. Clin. Oncol.2020382124182426[PMID: 32167861 DOI: 10.1200/JCO.19.01834].10.1200/JCO.19.01834
    [Google Scholar]
  78. MontazeriK. BellmuntJ. Erdafitinib for the treatment of metastatic bladder cancer.Expert Rev. Clin. Pharmacol.202013116[PMID: 31810398 DOI: 10.1080/17512433.2020.1702025].10.1080/17512433.2020.1702025
    [Google Scholar]
  79. LuoJ. ChenX.Q. LiP. The Role of TGF-β and Its Receptors in Gastrointestinal Cancers.Transl. Oncol.2019123475484[PMID: 30594036 DOI: 10.1016/j.tranon.2018.11.010].10.1016/j.tranon.2018.11.010
    [Google Scholar]
  80. YashiroM. HirakawaK. BolandC.R. Mutations in TGFbeta-RII and BAXmediate tumor progression in the later stages of colorectal cancer with microsatellite instability.BMC Cancer2010101303[PMID: 20565851 DOI: 10.1186/1471-2407-10-303].10.1186/1471‑2407‑10‑303
    [Google Scholar]
  81. WosiakA. WodzińskiD. KolasaM. Sałagacka-KubiakA. BalcerczakE. SMAD-4 gene expression in human colorectal cancer: Comparison with some clinical and pathological parameters.Pathol. Res. Pract.201721314549[PMID: 27914767 DOI: 10.1016/j.prp.2016.10.013].10.1016/j.prp.2016.10.013
    [Google Scholar]
  82. JochemsC. TritschS.R. PellomS.T. SuZ. Soon-ShiongP. WongH.C. GulleyJ.L. SchlomJ. Analyses of functions of an anti-PD-L1/TGFβR2 bispecific fusion protein (M7824).Oncotarget20178437521775231[PMID: 29088859 DOI: 10.18632/oncotarget.20680].10.18632/oncotarget.20680
    [Google Scholar]
  83. StraussJ. HeeryC.R. SchlomJ. MadanR.A. CaoL. KangZ. LampingE. MartéJ.L. DonahueR.N. GrengaI. CordesL. ChristensenO. MahnkeL. HelwigC. GulleyJ.L. PhaseI. Phase I Trial of M7824 (MSB0011359C), a Bifunctional Fusion Protein Targeting PD-L1 and TGFβ, in Advanced Solid Tumors.Clin. Cancer Res.201824612871295[PMID: 29298798 DOI:10.1158/1078-0432.CCR-17-2653].10.1158/1078‑0432.CCR‑17‑2653
    [Google Scholar]
  84. KatzL.H. LikhterM. JogunooriW. BelkinM. OhshiroK. MishraL. TGF-β signaling in liver and gastrointestinal cancers.Cancer Lett.20163792166172[PMID: 27039259 DOI: 10.1016/j.canlet.2016.03.033].10.1016/j.canlet.2016.03.033
    [Google Scholar]
  85. KonstorumA. LowengrubJ.S. Activation of the HGF/c-Met axis in the tumor microenvironment: A multispecies model.J. Theor. Biol.2018439869910.1016/j.jtbi.2017.11.025
    [Google Scholar]
  86. FuseN. KubokiY. KuwataT. NishinaT. KadowakiS. ShinozakiE. MachidaN. YukiS. OokiA. KajiuraS. KimuraT. YamanakaT. ShitaraK. NagatsumaA.K. YoshinoT. OchiaiA. OhtsuA. Prognostic impact of HER2, EGFR, and c-MET status on overall survival of advanced gastric cancer patients.Gastric Cancer2016191183191[PMID: 25682441 DOI: 10.1007/s10120-015-0471-6].10.1007/s10120‑015‑0471‑6
    [Google Scholar]
  87. ShitaraK. KimT.M. YokotaT. GotoM. SatohT. AhnJ.H. KimH.S. AssadourianS. GomezC. HarnoisM. HamauchiS. KudoT. DoiT. BangY.J. Phase I dose-escalation study of the c-Met tyrosine kinase inhibitor SAR125844 in Asian patients with advanced solid tumors, including patients with MET-amplified gastric cancer.Oncotarget20178795467955510.18632/oncotarget.18554
    [Google Scholar]
  88. AméJ.C. SpenlehauerC. de MurciaG. The PARP superfamily.BioEssays2004268882893[PMID:15273990 DOI: 10.1002/bies.20085].10.1002/bies.20085
    [Google Scholar]
  89. KubotaE. WilliamsonC.T. YeR. ElegbedeA. PetersonL. Lees-MillerS.P. BebbD.G. Low ATM protein expression and depletion of p53 correlates with olaparib sensitivity in gastric cancer cell lines.Cell Cycle2014131321292137[PMID: 24841718 DOI: 10.4161/cc.29212].10.4161/cc.29212
    [Google Scholar]
  90. CurtinN.J. The Development of Rucaparib/Rubraca®: A Story of the Synergy Between Science and Serendipity. Cancers (Basel). 2020 Feb 29;12(3):564. Shirley M. Rucaparib: A Review in Ovarian Cancer.Target. Oncol.201914237246[PMID: 30830551 DOI: 10.1007/s11523-019-00629-5].
