Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Cancer is a global health issue that requires ongoing therapeutic advances. This review provides an overview of recent treatment strategies focusing on novel pathways in cancer therapy. Emerging research has unveiled promising targets that go beyond traditional modalities, offering new avenues for precision medicine and improved patient outcomes. One key area of innovation lies in targeted therapies directed at specific molecular pathways implicated in cancer progression. The identification of novel biomarkers has paved the way for the development of precision medicines tailored to individual patient profiles. Immunotherapy has also revolutionised cancer treatment by using the immune system to identify and remove cancer cells.

Moreover, advancements in epigenetic therapies and RNA-based interventions demonstrate unprecedented potential in modulating gene expression and disrupting cancer-specific signalling pathways. We have discussed the pathophysiology of cancer, different immune checkpoint inhibitors, and targeted therapies in signalling therapies. The epigenetic modulators, such as Histone deacetylase (HDACs) inhibitors and DNA methyltransferase (DNMT) inhibitors, were studied. Recent breakthroughs in cancer immunotherapy treatment (CAR-T) cell therapy showcase the potential to enhance the immune response against various cancers; thus, related information was incorporated. RNA-based therapies like RNA interference and mRNA-based vaccines and therapies, combination therapies, and novel therapies were discussed in the present article.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096312603240709112520
2024-07-25
2025-10-11
Loading full text...

Full text loading...

References

  1. YipH.Y.K. PapaA. Signaling pathways in cancer: Therapeutic targets, combinatorial treatments, and new developments.Cells202110365910.3390/cells1003065933809714
    [Google Scholar]
  2. ShamsM. AbdallahS. AlsadounL. HamidY.H. GasimR. HassanA. Oncological horizons: The synergy of medical and surgical innovations in cancer treatment.Cureus20231511e4924910.7759/cureus.4924938143618
    [Google Scholar]
  3. AnandU. DeyA. ChandelA.K.S. SanyalR. MishraA. PandeyD.K. De FalcoV. UpadhyayA. KandimallaR. ChaudharyA. DhanjalJ.K. DewanjeeS. VallamkonduJ. Pérez de la LastraJ.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics.Genes Dis.20231041367140110.1016/j.gendis.2022.02.00737397557
    [Google Scholar]
  4. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/2050312121103436634408877
    [Google Scholar]
  5. Baccili Cury MegidT. FarooqA.R. WangX. ElimovaE. Gastric cancer: Molecular mechanisms, novel targets, and immunotherapies: From bench to clinical therapeutics.Cancers20231520507510.3390/cancers1520507537894443
    [Google Scholar]
  6. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: from T cell basic science to clinical practice.Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑532433532
    [Google Scholar]
  7. Hiam-GalvezK.J. AllenB.M. SpitzerM.H. Systemic immunity in cancer.Nat. Rev. Cancer202121634535910.1038/s41568‑021‑00347‑z33837297
    [Google Scholar]
  8. KeX. ShenL. Molecular targeted therapy of cancer: The progress and future prospect.Frontiers in Laboratory Medicine201712697510.1016/j.flm.2017.06.001
