Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Metastasis is one of the key concepts in modern oncology, which connects the movement of cancer cells in the body with changes in their characteristics and functions. The review examines the main aspects of metastasis, including theories, facts and discoveries that help to better understand this phenomenon and develop new approaches to its treatment. In this article, we also proposed the theory of cell fusion with the formation of hybrid cells as one of the factors of metastasis. We believe that the fusion of tumor cells with other types of motile cells (leukocytes and bone marrow progenitor cells) may represent an additional mechanism of tumor spread. Cells of bone marrow origin, including cells of the myeloid and macrophage lineages, are the best candidates for heterotypic fusion in regenerative conditions. Events such as cell fusion may play a role in tumor dedifferentiation and progression. We presented a number of arguments and data from our own research that speak in favor of the proposed theory. It should be noted that if the fusion of a normal cell with a tumor cell is one of the possible triggers of tumorigenesis and cancer spread, the mechanisms underlying this process may provide possible new targets for treatment. Therefore, their analysis will expand our arsenal of therapeutic tools by adding completely new targets - cell signaling molecules - and will provide the impetus for reconsidering the tumor microenvironment from a different angle.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096308596240620055942
2024-07-15
2025-10-11
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. a FollainG. OsmaniN. AzevedoA.S. AllioG. MercierL. KarremanM.A. SoleckiG. Garcia LeònM.J. LefebvreO. FekonjaN. HilleC. ChabannesV. DolléG. MetivetT. HovsepianF.D. PrudhommeC. PichotA. PaulN. CarapitoR. BahramS. RuthensteinerB. KemmlingA. SiemonsenS. SchneiderT. FiehlerJ. GlatzelM. WinklerF. SchwabY. PantelK. HarleppS. GoetzJ.G. Haemodynamic-dependent arrest of circulating tumour cells at large blood vessel bifurcations as new model for metastasis.Sci. Rep.2021112323110.1016/j.devcel.2018.02.01529634935
    [Google Scholar]
  3. b FollainG. OsmaniN. AzevedoA. AllioG. MercierL. Hemodynamic forces tune the arrest, adhesion, and extravasation of circulating tumor cells.AIP Adv.202245123352
    [Google Scholar]
  4. WangS. YeT. A numerical study of tumor cell arrest in microvessels qualifying for mechanical entrapment.AIP Adv.2022121212510510.1063/5.0102061
    [Google Scholar]
  5. FollainG. HerrmannD. HarleppS. HyenneV. OsmaniN. WarrenS.C. TimpsonP. GoetzJ.G. Fluids and their mechanics in tumour transit: Shaping metastasis.Nat. Rev. Cancer202020210712410.1038/s41568‑019‑0221‑x 31780785
    [Google Scholar]
  6. LiuY. ZhangY. DingY. ZhuangR. Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules.Crit. Rev. Oncol. Hematol.202116710350210.1016/j.critrevonc.2021.103502 34662726
    [Google Scholar]
  7. MensahS.A. NersesyanA.A. HardingI.C. LeeC.I. TanX. BanerjeeS. NiedreM. TorchilinV.P. EbongE.E. Flow‐regulated endothelial glycocalyx determines metastatic cancer cell activity.FASEB J.20203456166618410.1096/fj.201901920R 32167209
    [Google Scholar]
  8. GensbittelV. KräterM. HarleppS. BusnelliI. GuckJ. GoetzJ.G. Mechanical adaptability of tumor cells in metastasis.Dev. Cell202156216417910.1016/j.devcel.2020.10.011 33238151
    [Google Scholar]
  9. HolensteinC.N. HorvathA. SchärB. SchoenenbergerA.D. BollhalderM. GoedeckeN. BartalenaG. OttoO. HerbigM. GuckJ. MüllerD.A. SnedekerJ.G. SilvanU. The relationship between metastatic potential and in vitro mechanical properties of osteosarcoma cells.Mol. Biol. Cell201930788789810.1091/mbc.E18‑08‑0545 30785850
    [Google Scholar]
  10. AzevedoA.S. FollainG. PatthabhiramanS. HarleppS. GoetzJ.G. Metastasis of circulating tumor cells: Favorable soil or suitable biomechanics, or both?Cell Adhes. Migr.20159534535610.1080/19336918.2015.1059563 26312653
    [Google Scholar]
  11. AuS.H. StoreyB.D. MooreJ.C. TangQ. ChenY.L. JavaidS. SariogluA.F. SullivanR. MaddenM.W. O’KeefeR. HaberD.A. MaheswaranS. LangenauD.M. StottS.L. TonerM. Clusters of circulating tumor cells traverse capillary-sized vessels.Proc. Natl. Acad. Sci.2016113184947495210.1073/pnas.1524448113 27091969