    [Google Scholar]
  91. HallbergB. PalmerR.H. The role of the ALK receptor in cancer biology.Ann. Oncol.201627Suppl. 3iii4iii15[PMID: 27573755 DOI: 10.1093/annonc/mdw301].10.1093/annonc/mdw301
    [Google Scholar]
  92. DrilonA. SienaS. OuS.H.I. PatelM. AhnM.J. LeeJ. BauerT.M. FaragoA.F. WhelerJ.J. LiuS.V. DoebeleR. GiannettaL. CereaG. MarrapeseG. SchirruM. AmatuA. BencardinoK. PalmeriL. Sartore-BianchiA. VanzulliA. CrestaS. DamianS. DucaM. ArdiniE. LiG. ChristiansenJ. KowalskiK. JohnsonA.D. PatelR. LuoD. Chow-ManevalE. HornbyZ. MultaniP.S. ShawA.T. De BraudF.G. Safety and Antitumor Activity of the Multitargeted Pan-TRK, ROS1, and ALK Inhibitor Entrectinib: Combined Results from Two Phase I Trials (ALKA-372-001 and STARTRK-1).Cancer Discov.201774400409[PMID: 28183697 DOI: 10.1158/2159-8290.CD-16-1237].10.1158/2159‑8290.CD‑16‑1237
    [Google Scholar]
  93. DavisJ.L. RipleyR.T. Postgastrectomy syndromes and nutritional con- siderations following gastric surgery.Surg. Clin. North Am.201797227729310.1016/j.suc.2016.11.005
    [Google Scholar]
  94. HikiN. NunobeS. KubotaT. JiangX. Function-preserving gastrectomy for early gastric cancer.Ann. Surg. Oncol.20132082683269210.1245/s10434‑013‑2931‑8
    [Google Scholar]
  95. CunninghamD. AllumW.H. StenningS.P. ThompsonJ.N. Van de VeldeC.J.H. NicolsonM. ScarffeJ.H. LoftsF.J. FalkS.J. IvesonT.J. SmithD.B. LangleyR.E. VermaM. WeedenS. ChuaY.J. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer.N. Engl. J. Med.20063551112010.1056/NEJMoa055531
    [Google Scholar]
  96. SasakoM. SakuramotoS. KataiH. KinoshitaT. FurukawaH. YamaguchiT. NashimotoA. FujiiM. NakajimaT. OhashiY. Five-year outcomes of a randomized phase III trial comparing adjuvant chemotherapy with S-1 versus surgery alone in stage II or III gastric cancer.J. Clin. Oncol.201129334387439310.1200/JCO.2011.36.5908
    [Google Scholar]
  97. SoetiknoR. KaltenbachT. YehR. GotodaT. Endoscopic mucosal resection for early cancers of the upper gastrointestinal tract.J. Clin. Oncol.200523204490449810.1200/JCO.2005.19.935
    [Google Scholar]
  98. HasuikeN. OnoH. BokuN. MizusawaJ. TakizawaK. FukudaH. OdaI. DoyamaH. KanekoK. HoriS. IishiH. KurokawaY. MutoM. A non-randomized confirmatory trial of an expanded indication for endoscopic submucosal dissection for intestinal-type gastric cancer (cT1a): the Japan Clinical Oncology Group study (JCOG0607).Gastric Cancer201821111412310.1007/s10120‑017‑0704‑y
    [Google Scholar]
  99. WangF.H. ZhangX-T. LiY-F. TangL. QuX-J. YingJ-E. ZhangJ. SunL-Y. LinR-B. QiuH. WangC. QiuM-Z. CaiM-Y. WuQ. LiuH. GuanW-L. ZhouA-P. ZhangY-J. LiuT-S. BiF. YuanX-L. RaoS-X. XinY. ShengW-Q. XuH-M. LiG-X. JiJ-F. ZhouZ-W. LiangH. ZhangY-Q. JinJ. ShenL. LiJ. XuR-H. The Chinese Society of Clinical Oncology (CSCO): Clinical guidelines for the diagnosis and treatment of gastric cancer, 2021.Cancer Commun. (Lond.)202141874779510.1002/cac2.12193
    [Google Scholar]