    [Google Scholar]
  9. WaartsM.R. StonestromA.J. ParkY.C. LevineR.L. Targeting mutations in cancer.J. Clin. Invest.20221328e15494310.1172/JCI15494335426374
    [Google Scholar]
  10. ChoiH.Y. ChangJ.E. Targeted therapy for cancers: From ongoing clinical trials to FDA-approved drugs.Int. J. Mol. Sci.202324171361810.3390/ijms24171361837686423
    [Google Scholar]
  11. MinH.Y. LeeH.Y. Molecular targeted therapy for anticancer treatment.Exp. Mol. Med.202254101670169410.1038/s12276‑022‑00864‑336224343
    [Google Scholar]
  12. SharmaS. KellyT.K. JonesP.A. Epigenetics in cancer.Carcinogenesis2010311273610.1093/carcin/bgp22019752007
    [Google Scholar]
  13. BaylinS.B. JonesP.A. Epigenetic determinants of cancer.Cold Spring Harb. Perspect. Biol.201689a01950510.1101/cshperspect.a01950527194046
    [Google Scholar]
  14. OdegaardJ.I. ChawlaA. Genetic Changes NIH public access.Bone20082311710.1111/j.1399‑0004.2011.01809.x.Epigenetic
    [Google Scholar]
  15. YanX. TianX. WuZ. HanW. Impact of age on the efficacy of immune checkpoint inhibitor-based combination therapy for non-small-cell lung cancer: A systematic review and meta-analysis.Front. Oncol.202010167110.3389/fonc.2020.0167133072551
    [Google Scholar]
  16. HouC. WangZ. LuX. Impact of immunosenescence and inflammaging on the effects of immune checkpoint inhibitors.Cancer Pathogenesis and Therapy202421243010.1016/j.cpt.2023.08.00138328711
    [Google Scholar]
  17. FröhlichE. WahlR. Thyroid autoimmunity: Role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases.Front. Immunol.20178MAY52110.3389/fimmu.2017.0052128536577
    [Google Scholar]
  18. IranzoP. CallejoA. AssafJ.D. MolinaG. LopezD.E. Garcia-IllescasD. PardoN. NavarroA. Martinez-MartiA. CedresS. CarbonellC. FrigolaJ. AmatR. FelipE. Overview of checkpoint inhibitors mechanism of action: Role of immune-related adverse events and their treatment on progression of underlying cancer.Front. Med.20229May87597410.3389/fmed.2022.87597435707528
    [Google Scholar]
  19. D’AngeloS.P. MahoneyM.R. Van TineB.A. AtkinsJ. MilhemM.M. JahagirdarB.N. AntonescuC.R. HorvathE. TapW.D. SchwartzG.K. StreicherH. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, randomised, phase 2 trials.Lancet Oncol.201819341642610.1016/S1470‑2045(18)30006‑829370992
    [Google Scholar]
  20. WagnerM.J. OthusM. PatelS.P. RyanC. SangalA. PowersB. BuddG.T. VictorA.I. HsuehC.T. ChughR. NairS. LeuK.M. AgulnikM. SharonE. MayersonE. PletsM. BlankeC. StreicherH. ChaeY.K. KurzrockR. Multicenter phase II trial (SWOG S1609, cohort 51) of ipilimumab and nivolumab in metastatic or unresectable angiosarcoma: A substudy of dual anti-CTLA-4 and anti-PD-1 blockade in rare tumors (DART).J. Immunother. Cancer202198e00299010.1136/jitc‑2021‑00299034380663
    [Google Scholar]
  21. AnastasiouM. Immune checkpoint inhibitors in sarcomas: A systematic review.Immunooncol Technol20232010040710.1016/j.iotech.2023.100407
    [Google Scholar]
  22. PatnaikE. MaduC. LuY. Epigenetic modulators as therapeutic agents in cancer.Int. J. Mol. Sci.202324191496410.3390/ijms24191496437834411
    [Google Scholar]