    [Google Scholar]
  12. MarrellaA. FediA. VaraniG. VaccariI. FatoM. FirpoG. GuidaP. AcetoN. ScaglioneS. High blood flow shear stress values are associated with circulating tumor cells cluster disaggregation in a multi-channel microfluidic device.PLoS One2021161e024553610.1371/journal.pone.0245536 33444361
    [Google Scholar]
  13. Perea PaizalJ. AuS.H. BakalC. Squeezing through the microcirculation: Survival adaptations of circulating tumour cells to seed metastasis.Br. J. Cancer20211241586510.1038/s41416‑020‑01176‑x 33257836
    [Google Scholar]
  14. XuZ. LiK. XinY. TangK. YangM. WangG. TanY. Fluid shear stress regulates the survival of circulating tumor cells via nuclear expansion.J. Cell Sci.202213510jcs25958610.1242/jcs.259586 35510498
    [Google Scholar]
  15. XinY. LiK. YangM. TanY. Fluid shear stress induces EMT of circulating tumor cells via JNK signaling in favor of their survival during hematogenous dissemination.Int. J. Mol. Sci.20202121811510.3390/ijms21218115 33143160
    [Google Scholar]
  16. HanJ.W. SungP.S. JangJ.W. ChoiJ.Y. YoonS.K. Whole blood viscosity is associated with extrahepatic metastases and survival in patients with hepatocellular carcinoma.PLoS One20211612e026031110.1371/journal.pone.0260311 34855786
    [Google Scholar]
  17. KaplanR.N. RibaR.D. ZacharoulisS. BramleyA.H. VincentL. CostaC. MacDonaldD.D. JinD.K. ShidoK. KernsS.A. ZhuZ. HicklinD. WuY. PortJ.L. AltorkiN. PortE.R. RuggeroD. ShmelkovS.V. JensenK.K. RafiiS. LydenD. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.Nature2005438706982082710.1038/nature04186 16341007
    [Google Scholar]
  18. PeinadoH. ZhangH. MateiI.R. Costa-SilvaB. HoshinoA. RodriguesG. PsailaB. KaplanR.N. BrombergJ.F. KangY. BissellM.J. CoxT.R. GiacciaA.J. ErlerJ.T. HiratsukaS. GhajarC.M. LydenD. Pre-metastatic niches:Organ-specific homes for metastases.Nat. Rev. Cancer201717530231710.1038/nrc.2017.6 28303905
    [Google Scholar]
  19. LiuY. CaoX. Characteristics and significance of the pre-metastatic niche.Cancer Cell201630566868110.1016/j.ccell.2016.09.011 27846389
    [Google Scholar]
  20. GumbergerP. BjornssonB. SandströmP. BojmarL. ZambirinisC.P. The liver pre-metastatic niche in pancreatic cancer: A potential opportunity for intervention.Cancers20221412302810.3390/cancers14123028 35740692
    [Google Scholar]
  21. WangZ. von AuA. SchnölzerM. HackertT. ZöllerM. CD44v6-competent tumor exosomes promote motility, invasion and cancer-initiating cell marker expression in pancreatic and colorectal cancer cells.Oncotarget2016734554095543610.18632/oncotarget.10580 27419629
    [Google Scholar]
  22. ZoniE. AstrologoL. NgC.K.Y. PiscuoglioS. MelsenJ. GrosjeanJ. KlimaI. ChenL. Snaar-JagalskaE.B. FlanaganK. van der PluijmG. KloenP. CecchiniM.G. Kruithof-de JulioM. ThalmannG.N. Therapeutic targeting of CD146/MCAM reduces bone metastasis in prostate cancer.Mol. Cancer Res.20191751049106210.1158/1541‑7786.MCR‑18‑1220 30745464
    [Google Scholar]
  23. HonguT. PeinM. Insua-RodríguezJ. GutjahrE. MattavelliG. MeierJ. DeckerK. DescotA. BozzaM. HarbottleR. TrumppA. SinnH.P. RiedelA. OskarssonT. Perivascular tenascin C triggers sequential activation of macrophages and endothelial cells to generate a pro-metastatic vascular niche in the lungs.Nat. Can.20223448650410.1038/s43018‑022‑00353‑6 35469015
    [Google Scholar]
  24. GongZ. LiQ. ShiJ. WeiJ. LiP. ChangC.H. ShultzL.D. RenG. Lung fibroblasts facilitate pre-metastatic niche formation by remodeling the local immune microenvironment.Immunity202255814831500.e910.1016/j.immuni.2022.07.001 35908547
    [Google Scholar]
  25. WangZ. XiongS. MaoY. ChenM. MaX. ZhouX. MaZ. LiuF. HuangZ. LuoQ. OuyangG. Periostin promotes immunosuppressive premetastatic niche formation to facilitate breast tumour metastasis.J. Pathol.2016239448449510.1002/path.4747 27193093
    [Google Scholar]
  26. YueZ. NiuX. YuanZ. QinQ. JiangW. HeL. GaoJ. DingY. LiuY. XuZ. LiZ. YangZ. LiR. XueX. GaoY. YueF. ZhangX.H.F. HuG. WangY. LiY. ChenG. SiwkoS. GartlandA. WangN. XiaoJ. LiuM. LuoJ. RSPO2 and RANKL signal through LGR4 to regulate osteoclastic premetastatic niche formation and bone metastasis.J. Clin. Invest.20221322e14457910.1172/JCI144579 34847079