  100. KataiH. MizusawaJ. KatayamaH. MoritaS. YamadaT. BandoE. ItoS. TakagiM. TakaganeA. TeshimaS. KoedaK. NunobeS. YoshikawaT. TerashimaM. SasakoM. Survival outcomes after laparoscopy-assisted distal gastrectomy versus open distal gastrectomy with nodal dissection for clinical stage IA or IB gastric cancer (JCOG0912): a multicentre, non-inferiority, phase 3 randomised controlled trial.Lancet Gastroenterol. Hepatol.20205214215110.1016/S2468‑1253(19)30332‑2
    [Google Scholar]
  101. KimH-H. Effect of laparoscopic distal gastrectomy vs open distal gas- trectomy on long-term survival among patients with stage I gastric cancer: the KLASS-01 randomized clinical trial.JAMA Oncol.2019550651310.1001/jamaoncol.2018.6727
    [Google Scholar]
  102. CatsA. JansenE.P.M. van GriekenN.C.T. SikorskaK. LindP. NordsmarkM. Meershoek-Klein KranenbargE. BootH. TripA.K. SwellengrebelH.A.M. van LaarhovenH.W.M. PutterH. van SandickJ.W. van Berge HenegouwenM.I. HartgrinkH.H. van TinterenH. van de VeldeC.J.H. VerheijM. Van CoevordenF. VanhoutvinS. HulshofM.C.C.M. LoosveldO.J.L. Ten TijeA.B.J. ErdkampF.L.G. WarmerdamF.A.R.M. Van der PeetD.L. VerheulH.M.W. BoermaD. LosM. SlotA. HoutsmaD. PortieljeJ.E.A. BlaisseR.J.B. Spillenaar BilgenE.J. PoléeM.B. GeenenM.M. BraakJ.P.B.M. NeelisK.J. SlingerlandM. JansenR.L.H. BuijsenJ. BeekerA. EijsboutsQ.A.J. Van RielJ.M.G.H. RozemaT. Van SpronsenD.J. Meerum TerwogtJ.M. TanisB.C. Van der Torren-ConzeA.M.E. Van HilligersbergR. KoopmanM. Den BoerM.O. CreemersG-J. Van der SangenM. RentinckM.E.M. Van den BergH.P. JonkersG.J.P.M. GrootenboersD. VulinkA.J.E. HovengaS. Van der MijleH.C.J. BaarsA. HaringhuizenA.W. AppelsM.I.E. RietbroekR.C. HendriksenE.M. LegdeurM-C.J.C. Ten Bokkel HuininkD. Van DobbenburghO.A. SmitJ.M. Van BochoveA. VeldhuisG-J. MullerE.W. BonenkampJ.H.J. BraamP.M. De BoerJ. Van HalterenH.K. ValsterF.A.A. ImholzA.L.T. Van DijkM.A. Van der GaastA. OttenJ.H-M.M.B. CehaH.M. GlimeliusB. LagerbäckC. PermanM. JohnssonA. BorgD. NielsenN.H. PiwowarA. ElmlundM. HörbergH. EdlundP. JohanssonB. FlygareP. JespersenM.L. Chemotherapy versus chemoradiotherapy after surgery and preoperative chemotherapy for resectable gastric cancer (CRITICS): an international, open-label, randomised phase 3 trial.Lancet Oncol.201819561662810.1016/S1470‑2045(18)30132‑3
    [Google Scholar]
  103. YuJ. HuangC. SunY. SuX. CaoH. HuJ. WangK. SuoJ. TaoK. HeX. WeiH. YingM. HuW. DuX. HuY. LiuH. ZhengC. LiP. XieJ. LiuF. LiZ. ZhaoG. YangK. LiuC. LiH. ChenP. JiJ. LiG. Effect of laparoscopic vs open distal gastrectomy on 3-year disease- free survival in patients with locally advanced gastric cancer: the CLASS-01 randomized clinical trial.JAMA2019321201983199210.1001/jama.2019.5359
    [Google Scholar]
  104. HyungW.J. YangH-K. ParkY-K. LeeH-J. AnJ.Y. KimW. KimH-I. KimH-H. RyuS.W. HurH. KimM-C. KongS-H. ChoG.S. KimJ-J. ParkD.J. RyuK.W. KimY.W. KimJ.W. LeeJ-H. HanS-U. Long-term outcomes of laparoscopic distal gastrectomy for locally advanced gastric cancer: the KLASS-02-RCT randomized clinical trial.J. Clin. Oncol.202038283304331310.1200/JCO.20.01210
    [Google Scholar]