  23. ThompsonD. LawrentschukN. BoltonD. New approaches to targeting epigenetic regulation in bladder cancer.Cancers2023156185610.3390/cancers1506185636980741
    [Google Scholar]
  24. DaiE. ZhuZ. WahedS. QuZ. StorkusW.J. GuoZ.S. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy.Mol. Cancer202120117110.1186/s12943‑021‑01464‑x34930302
    [Google Scholar]
  25. LuoY. LiH. Structure-based inhibitor discovery of class i histone deacetylases (HDACS).Int. J. Mol. Sci.20202122882810.3390/ijms2122882833266366
    [Google Scholar]
  26. YangF. ZhaoN. GeD. ChenY. Next-generation of selective histone deacetylase inhibitors.RSC Advances2019934195711958310.1039/C9RA02985K35519364
    [Google Scholar]
  27. RoperoS. EstellerM. The role of histone deacetylases (HDACs) in human cancer.Mol. Oncol.200711192510.1016/j.molonc.2007.01.00119383284
    [Google Scholar]
  28. GuoR. LiJ. HuJ. FuQ. YanY. XuS. WangX. JiaoF. Combination of epidrugs with immune checkpoint inhibitors in cancer immunotherapy: From theory to therapy.Int. Immunopharmacol.2023120April11041710.1016/j.intimp.2023.11041737276826
    [Google Scholar]
  29. ShenC. LiM. DuanY. JiangX. HouX. XueF. ZhangY. LuoY. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma.Front. Immunol.202314May117020710.3389/fimmu.2023.117020737304265
    [Google Scholar]
  30. BallB. ZeidanA. GoreS.D. PrebetT. Hypomethylating agent combination strategies in myelodysplastic syndromes: Hopes and shortcomings.Leuk. Lymphoma20175851022103610.1080/10428194.2016.122892727654579
    [Google Scholar]
  31. JinB. RobertsonKD. DNA methyltransferases, DNA damage repair, and cancer.Adv. Exp. Med. Biol.201375432910.1007/978‑1‑4419‑9967‑2
    [Google Scholar]
  32. BillamM. SobolewskiMD. DavidsonNE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells.Breast Cancer Res. Treat.2010Apr1203581592
    [Google Scholar]
  33. LuY. ChanY.T. TanH.Y. LiS. WangN. FengY. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy.Mol. Cancer20201917910.1186/s12943‑020‑01197‑332340605
    [Google Scholar]
  34. Montalvo-CasimiroM. González-BarriosR. Meraz-RodriguezM.A. Juárez-GonzálezV.T. Arriaga-CanonC. HerreraL.A. Epidrug repurposing: Discovering new faces of old acquaintances in cancer therapy.Front. Oncol.202010November60538610.3389/fonc.2020.60538633312959
    [Google Scholar]
  35. EsmaeilzadehA. TahmasebiS. ShamsadinS. Chimeric antigen receptor -T cell therapy: Applications and challenges in treatment of allergy and asthma.Biomed. Pharmacother.201912310968510.1016/j.biopha.2019.109685
    [Google Scholar]
  36. Kankeu FonkouaL.A. SirpillaO. SakemuraR. SieglerE.L. KenderianS.S. CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities.Mol. Ther. Oncolytics202225697710.1016/j.omto.2022.03.00935434273
    [Google Scholar]
  37. ZhangX. ZhuL. ZhangH. ChenS. XiaoY. CAR-T cell therapy in hematological malignancies: Current opportunities and challenges.Front. Immunol.202213June92715310.3389/fimmu.2022.92715335757715
    [Google Scholar]
  38. DaiH. WangY. LuX. HanW. Chimeric antigen receptors modified T-cells for cancer therapy.J. Natl. Cancer Inst.20161087djv43910.1093/jnci/djv43926819347
    [Google Scholar]
  39. MehrabadiA.Z. RanjbarR. FarzanehpourM. ShahriaryA. DorostkarR. HamidinejadM.A. GhalehH.E.G. Therapeutic potential of CAR T cell in malignancies: A scoping review.Biomed. Pharmacother.202214611251210.1016/j.biopha.2021.11251234894519