    [Google Scholar]
  27. FaresJ. FaresM.Y. KhachfeH.H. SalhabH.A. FaresY. Molecular principles of metastasis: A hallmark of cancer revisited.Signal Transduct. Target. Ther.2020512810.1038/s41392‑020‑0134‑x 32296047
    [Google Scholar]
  28. SaberS.H. AliH.E.A. GaballaR. GaballahM. AliH.I. ZerfaouiM. Abd ElmageedZ.Y. Exosomes are the driving force in preparing the soil for the metastatic seeds: Lessons from the prostate cancer.Cells20209356410.3390/cells9030564 32121073
    [Google Scholar]
  29. GillotL. BaudinL. RouaudL. KridelkaF. NoëlA. The pre-metastatic niche in lymph nodes: Formation and characteristics.Cell. Mol. Life Sci.202178165987600210.1007/s00018‑021‑03873‑z 34241649
    [Google Scholar]
  30. WillsC.A. LiuX. ChenL. ZhaoY. DowerC.M. SundstromJ. WangH.G. Chemotherapy-induced upregulation of small extracellular vesicle-associated PTX3 accelerates breast cancer metastasis.Cancer Res.202181245246310.1158/0008‑5472.CAN‑20‑1976 33115808
    [Google Scholar]
  31. WangC. XuK. WangR. HanX. TangJ. GuanX. Heterogeneity of BCSCs contributes to the metastatic organotropism of breast cancer.J. Exp. Clin. Cancer Res.202140137010.1186/s13046‑021‑02164‑6 34801088
    [Google Scholar]
  32. FuresiG. RaunerM. HofbauerL.C. Emerging players in prostate cancer–bone niche communication.Trends Cancer20217211212110.1016/j.trecan.2020.09.006 33274720
    [Google Scholar]
  33. PopperH.H. Progression and metastasis of lung cancer.Cancer Metastasis Rev.2016351759110.1007/s10555‑016‑9618‑0 27018053
    [Google Scholar]
  34. CristS.B. GhajarC.M. When a house is not a home: A survey of antimetastatic niches and potential mechanisms of disseminated tumor cell suppression.Annu. Rev. Pathol.202116140943210.1146/annurev‑pathmechdis‑012419‑032647 33276706
    [Google Scholar]
  35. TangK. The mechanics of local niches in the primary tumor regulate breast cancer brain metastasis., PhD Thesis, Hong Kong Polytechnic University2023
    [Google Scholar]
  36. Aw YongK.M. SunY. MerajverS.D. FuJ. Mechanotransduction-induced reversible phenotypic switching in prostate cancer cells.Biophys. J.201711261236124510.1016/j.bpj.2017.02.012 28355550
    [Google Scholar]
  37. CobanB. BergonziniC. ZweemerA.J.M. DanenE.H.J. Metastasis: crosstalk between tissue mechanics and tumour cell plasticity.Br. J. Cancer20211241495710.1038/s41416‑020‑01150‑7 33204023
    [Google Scholar]
  38. MicalizziD.S. MaheswaranS. HaberD.A. A conduit to metastasis: circulating tumor cell biology.Genes Dev.201731181827184010.1101/gad.305805.117 29051388
    [Google Scholar]
  39. GakharG. NavarroV.N. JurishM. LeeG.Y. TagawaS.T. AkhtarN.H. SeandelM. GengY. LiuH. BanderN.H. GiannakakouP. ChristosP.J. KingM.R. NanusD.M. Circulating tumor cells from prostate cancer patients interact with E-selectin under physiologic blood flow.PLoS One2013812e8514310.1371/journal.pone.0085143 24386459
    [Google Scholar]
  40. LangeT. ValentinerU. WickleinD. MaarH. LabitzkyV. AhlersA.K. StarzonekS. GendusoS. StaffeldtL. PahlowC. DückA.M. StürkenC. BaranowskyA. BauerA.T. BulkE. SchwabA. RieckenK. BörnchenC. KiefmannR. AbrahamV. DeLisserH.M. GemollT. HabermannJ.K. BlockA. PantelK. SchumacherU. Tumor cell E-selectin ligands determine partialefficacy of bortezomib on spontaneous lung metastasis formation of solid human tumors in vivo.Mol. Ther.20223041536155210.1016/j.ymthe.2022.01.017 35031433
    [Google Scholar]
  41. GengY. MarshallJ.R. KingM.R. Glycomechanics of the metastatic cascade: Tumor cell-endothelial cell interactions in the circulation.Ann. Biomed. Eng.201240479080510.1007/s10439‑011‑0463‑6 22101756
    [Google Scholar]
  42. CellarsN. Sialylated Breast and Colon Cancer Cells and Extracellular Vesicles Bind to L-selectin Under Flow Conditions.. PhD dissertation, Ohio University, USA2020
    [Google Scholar]
  43. ChengX. ChengK. Visualizing cancer extravasation: from mechanistic studies to drug development.Cancer Metastasis Rev.2021401718810.1007/s10555‑020‑09942‑2 33156478
    [Google Scholar]
  44. ChenM. GengJ.G. P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis.Arch. Immunol. Ther. Exp.2006542758410.1007/s00005‑006‑0010‑6 16648968