  105. SongZ. WuY. YangJ. YangD. FangX. Progress in the treatment of advanced gastric cancer.Tumour Biol.201739710.1177/1010428317714626
    [Google Scholar]
  106. LiR. HouW-H. ChaoJ. WooY. GlaserS. AminiA. NelsonR.A. ChenY-J. Chemoradiation improves survival compared with chemotherapy alone in unresected nonmetastatic gastric cancer.J. Natl. Compr. Canc. Netw.201816895095810.6004/jnccn.2018.7030
    [Google Scholar]
  107. TepperJ. KrasnaM.J. NiedzwieckiD. HollisD. ReedC.E. GoldbergR. KielK. WillettC. SugarbakerD. MayerR. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781.J. Clin. Oncol.20082671086109210.1200/JCO.2007.12.9593
    [Google Scholar]
  108. AjaniJ.A. MansfieldP.F. CraneC.H. WuT.T. LunagomezS. LynchP.M. JanjanN. FeigB. FaustJ. YaoJ.C. NiversR. MorrisJ. PistersP.W. Paclitaxel-based chemoradiotherapy in localized gastric carci- noma: degree of pathologic response and not clinical parameters dictated patient outcome.J. Clin. Oncol.20052361237124410.1200/JCO.2005.01.305
    [Google Scholar]
  109. GlimeliusB. EkströmK. HoffmanK. GrafW. SjödénP-O. HaglundU. SvenssonC. EnanderL-K. LinnéT. SellsrömH. HeumanR. Randomized comparison between chemotherapy plus best supportive care with best supportive care in advanced gastric cancer.Ann. Oncol.19978216316810.1023/A:1008243606668
    [Google Scholar]
  110. AbdelfatahE. KernerZ. NandaN. AhujaN. Epigenetic therapy in gastrointestinal cancer: the right combination.Therap. Adv. Gastroenterol.20169456057910.1177/1756283X16644247
    [Google Scholar]
  111. HidalgoM. AmantF. BiankinA.V. BudinskáE. ByrneA.T. CaldasC. ClarkeR.B. de JongS. JonkersJ. MælandsmoG.M. Roman-RomanS. SeoaneJ. TrusolinoL. VillanuevaA. Patient-derived xenograft models: an emerging platform for translational cancer research.Cancer Discov.201449998101310.1158/2159‑8290.CD‑14‑0001
    [Google Scholar]
  112. CleversH. Modeling development and disease with organoids.Cell201616571586159710.1016/j.cell.2016.05.082
    [Google Scholar]
  113. HechtJ.R. BangY.J. QinS.K. ChungH.C. XuJ.M. ParkJ.O. JeziorskiK. ShparykY. HoffP.M. SobreroA. SalmanP. LiJ. ProtsenkoS.A. WainbergZ.A. BuyseM. AfenjarK. HouéV. GarciaA. KanekoT. HuangY. Khan-WastiS. SantillanaS. PressM.F. SlamonD. Lapatinib in combination with capecitabine plus oxaliplatin in human epidermal growth factor receptor 2-positive advanced or metastatic gastric, esophageal, or gastroesophageal adenocarcinoma: TRIO-013/LOGiC—a randomized phase III trial.J. Clin. Oncol.201634544345110.1200/JCO.2015.62.6598
    [Google Scholar]
  114. SatohT XuRH ChungHC Phase III,randomized, double-blind, multicenter, placebo (P)- controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastroesophageal junction (G/GEJ) cancer: RILOMET- 1 study. J Clin Oncol 2015;33:4000., phase III study.J. Clin. Oncol.2014322039204910.1200/JCO.2013.53.6136
    [Google Scholar]