    [Google Scholar]
  40. FujiwaraK. TsuneiA. KusabukaH. OgakiE. TachibanaM. Hinge and transmembrane domains of chimeric antigen receptor regulate receptor expression and signaling threshold.Cells2020951182
    [Google Scholar]
  41. FåneA. MyhreM.R. InderbergE.M. WälchliS. In vivo experimental mouse model to test CD19CAR T cells generated with different methods.Methods Cell Biol.202216714916110.1016/bs.mcb.2021.11.00135152992
    [Google Scholar]
  42. Balke-WantH. KeerthiV. Cadinanos-GaraiA. FowlerC. GkitsasN. BrownA.K. TunuguntlaR. Abou-el-EneinM. FeldmanS.A. Non-viral chimeric antigen receptor (CAR) T cells going viral.Immuno-Oncology and Technology202318C10037510.1016/j.iotech.2023.10037537124148
    [Google Scholar]
  43. HonikelM. M. OlejniczakS. H. Co-stimulatory receptor signaling in CAR-T cells.Biomolecules2022129130310.3390/biom12091303
    [Google Scholar]
  44. ZhangC. LiuJ. ZhongJ.F. ZhangX. Engineering CAR-T cells.Biomark. Res.2017512210.1186/s40364‑017‑0102‑y28652918
    [Google Scholar]
  45. DeyA. GhoshS. JhaS. HazraS. SrivastavaN. ChakrabortyU. RoyA.G. Recent advancement in breast cancer treatment using CAR T cell therapy:- A review.Advances in Cancer Biology - Metastasis2023710009010.1016/j.adcanc.2023.100090
    [Google Scholar]
  46. Daei SorkhabiA. Mohamed KhosroshahiL. SarkeshA. MardiA. Aghebati-MalekiA. Aghebati-MalekiL. BaradaranB. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies.Front. Immunol.202314March111388210.3389/fimmu.2023.111388237020537
    [Google Scholar]
  47. SternerR.C. SternerR.M. CAR-T cell therapy: Current limitations and potential strategies.Blood Cancer J.20211146910.1038/s41408‑021‑00459‑733824268
    [Google Scholar]
  48. AlnefaieA. AlbogamiS. AsiriY. AhmadT. AlotaibiS.S. Al-SaneaM.M. AlthobaitiH. Chimeric antigen receptor T-cells: An overview of concepts, applications, limitations, and proposed solutions.Front. Bioeng. Biotechnol.202210June79744010.3389/fbioe.2022.79744035814023
    [Google Scholar]
  49. VelascoR. MussettiA. Villagrán-garcíaM. SuredaA. CAR T-cell-associated neurotoxicity in central nervous system hematologic disease: Is it still a concern?Front. Neurol.202314114441410.3389/fneur.2023.1144414
    [Google Scholar]
  50. HoltzmanN.G. XieH. BentzenS. KesariV. BukhariA. El ChaerF. LutfiF. SiglinJ. HutnickE. GahresN. RuehleK. AhmadH. ShanholtzC. KocogluM.H. BadrosA.Z. YaredJ.A. HardyN.M. RapoportA.P. DahiyaS. Immune effector cell–associated neurotoxicity syndrome after chimeric antigen receptor T-cell therapy for lymphoma: Predictive biomarkers and clinical outcomes.Neuro-oncol.202123111212110.1093/neuonc/noaa18332750704
    [Google Scholar]
  51. CappellK.M. KochenderferJ.N. Long-term outcomes following CAR T cell therapy: what we know so far.Nat. Rev. Clin. Oncol.202320635937110.1038/s41571‑023‑00754‑1
    [Google Scholar]
  52. LibertiM.V. LocasaleJ.W. The warburg effect: How does it benefit cancer cells?Trends Biochem. Sci.201641321121810.1016/j.tibs.2015.12.00126778478
    [Google Scholar]
  53. BaiR. MengY. CuiJ. Therapeutic strategies targeting metabolic characteristics of cancer cells.Crit. Rev. Oncol. Hematol.2023187May10403710.1016/j.critrevonc.2023.10403737236409