    [Google Scholar]
  45. TaftafR. LiuX. SinghS. JiaY. DashzevegN.K. HoffmannA.D. El-ShennawyL. RamosE.K. Adorno-CruzV. SchusterE.J. ScholtenD. PatelD. ZhangY. DavisA.A. ReduzziC. CaoY. D’AmicoP. ShenY. CristofanilliM. MullerW.A. VaradanV. LiuH. ICAM1 initiates CTC cluster formation and trans-endothelial migration in lung metastasis of breast cancer.Nat. Commun.2021121486710.1038/s41467‑021‑25189‑z 34381029
    [Google Scholar]
  46. RobertsS. AgrawalN. Temporal analysis of CTC-endothelium interactions during early metastasis.201541st Annual Northeast Biomedical Engineering Conference (NEBEC)17-19 April 2015Troy, NY, USA1210.1109/NEBEC.2015.7117073
    [Google Scholar]
  47. XieX. LiY. LianS. LuY. JiaL. Cancer metastasis chemoprevention prevents circulating tumour cells from germination.Signal Transduct. Target. Ther.20227134110.1038/s41392‑022‑01174‑w 36184654
    [Google Scholar]
  48. SikpaD. WhittingstallL. FouquetJ.P. RadulskaA. TremblayL. LebelR. PaquetteB. LepageM. Cerebrovascular inflammation promotes the formation of brain metastases.Int. J. Cancer2020147124425510.1002/ijc.32902 32011730
    [Google Scholar]
  49. ChenC. ZhaoS. KarnadA. FreemanJ.W. The biology and role of CD44 in cancer progression: therapeutic implications.J. Hematol. Oncol.20181116410.1186/s13045‑018‑0605‑5 29747682
    [Google Scholar]
  50. HamidiH. IvaskaJ. Every step of the way: Integrins in cancer progression and metastasis.Nat. Rev. Cancer201818953354810.1038/s41568‑018‑0038‑z 30002479
    [Google Scholar]
  51. OsmaniN. FollainG. García LeónM.J. LefebvreO. BusnelliI. LarnicolA. HarleppS. GoetzJ.G. Metastatic tumor cells exploit their adhesion repertoire to counteract shear forces during intravascular arrest.Cell Rep.2019281024912500.e510.1016/j.celrep.2019.07.102 31484062
    [Google Scholar]
  52. StewartR.L. O’ConnorK.L. Clinical significance of the integrin α6β4 in human malignancies.Lab. Invest.201595997698610.1038/labinvest.2015.82 26121317
    [Google Scholar]
  53. BarbazánJ. Alonso-AlconadaL. ElkhatibN. GeraldoS. GurchenkovV. GlentisA. van NielG. PalmulliR. FernándezB. ViañoP. Garcia-CaballeroT. López-LópezR. AbalM. VignjevicD.M. Liver metastasis is facilitated by the adherence of circulating tumor cells to vascular fibronectin deposits.Cancer Res.201777133431344110.1158/0008‑5472.CAN‑16‑1917 28536280
    [Google Scholar]
  54. KongD.H. KimY. KimM. JangJ. LeeS. Emerging roles of vascular cell adhesion molecule-1 (VCAM-1) in immunological disorders and cancer.Int. J. Mol. Sci.2018194105710.3390/ijms19041057 29614819
    [Google Scholar]
  55. LangeT. SamatovT.R. TonevitskyA.G. SchumacherU. Importance of altered glycoprotein-bound N- and O-glycans for epithelial-to-mesenchymal transition and adhesion of cancer cells.Carbohydr. Res.2014389394510.1016/j.carres.2014.01.010 24491280
    [Google Scholar]
  56. Al AlwanB. AbuZinehK. NozueS. RakhmatulinaA. AldehaimanM. Al-AmoodiA.S. SeragM.F. AleisaF.A. MerzabanJ.S. HabuchiS. Single-molecule imaging and microfluidic platform reveal molecular mechanisms of leukemic cell rolling.Commun. Biol.20214186810.1038/s42003‑021‑02398‑2 34262131
    [Google Scholar]
  57. García-RománJ. Zentella-DehesaA. Vascular permeability changes involved in tumor metastasis.Cancer Lett.2013335225926910.1016/j.canlet.2013.03.005 23499893
    [Google Scholar]
  58. SalvadorE. BurekM. FörsterC.Y. Tight junctions and the tumor microenvironment.Curr. Pathobiol. Rep.20164313514510.1007/s40139‑016‑0106‑6 27547510
    [Google Scholar]
  59. EddyR.J. WeidmannM.D. SharmaV.P. CondeelisJ.S. Tumor cell invadopodia: Invasive protrusions that orchestrate metastasis.Trends Cell Biol.201727859560710.1016/j.tcb.2017.03.003 28412099
    [Google Scholar]
  60. AllenT. AmuE. AsadD. ChengK. Abstract 90: Metastatic melanoma and cervical tumor cell clusters can exit blood vessels through angiopellosis augmenting tumor formation ability.Cancer Res.20187813Supplement909010.1158/1538‑7445.AM2018‑90
    [Google Scholar]
  61. AllenT.A. AsadD. AmuE. HensleyM.T. CoresJ. VandergriffA. TangJ. DinhP.U. ShenD. QiaoL. SuT. HuS. LiangH. ShiveH. HarrellE. CampbellC. PengX. YoderJ.A. ChengK. Circulating tumor cells exit circulation while maintaining multicellularity augmenting metastatic potential.J. Cell Sci.201913217jcs.231563.10.1242/jcs.23156331409692