  115. CunninghamD. TebbuttN.C. DavidenkoI. MuradA.M. Al-BatranS-E. IlsonD.H. TjulandinS. GotovkinE. KaraszewskaB. BondarenkoI. TejaniM.A. UdreaA.A. TehfeM.A. BakerN. OlinerK.S. ZhangY. HoangT. SidhuR. CatenacciD.V.T. Phase III, randomized, double-blind, multicenter, placebo (P)-controlled trial of rilotumumab (R) plus epirubicin, cisplatin and capecitabine (ECX) as first-line therapy in patients (pts) with advanced MET-positive (pos) gastric or gastroesophageal junction (G/GEJ) cancer: RILOMET-1 study.J. Clin. Oncol.20153315_suppl400010.1200/jco.2015.33.15_suppl.4000
    [Google Scholar]
  116. ShahM.A. BangY.J. LordickF. TaberneroJ. ChenM. HackS.P. PhanS-C. ShamesD.S. CunninghamD. METGastric: A phase III study of onartuzumab plus mFOLFOX6 in patients with metastatic HER2-negative (HER2-) and MET-positive (MET+) adenocarcinoma of the stomach or gastroesophageal junction (GEC).J. Clin. Oncol.20153315_suppl401210.1200/jco.2015.33.15_suppl.4012
    [Google Scholar]
  117. PectasidesE. Genomic alterations and targeted therapy in gastric and esophageal adenocarcinoma.Clin. Ther.20163871589159910.1016/j.clinthera.2016.03.016
    [Google Scholar]
  118. NordstromJ.L. GorlatovS. ZhangW. YangY. HuangL. BurkeS. LiH. CiccaroneV. ZhangT. StavenhagenJ. KoenigS. StewartS.J. MooreP.A. JohnsonS. BonviniE. Anti-tumor activity and toxicokinetics analysis of MGAH22, an anti-HER2 monoclonal antibody with enhanced Fcγ receptor binding properties.Breast Cancer Res.2011136R12310.1186/bcr3069
    [Google Scholar]
  119. ShindeA. LiR. AminiA. GlaserS. Can immunotherapy replace radiotherapy in melanoma brain metastases?J. Clin. Oncol.201937121030103110.1200/JCO.18.01982
    [Google Scholar]
  120. BangY.J. GiacconeG. ImS.A. OhD.Y. BauerT.M. NordstromJ.L. LiH. ChichiliG.R. MooreP.A. HongS. StewartS.J. BaughmanJ.E. LechleiderR.J. BurrisH.A. First-in-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors.Ann. Oncol.201728485586110.1093/annonc/mdx002
    [Google Scholar]
  121. CatenacciD.V.T. KangY-K. ParkH. UronisH.E. LeeK-W. NgM.C.H. EnzingerP.C. ParkS.H. GoldP.J. LacyJ. HochsterH.S. OhS.C. KimY.H. MarroneK.A. KellyR.J. JuergensR.A. KimJ.G. BendellJ.C. AlcindorT. SymS.J. SongE-K. CheeC.E. ChaoY. KimS. LockhartA.C. KnutsonK.L. YenJ. FranovicA. NordstromJ.L. LiD. WiggintonJ. Davidson-MoncadaJ.K. RosalesM.K. BangY-J. Margetuximab plus pembrolizumab in patients with previously treated, HER2-positive gastro-oesophageal adenocarcinoma (CP-MGAH22–05): a single-arm, phase 1b–2 trial.Lancet Oncol.20202181066107610.1016/S1470‑2045(20)30326‑0
    [Google Scholar]
  122. CatenacciD.V.T. KangY-K. YoonH.H. ShimB.Y. KimS.T. OhD-Y. SpiraA.I. UlahannanS.V. AveryE.J. BolandP.M. ChaoJ. ChungH.C. GardnerF. KlempnerS.J. LeeK-W. OhS.C. PegueroJ. SonbolM.B. ShenL. MoehlerM. SunJ. LiD. RosalesM.K. ParkH. Margetuximab with retifanlimab as first-line therapy in HER2+/PD-L1+ unresectable or metastatic gastroesophageal adenocarcinoma: MAHOGANY cohort A.ESMO Open20227510056310.1016/j.esmoop.2022.100563
    [Google Scholar]
  123. KuG. ElimovaE. DenlingerC.S. MehtaR. LeeK-W. IqbalS. KangY-K. OhD-Y. RhaS.Y. KimY.H. SeolY.M. MwathaT. GrimJ. AjaniJ.A. 1380P Phase (Ph) II study of zanidatamab + chemotherapy (chemo) in first-line (1L) HER2 expressing gastroesophageal adenocarcinoma (GEA).Ann. Oncol.202132S1044S104510.1016/j.annonc.2021.08.1489