    [Google Scholar]
  54. AgrawalN. DasaradhiP.V.N. MohmmedA. MalhotraP. BhatnagarR.K. MukherjeeS.K. RNA interference: Biology, mechanism, and applications.Microbiol. Mol. Biol. Rev.200367465768510.1128/MMBR.67.4.657‑685.200314665679
    [Google Scholar]
  55. WilsonR.C. DoudnaJ.A. Molecular mechanisms of RNA interference.Annu. Rev. Biophys.201342121723910.1146/annurev‑biophys‑083012‑13040423654304
    [Google Scholar]
  56. YingS.Y. ChangD.C. LinS.L. The microRNA (miRNA): Overview of the RNA genes that modulate gene function.Mol. Biotechnol.200838325726810.1007/s12033‑007‑9013‑817999201
    [Google Scholar]
  57. LavenniahA. LuuT.D.A. LiY.P. LimT.B. JiangJ. Ackers-JohnsonM. FooR.S.Y. Engineered circular RNA sponges act as miRNA inhibitors to attenuate pressure overload-induced cardiac hypertrophy.Mol. Ther.20202861506151710.1016/j.ymthe.2020.04.00632304667
    [Google Scholar]
  58. ZhuY. ZhuL. WangX. JinH. RNA-based therapeutics: An overview and prospectus.Cell Death Dis.202213764410.1038/s41419‑022‑05075‑2
    [Google Scholar]
  59. JainS. VenkataramanA. WechslerM.E. PeppasN.A. Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic.Adv. Drug Deliv. Rev.202117911400010.1016/j.addr.2021.11400034637846
    [Google Scholar]
  60. ZhangG. TangT. ChenY. HuangX. LiangT. mRNA vaccines in disease prevention and treatment.Signal Transduct. Target. Ther.20238136510.1038/s41392‑023‑01579‑137726283
    [Google Scholar]
  61. HoebenA. JoostenE.A.J. van den Beuken-van EverdingenM.H.J. Personalized medicine: Recent progress in cancer therapy.Cancers202113224210.3390/cancers1302024233440729
    [Google Scholar]
  62. HoebenA. JoostenE.A.J. EverdingenM.H.J.V.D.B. Personalized medicine: Recent progress in cancer therapy.Cancers20201241009
    [Google Scholar]
  63. SankarK. YeJ.C. LiZ. ZhengL. SongW. Hu-LieskovanS. The role of biomarkers in personalized immunotherapy.Biomark. Res.20221013210.1186/s40364‑022‑00378‑035585623
    [Google Scholar]
  64. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑036344672
    [Google Scholar]
  65. IqbalN. IqbalN. Human epidermal growth factor receptor 2 (HER2) in cancers: Overexpression and therapeutic implications.Mol. Biol. Int.201420141910.1155/2014/85274825276427
    [Google Scholar]
  66. ToK.K.W. FongW. ChoW.C.S. Immunotherapy in treating EGFR-mutant lung cancer: Current challenges and new strategies.Front. Oncol.202111May63500710.3389/fonc.2021.63500734113560
    [Google Scholar]
  67. BellioH. FumetJ.D. GhiringhelliF. Targeting BRAF and RAS in colorectal cancer.Cancers2021139220110.3390/cancers1309220134063682
    [Google Scholar]
  68. AzizianA. RühlmannF. KrauseT. BernhardtM. JoP. KönigA. KleißM. LehaA. GhadimiM. GaedckeJ. CA19-9 for detecting recurrence of pancreatic cancer.Sci. Rep.2020101133210.1038/s41598‑020‑57930‑x31992753
    [Google Scholar]
  69. CharkhchiP. CybulskiC. GronwaldJ. WongF.O. NarodS.A. AkbariM.R. Ca125 and ovarian cancer: A comprehensive review.Cancers20201212373010.3390/cancers1212373033322519
    [Google Scholar]
  70. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  71. BabarQ. SaeedA. TabishT.A. PriclS. TownleyH. ThoratN. Novel epigenetic therapeutic strategies and targets in cancer.Biochim. Biophys. Acta Mol. Basis Dis.202218681216655210.1016/j.bbadis.2022.16655236126898