    [Google Scholar]
  62. SuZ. YangZ. XuY. ChenY. YuQ. Apoptosis, autophagy, necroptosis, and cancer metastasis.Mol. Cancer20151414810.1186/s12943‑015‑0321‑5 25743109
    [Google Scholar]
  63. DowerC.M. WillsC.A. FrischS.M. WangH.G. Mechanisms and context underlying the role of autophagy in cancer metastasis.Autophagy20181471110112810.1080/15548627.2018.1450020 29863947
    [Google Scholar]
  64. MowersE.E. SharifiM.N. MacleodK.F. Functions of autophagy in the tumor microenvironment and cancer metastasis.FEBS J.2018285101751176610.1111/febs.14388 29356327
    [Google Scholar]
  65. DenisenkoT. PivnyukA. ZhivotovskyB. p53-autophagy-metastasis link.Cancers201810514810.3390/cancers10050148 29783720
    [Google Scholar]
  66. BabaeiG. AzizS.G.G. JaghiN.Z.Z. EMT, cancer stem cells and autophagy; The three main axes of metastasis.Biomed. Pharmacother.202113311090910.1016/j.biopha.2020.110909 33227701
    [Google Scholar]
  67. LiX. HeS. MaB. Autophagy and autophagy-related proteins in cancer.Mol. Cancer20201911210.1186/s12943‑020‑1138‑4 31969156
    [Google Scholar]
  68. MarshT. DebnathJ. Autophagy suppresses breast cancer metastasis by degrading NBR1.Autophagy20201661164116510.1080/15548627.2020.1753001 32267786
    [Google Scholar]
  69. SeoJ. NamY.W. KimS. OhD.B. SongJ. Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators.Exp. Mol. Med.20215361007101710.1038/s12276‑021‑00634‑7 34075202
    [Google Scholar]
  70. MolnárT. MázlóA. TslafV. SzöllősiA.G. EmriG. KonczG. Current translational potential and underlying molecular mechanisms of necroptosis.Cell Death Dis.2019101186010.1038/s41419‑019‑2094‑z 31719524
    [Google Scholar]
  71. SuZ. YangZ. XieL. DeWittJ.P. ChenY. Cancer therapy in the necroptosis era.Cell Death Differ.201623574875610.1038/cdd.2016.8 26915291
    [Google Scholar]
  72. MorrishE. BrumattiG. SilkeJ. Future therapeutic directions for smac-mimetics.Cells20209240610.3390/cells9020406 32053868
    [Google Scholar]
  73. LalaouiN. BrumattiG. Relevance of necroptosis in cancer.Immunol. Cell Biol.201795213714510.1038/icb.2016.120 27922620
    [Google Scholar]
  74. JiaoD. CaiZ. ChoksiS. MaD. ChoeM. KwonH.J. BaikJ.Y. RowanB.G. LiuC. LiuZ. Necroptosis of tumor cells leads to tumor necrosis and promotes tumor metastasis.Cell Res.201828886887010.1038/s41422‑018‑0058‑y 29941926
    [Google Scholar]
  75. StrilicB. YangL. Albarrán-JuárezJ. WachsmuthL. HanK. MüllerU.C. PasparakisM. OffermannsS. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis.Nature2016536761521521810.1038/nature19076 27487218
    [Google Scholar]
  76. YangL. JosephS. SunT. HoffmannJ. ThevissenS. OffermannsS. StrilicB. TAK1 regulates endothelial cell necroptosis and tumor metastasis.Cell Death Differ.201926101987199710.1038/s41418‑018‑0271‑8 30683914
    [Google Scholar]
  77. NajafovA. ChenH. YuanJ. Necroptosis and Cancer.Trends Cancer20173429430110.1016/j.trecan.2017.03.002 28451648
    [Google Scholar]
  78. PaoliP. GiannoniE. ChiarugiP. Anoikis molecular pathways and its role in cancer progression.Biochim. Biophys. Acta Mol. Cell Res.20131833123481349810.1016/j.bbamcr.2013.06.026 23830918
    [Google Scholar]
  79. NietoM.A. HuangR.Y.J. JacksonR.A. ThieryJ.P. EMT: 2016.Cell20161661214510.1016/j.cell.2016.06.028 27368099
    [Google Scholar]
  80. FrischS.M. SchallerM. CieplyB. Mechanisms that link the oncogenic epithelial–mesenchymal transition to suppression of anoikis.J. Cell Sci.20131261212910.1242/jcs.120907 23516327
    [Google Scholar]
  81. HanH. SungJ.Y. KimS.H. YunU.J. KimH. JangE.J. YooH.E. HongE.K. GohS.H. MoonA. LeeJ.S. YeS.K. ShimJ. KimY.N. Fibronectin regulates anoikis resistance via cell aggregate formation.Cancer Lett.2021508597210.1016/j.canlet.2021.03.011 33771684
    [Google Scholar]
  82. AdeshakinF.O. AdeshakinA.O. AfolabiL.O. YanD. ZhangG. WanX. Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming.Front. Oncol.20211162657710.3389/fonc.2021.626577 33854965
    [Google Scholar]
  83. KakavandiE. ShahbahramiR. GoudarziH. EslamiG. FaghihlooE. Anoikis resistance and oncoviruses.J. Cell. Biochem.201811932484249110.1002/jcb.26363 28836703