    [Google Scholar]
  124. TaberneroJ. ShenL. ElimovaE. KuG. LiuT. ShitaraK. LinX. BoykenL. LiH. GrimJ. AjaniJ. HERIZON-GEA-01: Zanidatamab + chemo ± tislelizumab for 1L treatment of HER2-positive gastroesophageal adenocarcinoma.Future Oncol.202218293255326610.2217/fon‑2022‑0595
    [Google Scholar]
  125. ZhangJ. JiD. CaiL. YaoH. YanM. WangX. ShenW. DuY. PangH. LaiX. ZengH. HuangJ. SunY. PengX. XuJ. YangJ. YangF. XuT. HuX. First-in-human HER2-targeted bispecific antibody KN026 for the treatment of patients with HER2-positive metastatic breast cancer: results from a phase I Study.Clin. Cancer Res.202228461862810.1158/1078‑0432.CCR‑21‑2827
    [Google Scholar]
  126. XuJ. LiuR. YingJ. WuJ. YeF. XuN. ZhangY. ZhaoR. XiangX. WangJ. LinX. XuH. GaoS. LuoS.X. GuoB. LiX. SuY. WangQ. A phase II study evaluating KN026 monotherapy in patients (pts) with previously treated, advanced HER2-expressing gastric or gastroesophageal junction cancers (GC/GEJC).J. Clin. Oncol.20224016_supplSuppl.4040404010.1200/JCO.2022.40.16_suppl.4040
    [Google Scholar]
  127. ShenL. 1210P The preliminary efficacy and safety of KN026 combined with KN046 treatment in HER2-positive locally advanced unresectable or metastatic gastric/gastroesophageal junction cancer without prior systemic treatment in a phase II study.Ann. Oncol.202233S110210.1016/j.annonc.2022.07.1328
    [Google Scholar]
  128. KulukianA. LeeP. TaylorJ. RoslerR. de VriesP. WatsonD. Forero-TorresA. PetersonS. Preclinical activity of HER2-selective tyrosine kinase inhibitor tucatinib as a single agent or in combination with trastuzumab or docetaxel in solid tumor models.Mol. Cancer Ther.202019497698710.1158/1535‑7163.MCT‑19‑0873
    [Google Scholar]
  129. CatenacciD.V.T. StricklerJ.H. NakamuraY. ShitaraK. JanjigianY.Y. BarziA. Bekaii-SaabT.S. LenzH-J. ChungH.C.C. TaberneroJ. YoshinoT. SienaS. MayorJ.G. Palanca-WesselsM.C. XieD. MarshallJ. MOUNTAINEER-02: Phase 2/3 study of tucatinib, trastuzumab, ramucirumab, and paclitaxel in previously treated HER2+ gastric or gastroesophageal junction adenocarcinoma—Trial in progress.J. Clin. Oncol.2022404_supplSuppl.TPS37110.1200/JCO.2022.40.4_suppl.TPS371
    [Google Scholar]
  130. WuX. HuangS. HER2-specific chimeric antigen receptor-engineered natural killer cells combined with apatinib for the treatment of gastric cancer.Bull. Cancer20191061194695810.1016/j.bulcan.2019.03.012
    [Google Scholar]
  131. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑5
    [Google Scholar]
  132. CasakS.J. Fashoyin-AjeI. LemeryS.J. ZhangL. JinR. LiH. ZhaoL. ZhaoH. ZhangH. ChenH. HeK. DoughertyM. NovakR. KennettS. KhasarS. HelmsW. KeeganP. PazdurR. FDA approval summary: ramucirumab for gastric cancer.Clin. Cancer Res.201521153372337610.1158/1078‑0432.CCR‑15‑0600
    [Google Scholar]