    [Google Scholar]
  72. ProchaskaJ. BenowitzN. Neonatal rat myocardial extraction HHS Public Access.Physiol. Behav.20161761100106
    [Google Scholar]
  73. SoizaR.L. DonaldsonA.I.C. MyintP.K. Vaccine against arteriosclerosis: An update.Ther. Adv. Vaccines20189625926110.1177/https
    [Google Scholar]
  74. DasC.K. SinghS.K. Immune checkpoint inhibitors in cancer therapy: A ray of hope.Biomed. Transl. Res. From Dis. Diagnosis to Treat.202239341110.1007/978‑981‑16‑8845‑4_20
    [Google Scholar]
  75. WangX. ZhangX. QiuC. YangN. STAT3 contributes to radioresistance in cancer.Front. Oncol.202010July112010.3389/fonc.2020.0112032733808
    [Google Scholar]
  76. DongY. ChenJ. ChenY. LiuS. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing.Biomed. Pharmacother.202316711551310.1016/j.biopha.2023.115513
    [Google Scholar]
  77. HuangS. van DuijnhovenS.M.J. SijtsA.J.A.M. van ElsasA. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy.J. Cancer Res. Clin. Oncol.2020146123111312210.1007/s00432‑020‑03404‑632989604
    [Google Scholar]
  78. YunW.S. KimJ. LimD.K. KimD.H. JeonS.I. KimK. Recent studies and progress in the intratumoral administration of nano-sized drug delivery systems.Nanomaterials20231315222510.3390/nano1315222537570543
    [Google Scholar]
  79. BurkettB.J. BartlettD.J. McGarrahP.W. LewisA.R. JohnsonD.R. BerberoğluK. PandeyM.K. PackardA.T. HalfdanarsonT.R. HruskaC.B. JohnsonG.B. KendiA.T. A review of theranostics: Perspectives on emerging approaches and clinical advancements.Radiol. Imaging Cancer202354e22015710.1148/rycan.22015737477566
    [Google Scholar]
  80. LadrièreT. FaudemerJ. LevigoureuxE. PeyronnetD. DesmontsC. VigneJ. Safety and therapeutic optimization of lutetium-177 based radiopharmaceuticals.Pharmaceutics2023154124010.3390/pharmaceutics1504124037111725
    [Google Scholar]
  81. AggarwalD. YangJ. SalamM.A. SenguptaS. Al-AminM.Y. MustafaS. KhanM.A. HuangX. PawarJ.S. Antibody-drug conjugates: The paradigm shifts in the targeted cancer therapy.Front. Immunol.202314120307310.3389/fimmu.2023.120307337671162
    [Google Scholar]
  82. NajjarM.K. ManoreS.G. ReguaA.T. LoH.W. Antibody-drug conjugates for the treatment of HER2-positive breast cancer.Genes20221311206510.3390/genes1311206536360302
    [Google Scholar]
  83. EmmettL. WillowsonK. VioletJ. ShinJ. BlanksbyA. LeeJ. Lutetium 177 PSMA radionuclide therapy for men with prostate cancer: A review of the current literature and discussion of practical aspects of therapy.J. Med. Radiat. Sci.2017641526010.1002/jmrs.22728303694
    [Google Scholar]
  84. ClementD. NavalkissoorS. SrirajaskanthanR. CourbonF. DierickxL. EcclesA. LewingtonV. MitjavilaM. PercovichJ.C. LequoyB. HeB. FolitarI. RamageJ. Efficacy and safety of 177Lu‑DOTATATE in patients with advanced pancreatic neuroendocrine tumours: Data from the NETTER-R international, retrospective study.Eur. J. Nucl. Med. Mol. Imaging202249103529353710.1007/s00259‑022‑05771‑335389069
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096312603240709112520
Loading
/content/journals/ccdt/10.2174/0115680096312603240709112520
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test