    [Google Scholar]
  84. ThiamH.R. WongS.L. WagnerD.D. WatermanC.M. Cellular Mechanisms of NETosis.Annu. Rev. Cell Dev. Biol.202036119121810.1146/annurev‑cellbio‑020520‑111016 32663035
    [Google Scholar]
  85. DemersM. WagnerD. NETosis: a new factor in tumor progression and cancer-associated thrombosis.Semin. Thromb. Hemost.201440327728310.1055/s‑0034‑1370765 24590420
    [Google Scholar]
  86. SabbatiniM. MagnelliV. RenòF. NETosis in wound healing: When enough is enough.Cells202110349410.3390/cells10030494 33668924
    [Google Scholar]
  87. Ortiz-EspinosaS. MoralesX. SenentY. AlignaniD. TaviraB. MacayaI. RuizB. MorenoH. RemírezA. SainzC. Rodriguez-PenaA. OyarbideA. ArizM. AnduezaM.P. ValenciaK. TeijeiraA. HoehligK. VaterA. RolfeB. WoodruffT.M. Lopez-PicazoJ.M. VicentS. KochanG. EscorsD. Gil-BazoI. Perez-GraciaJ.L. MontuengaL.M. LambrisJ.D. Ortiz de SolorzanoC. LecandaF. AjonaD. PioR. Complement C5a induces the formation of neutrophil extracellular traps by myeloid-derived suppressor cells to promote metastasis.Cancer Lett.2022529708410.1016/j.canlet.2021.12.027 34971753
    [Google Scholar]
  88. SchoepsB. EckfeldC. ProkopchukO. BöttcherJ. HäußlerD. SteigerK. DemirI.E. KnolleP. SoehnleinO. JenneD.E. HermannC.D. KrügerA. TIMP1 triggers neutrophil extracellular trap formation in pancreatic cancer.Cancer Res.202181133568357910.1158/0008‑5472.CAN‑20‑4125 33941611
    [Google Scholar]
  89. SnoderlyH.T. BooneB.A. BennewitzM.F. Neutrophil extracellular traps in breast cancer and beyond: current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment.Breast Cancer Res.201921114510.1186/s13058‑019‑1237‑6 31852512
    [Google Scholar]
  90. HsuB.E. TabarièsS. JohnsonR.M. AndrzejewskiS. SenecalJ. LehuédéC. AnnisM.G. MaE.H. VölsS. RamsayL. FromentR. MonastA. WatsonI.R. GranotZ. JonesR.G. St-PierreJ. SiegelP.M. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis.Cell Rep.2019271339023915.e610.1016/j.celrep.2019.05.091 31242422
    [Google Scholar]
  91. DeminS. BerdievaM. GoodkovA. Cell-cell fusions and cell-in-cell phenomena in healthy cells and cancer: Lessons from protists and invertebrates.Semin. Cancer Biol.2022819610510.1016/j.semcancer.2021.03.005 33713795
    [Google Scholar]
  92. SottileF. AulicinoF. ThekaI. CosmaM.P. Mesenchymal stem cells generate distinct functional hybrids in vitrovia cell fusion or entosis.Sci. Rep.2016613686310.1038/srep36863 27827439
    [Google Scholar]
  93. KrishnaS. OverholtzerM. Mechanisms and consequences of entosis.Cell. Mol. Life Sci.20167311-122379238610.1007/s00018‑016‑2207‑0 27048820
    [Google Scholar]
  94. HassR. von der OheJ. DittmarT. Hybrid formation and fusion of cancer cells in vitro and in vivo.Cancers20211317449610.3390/cancers13174496 34503305
    [Google Scholar]
  95. GuptaN. JadhavK. ShahV. Emperipolesis, entosis and cell cannibalism: Demystifying the cloud.J. Oral Maxillofac. Pathol.2017211929810.4103/0973‑029X.203763 28479694
    [Google Scholar]
  96. WangX. LiY. LiJ. LiL. ZhuH. ChenH. KongR. WangG. WangY. HuJ. SunB. Cell-in-cell phenomenon and its relationship with tumor microenvironment and tumor progression: A review.Front. Cell Dev. Biol.2019731110.3389/fcell.2019.00311 31850347
    [Google Scholar]
  97. MackayH.L. MullerP.A.J. Biological relevance of cell-in-cell in cancers.Biochem. Soc. Trans.201947272573210.1042/BST20180618 30850425
    [Google Scholar]
  98. WangS. LiL. ZhouY. HeY. WeiY. TaoA. Heterotypic cell-in-cell structures in colon cancer can be regulated by IL-6 and lead to tumor immune escape.Exp. Cell Res.2019382111144710.1016/j.yexcr.2019.05.028 31150612
    [Google Scholar]
  99. Siquara da RochaL.O. SouzaB.S.F. LambertD.W. Gurgel RochaC.A. Cell-in-cell events in oral squamous cell carcinoma.Front. Oncol.20221293109210.3389/fonc.2022.931092 35847959
    [Google Scholar]
  100. DixonS.J. LembergK.M. LamprechtM.R. SkoutaR. ZaitsevE.M. GleasonC.E. PatelD.N. BauerA.J. CantleyA.M. YangW.S. MorrisonB.III StockwellB.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death.Cell201214951060107210.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  101. ChenX. ComishP.B. TangD. KangR. Characteristics and biomarkers of ferroptosis.Front. Cell Dev. Biol.2021963716210.3389/fcell.2021.637162 33553189