  133. FuchsC.S. TomasekJ. YongC.J. DumitruF. PassalacquaR. GoswamiC. SafranH. dos SantosL.V. AprileG. FerryD.R. MelicharB. TehfeM. TopuzovE. ZalcbergJ.R. ChauI. CampbellW. SivanandanC. PikielJ. KoshijiM. HsuY. LiepaA.M. GaoL. SchwartzJ.D. TaberneroJ. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial.Lancet20143839911313910.1016/S0140‑6736(13)61719‑5
    [Google Scholar]
  134. WilkeH. MuroK. Van CutsemE. OhS-C. BodokyG. ShimadaY. HironakaS. SugimotoN. LipatovO. KimT-Y. CunninghamD. RougierP. KomatsuY. AjaniJ. EmigM. CarlesiR. FerryD. ChandrawansaK. SchwartzJ.D. OhtsuA. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial.Lancet Oncol.201415111224123510.1016/S1470‑2045(14)70420‑6
    [Google Scholar]
  135. XuR.H. ZhangY. PanH. FengJ. ZhangT. LiuT. QinY. QinS. YinX. LiuB. BaY. YangN. VoonP.J. TanasanvimonS. ZhouC. ZhangW.L. ShenL. Efficacy and safety of weekly paclitaxel with or without ramucirumab as second-line therapy for the treatment of advanced gastric or gastroesophageal junction adenocarcinoma (RAINBOW-Asia): a randomised, multicentre, double-blind, phase 3 trial.Lancet Gastroenterol. Hepatol.20216121015102410.1016/S2468‑1253(21)00313‑7
    [Google Scholar]
  136. FuchsC.S. ShitaraK. Di BartolomeoM. LonardiS. Al-BatranS-E. Van CutsemE. IlsonD.H. AlsinaM. ChauI. LacyJ. DucreuxM. MendezG.A. AlavezA.M. TakahariD. MansoorW. EnzingerP.C. GorbounovaV. WainbergZ.A. Hegewisch-BeckerS. FerryD. LinJ. CarlesiR. DasM. ShahM.A. LuftA.V. KarasevaN.A. KowalyszynR.D. HernandezC.A. CsosziT. De VitaF. PfeifferP. SugimotoN. KocsisJ. CsillaA. BodokyG. Garnica JaliffeG. ProtsenkoS. MadiA. WojcikE. BrennerB. FolprechtG. SarosiekT. PeltolaK.J. BonoP. AyalaH. AprileG. GerardoC.G. Huitzil MelendezF.D. FalconeA. Di CostanzoF. TehfeM. MineurL. García AlfonsoP. ObermannovaR. SenellartH. PettyR. SamuelL. AcsP.I. HusseinM.A. NechaevaM.N. ErdkampF.L.G. WonE. BendellJ.C. Gallego PlazasJ. LorenzenS. MelicharB. EscuderoM.A. PezetD. PhelipJ-M. KaenD.L. ReevesJ.A.J. Longo MuñozF. MadhusudanS. BaroneC. FeinL.E. Gomez VillanuevaA. HebbarM. PrausovaJ. Visa TurmoL. Vidal BarrullJ. YilmazM.K.N. BenyA. Van LaarhovenH.M.W. DiCarloB.A. EsakiT. FujitaniK. GeboesK. GevaR. KadowakiS. LeongS. MachidaN. RajM.S. Ramirez GodinezF.J. RuzsaA. FordH. LawlerW.E. MaiseyN.R. PeteraJ. Shacham-ShmueliE. SinapiI. YamaguchiK. HaraH. BeckJ.T. Błasińska-MorawiecM. Villalobos ValenciaR. AlcindorT. BajajM. BerryS. GomezC.M. DammrichD. PatelR. TaiebJ. Ten TijeA.J. BurkesR.L. CabanillasF. FirdausI. ChuaC.C. HironakaS. HofheinzR-D. LimH.J. NordsmarkM. PikoB. VermaU. WadsleyJ. YukisawaS. Gutiérrez DelgadoF. DenlingerC.S. KallioR. PikielJ. Wojcik-TomaszewskaJ. Brezden-MasleyC. JangR.W-J. PribylovaJ. SakaiD. BartoliM.A. CatsA. GrootscholtenM.I. DichmannR.A. HoolH. ShaibW. TsujiA. Van den EyndeM. Velez-CortezH. AsmisT.R. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): a double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Oncol.201920342043510.1016/S1470‑2045(18)30791‑5
    [Google Scholar]
  137. OhtsuA. ShahM.A. Van CutsemE. RhaS.Y. SawakiA. ParkS.R. LimH.Y. YamadaY. WuJ. LangerB. StarnawskiM. KangY-K. Bevacizumab in combination with chemotherapy as first- line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study.J. Clin. Oncol.201129303968397610.1200/JCO.2011.36.2236