    [Google Scholar]
  102. LiJ. CaoF. YinH. HuangZ. LinZ. MaoN. SunB. WangG. Ferroptosis: past, present and future.Cell Death Dis.20201128810.1038/s41419‑020‑2298‑2 32015325
    [Google Scholar]
  103. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  104. TianZ. JiangS. ZhouJ. ZhangW. Copper homeostasis and cuproptosis in mitochondria.Life Sci.202333412222310.1016/j.lfs.2023.122223 38084674
    [Google Scholar]
  105. TangD. ChenX. KroemerG. Cuproptosis: a copper-triggered modality of mitochondrial cell death.Cell Res.202232541741810.1038/s41422‑022‑00653‑7 35354936
    [Google Scholar]
  106. XieJ. YangY. GaoY. HeJ. Cuproptosis: mechanisms and links with cancers.Mol. Cancer20232214610.1186/s12943‑023‑01732‑y 36882769
    [Google Scholar]
  107. LiuX. NieL. ZhangY. YanY. WangC. ColicM. OlszewskiK. HorbathA. ChenX. LeiG. MaoC. WuS. ZhuangL. PoyurovskyM.V. James YouM. HartT. BilladeauD.D. ChenJ. GanB. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis.Nat. Cell Biol.202325340441410.1038/s41556‑023‑01091‑2 36747082
    [Google Scholar]
  108. ChenX. LiJ. KangR. KlionskyD.J. TangD. Ferroptosis: machinery and regulation.Autophagy20211792054208110.1080/15548627.2020.1810918 32804006
    [Google Scholar]
  109. ZhengP. ZhouC. LuL. LiuB. DingY. Elesclomol: a copper ionophore targeting mitochondrial metabolism for cancer therapy.J. Exp. Clin. Cancer Res.202241127110.1186/s13046‑022‑02485‑0 36089608
    [Google Scholar]
  110. WuJ. MinikesA.M. GaoM. BianH. LiY. StockwellB.R. ChenZ.N. JiangX. Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling.Nature2019572776940240610.1038/s41586‑019‑1426‑6 31341276
    [Google Scholar]
  111. YaoY. ShiY. GaoZ. SunY. YaoF. MaL. Ferroptosis at the crossroads of tumor-host interactions, metastasis, and therapy response.Am. J. Physiol. Cell Physiol.20223231C95C10310.1152/ajpcell.00148.2022 35613358
    [Google Scholar]
  112. BarskiG. BlanchardM.G. YounJ.K. LeonB. Expression of malignancy in interspecies Chinese hamster X mouse cell hybrids.J. Natl. Cancer Inst.197351378179210.1093/jnci/51.3.781 4355218
    [Google Scholar]
  113. PawelekJ.M. Tumour cell hybridization and metastasis revisited.Melanoma Res.200010650751410.1097/00008390‑200012000‑00001 11198471
    [Google Scholar]
  114. KaigorodovaE.V. KozikA.V. ZavaruevI.S. GrishchenkoM.Y. Hybrid/atypical forms of circulating tumor cells: Current state of the art.Biochemistry202287438039010.1134/S0006297922040071 35527376
    [Google Scholar]
  115. GastC.E. SilkA.D. ZarourL. RieglerL. BurkhartJ.G. GustafsonK.T. ParappillyM.S. Roh-JohnsonM. GoodmanJ.R. OlsonB. SchmidtM. SwainJ.R. DaviesP.S. ShasthriV. IizukaS. FlynnP. WatsonS. KorkolaJ. CourtneidgeS.A. FischerJ.M. JaboinJ. BillingsleyK.G. LopezC.D. BurchardJ. GrayJ. CoussensL.M. SheppardB.C. WongM.H. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival.Sci. Adv.201849eaat782810.1126/sciadv.aat7828 30214939
    [Google Scholar]
  116. PawelekJ.M. ChakrabortyA.K. Fusion of tumour cells with bone marrow-derived cells: A unifying explanation for metastasis.Nat. Rev. Cancer20088537738610.1038/nrc2371 18385683
    [Google Scholar]
  117. KaigorodovaE.V. FedulovaN.V. OchirovM.O. DyakovD.A. MolchanovS.V. ChasovskikhN.Y. Dissimilar tumor cell populations in ascitic fluid of ovarian cancer patients.Bull. Siberian Med.2020191505810.20538/1682‑0363‑2020‑1‑50‑58
    [Google Scholar]
  118. KaigorodovaE.V. KovalevO.V. ChernyshovaA.L. VtorushinS.V. Heterogeneity of EpCAM-positive cells in low-grade serous ovarian carcinoma ascitic fluid: A clinical case.Tum. female reprod. sys.2021174909510.17650/1994‑4098‑2021‑17‑4‑90‑95
    [Google Scholar]
  119. KaigorodovaE.V. OchirovM.O. MolchanovS.V. RogachevR.R. DyakovD.A. ChernyshovaA.L. ShpilevaO.V. KovalevO.I. VtorushinS.V. Dissimilar populations of EpCam-positive cells in ascitic fluid of ovarian cancer patients: a relationship with the degree of carcinomatosis.Bull. Siberian Med.2021202445310.20538/1682‑0363‑2021‑2‑44‑53
    [Google Scholar]
  120. KozikA.V. KaigorodovaE.V. GrishchenkoM.Yu. VtorushinS.V. ChernyshovaA.L. EPCAM+CD45+ cells in ascitic fluid of patients with ovarian cancer: A relationship with tumor marker levels and tumor grade.Siberian j. oncol.2022215445110.21294/1814‑4861‑2022‑21‑5‑44‑51
    [Google Scholar]
  121. ManjunathY. PorcianiD. MitchemJ.B. SuvileshK.N. AvellaD.M. KimchiE.T. Staveley-O’CarrollK.F. BurkeD.H. LiG. KaifiJ.T. Tumor-cell–macrophage fusion cells as liquid biomarkers and tumor enhancers in cancer.Int. J. Mol. Sci.2020215187210.3390/ijms21051872 32182935
    [Google Scholar]
  122. PawelekJ.M. ChakrabortyA.K. The cancer cell--leukocyte fusion theory of metastasis.Adv. Cancer Res.200810139744410.1016/S0065‑230X(08)00410‑7 19055949
    [Google Scholar]
  123. AkhterM.Z. SharawatS.K. KumarV. KochatV. EqubalZ. RamakrishnanM. KumarU. MathurS. KumarL. MukhopadhyayA. Aggressive serous epithelial ovarian cancer is potentially propagated by EpCAM+CD45+ phenotype.Oncogene201837162089210310.1038/s41388‑017‑0106‑y 29379166
    [Google Scholar]
  124. ClawsonG.A. MattersG.L. XinP. McGovernC. WafulaE. dePamphilisC. MeckleyM. WongJ. StewartL. D’JamoosC. AltmanN. Imamura KawasawaY. DuZ. HonaasL. AbrahamT. “Stealth dissemination” of macrophage-tumor cell fusions cultured from blood of patients with pancreatic ductal adenocarcinoma.PLoS One2017129e018445110.1371/journal.pone.0184451 28957348
    [Google Scholar]
  125. ClawsonG.A. MattersG.L. XinP. Imamura-KawasawaY. DuZ. ThiboutotD.M. HelmK.F. NevesR.I. AbrahamT. Macrophage-tumor cell fusions from peripheral blood of melanoma patients.PLoS One2015108e013432010.1371/journal.pone.0134320 26267609
    [Google Scholar]
  126. MuZ. Benali-FuretN. UzanG. ZnatyA. YeZ. PaolilloC. WangC. AustinL. RossiG. FortinaP. YangH. CristofanilliM. Detection and characterization of circulating tumor associated cells in metastatic breast cancer.Int. J. Mol. Sci.20161710166510.3390/ijms17101665 27706044
    [Google Scholar]
  127. ManjunathY. SuvileshK.N. MitchemJ.B. Avella PatinoD.M. KimchiE.T. Staveley-O’CarrollK.F. PantelK. YiH. LiG. HarrisP.K. ChaudhuriA.A. KaifiJ.T. Circulating tumor-macrophage fusion cells and circulating tumor cells complement non–small-cell lung cancer screening in patients with suspicious lung-rads 4 nodules.JCO Precis. Oncol.202266e210037810.1200/PO.21.00378 35417204
    [Google Scholar]
  128. KaigorodovaE.V. ZavaruevI.S. ChernyshovaA.L. GrishchenkoM.Yu. Prognostic significance of atypical/hybrid forms of EpCAM+CD45+ cells in the blood of patients with endometrial cancer.Tum. female reprod. sys.202319210410810.17650/1994‑4098‑2023‑19‑2‑104‑108
    [Google Scholar]
  129. KaigorodovaE.V. GrishchenkoM.Y. Application of multicolor flow cytometry in liquid biopsy of breast cancer.Bull. Siberian Med.202322316517010.20538/1682‑0363‑2023‑3‑165‑170
    [Google Scholar]
  130. KaigorodovaE.V. Circulating tumor cells: Clinical significance in breast cancer.Annal. Russian acad. med. sci.201772645045710.15690/vramn833
    [Google Scholar]
  131. KaigorodovaE.V. TarabanovskayaN.A. SurkovaP.V. ZelchanR.V. GarbukovE.Yu. The presence of various population of circulation tumor cells in the blood of breast cancer patients before treatment: Association with five-year metastasis-free survival.Siberian J. Oncol.2020196576510.21294/1814‑4861‑2020‑19‑6‑57‑65
    [Google Scholar]
  132. KaigorodovaE.V. PerelmuterV.M. OrehovA.S. FedulovaN.V. TarabanovskayaN.A. SimolinaE.I. SavelievaO.E. TashirevaL.A. CherdyntsevaN.V. The effect of neoadjuvant chemotherapy on the level of bone marrow progenitor cells in the blood of patients with invasive breast carcinoma.Genes Cells2019144727610.23868/201912035
    [Google Scholar]
  133. KovalevO.I. VtorushinS.V. KaigorodovaE.V. Stem cell properties of cancer cells in ascitic fluid of patients with ovarian cancer:A key to control over cancer progression.Bull. Siberian Med.202322212213310.20538/1682‑0363‑2023‑2‑122‑133
    [Google Scholar]
  134. GoldenbergD.M. PaviaR.A. TsaoM.C. In vivo hybridisation of human tumour and normal hamster cells.Nature1974250546864965110.1038/250649a04859359
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096308596240620055942
Loading
/content/journals/ccdt/10.2174/0115680096308596240620055942
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test