    [Google Scholar]
  138. PavlakisN. ShitaraK. SjoquistK.M. MartinA.J. JaworskiA. YipS. BangY-J. AlcindorT. O’CallaghanC.J. TebbuttN.C. StricklandA. RhaS.Y. LeeK-W. ZalcbergJ.R. PriceT.J. SimesJ. GoldsteinD. INTEGRATE IIa: A randomised, double-blind, phase III study of regorafenib versus placebo in refractory advanced gastro-oesophageal cancer (AGOC)—A study led by the Australasian Gastro-intestinal Trials Group (AGITG).J. Clin. Oncol.2023414_supplLBA29410.1200/JCO.2023.41.4_suppl.LBA294
    [Google Scholar]
  139. FukuokaS. HaraH. TakahashiN. KojimaT. KawazoeA. AsayamaM. YoshiiT. KotaniD. TamuraH. MikamotoY. HiranoN. WakabayashiM. NomuraS. SatoA. KuwataT. TogashiY. NishikawaH. ShitaraK. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase ib trial (REGONIVO, EPOC1603).J. Clin. Oncol.202038182053206110.1200/JCO.19.03296
    [Google Scholar]
  140. KawazoeA. FukuokaS. NakamuraY. KubokiY. WakabayashiM. NomuraS. MikamotoY. ShimaH. FujishiroN. HiguchiT. SatoA. KuwataT. ShitaraK. Lenvatinib plus pembrolizumab in patients with advanced gastric cancer in the first-line or second-line setting (EPOC1706): an open-label, single-arm, phase 2 trial.Lancet Oncol.20202181057106510.1016/S1470‑2045(20)30271‑0
    [Google Scholar]
  141. LiJ. QinS. XuJ. XiongJ. WuC. BaiY. LiuW. TongJ. LiuY. XuR. WangZ. WangQ. OuyangX. YangY. BaY. LiangJ. LinX. LuoD. ZhengR. WangX. SunG. WangL. ZhengL. GuoH. WuJ. XuN. YangJ. ZhangH. ChengY. WangN. ChenL. FanZ. SunP. YuH. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junc- tion.J. Clin. Oncol.201634131448145410.1200/JCO.2015.63.5995
    [Google Scholar]
  142. KangY.K. KangW.K. Di BartolomeoM. ChauI. YoonH.H. CascinuS. RyuM-H. KimJ.G. LeeK-W. OhS.C. TakashimaA. KryzhanivskaA. ChaoY. VladimirovV. EvesqueL. SchenkerM. McGinnA. SankarN. WyrwiczL. BokuN. Randomized phase III ANGEL study of rivoceranib (apatinib) + best supportive care (BSC) vs placebo + BSC in patients with advanced/metastatic gastric cancer who failed ≥2 prior chemotherapy regimens.Ann. Oncol.201930v877v87810.1093/annonc/mdz394.034
    [Google Scholar]
  143. ZhangY. A phase Ib/II study of fruquintinib in combination with paclitaxel as the second-line therapy for advanced gastric cancer.Cancer Commun.2022431150153
    [Google Scholar]
  144. LuoH. XuG. LiC. HeL. LuoL. WangZ. JingB. DengY. JinY. LiY. LiB. TanW. HeC. SeeruttunS.R. WuQ. HuangJ. HuangD. ChenB. LinS. ChenQ. YuanC. ChenH. PuH. ZhouF. HeY. XuR. TangY. MaD. YinX. DengY. YuanY. LiM. HuW. ChenD. LiG. LiuQ. TanP. FanS. ShiM. SuW. XuR.H. Real-time artificial intelligence for detection of upper gastrointestinal cancer by endoscopy: a multicentre, case-control, diagnostic study.Lancet Oncol.201920121645165410.1016/S1470‑2045(19)30637‑0
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096333058241114064802
Loading
/content/journals/ccdt/10.2174/0115680096333058241114064802
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test