Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

The adverse outcome that patients experience as a result of anti-cancer therapy failure is primarily caused by metastasis. Making cancer a chronic disease with regular but controlled relapses is the real issue in increasing cancer patient lifespans. This can only be achieved by developing efficient therapeutic techniques that target critical targets in the metastatic process. New targeted therapy medications continue to emerge, and research into the molecular targeted therapy of tumors is flourishing. The ineffectiveness of conventional chemotherapy in targeting metastatic cells is primarily due to its ability to promote the selection of chemo-resistant cell populations that engage in epithelial-to-mesenchymal transition (EMT), which in turn encourages the colonization of distant sites and maintains the initial metastatic process. In considering this circumstance, research into a broad range of small molecules and biologics has been initiated to develop anti-metastatic medications that target particular targets implicated in the different stages of metastasis. With their ability to concentrate on cancer cells while avoiding normal cells, targeted medications offer a promising alternative to conventional chemotherapy that is both highly effective and relatively safe. Many obstacles, including an inadequate response rate and drug resistance, persist for small-molecule targeted anti-cancer medications, despite significant advancements in this area. We encouraged small-molecule-focused anti-cancer therapy development by extensively assessing them by target classification. We reviewed current challenges, listed licenced drugs and key drug candidates in clinical trials for each target, and made suggestions for improving anti-cancer drug research and development. This review aims to discuss present and future small molecule inhibitor research and development for cancer treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096331827240911165227
2024-10-25
2025-12-18
Loading full text...

Full text loading...

References

  1. DebelaD.T. MuzazuS.G.Y. HeraroK.D. NdalamaM.T. MeseleB.W. HaileD.C. KituiS.K. ManyazewalT. New approaches and procedures for cancer treatment: Current perspectives.SAGE Open Med.2021910.1177/20503121211034366 34408877
    [Google Scholar]
  2. BrownJ.S. AmendS.R. AustinR.H. GatenbyR.A. HammarlundE.U. PientaK.J. Updating the definition of cancer.Mol. Cancer Res.202321111142114710.1158/1541‑7786.MCR‑23‑0411 37409952
    [Google Scholar]
  3. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  4. GaneshK. MassaguéJ. Targeting metastatic cancer.Nat. Med.2021271344410.1038/s41591‑020‑01195‑4 33442008
    [Google Scholar]
  5. MillerK.D. NogueiraL. DevasiaT. MariottoA.B. YabroffK.R. JemalA. KramerJ. SiegelR.L. Cancer treatment and survivorship statistics, 2022.CA Cancer J. Clin.202272540943610.3322/caac.21731 35736631
    [Google Scholar]
  6. LiuG.H. ChenT. ZhangX. MaX.L. ShiH.S. Small molecule inhibitors targeting the cancers.MedComm202234e181
    [Google Scholar]
  7. ZhongL. LiY. XiongL. WangW. WuM. YuanT. YangW. TianC. MiaoZ. WangT. YangS. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives.Signal Transduct. Target. Ther.20216120110.1038/s41392‑021‑00572‑w 34054126
    [Google Scholar]
  8. ZhangH. HeF. GaoG. LuS. WeiQ. HuH. WuZ. FangM. WangX. Approved small-molecule ATP-competitive kinases drugs containing indole/azaindole/oxindole scaffolds: R&D and binding patterns profiling.Molecules202328394310.3390/molecules28030943 36770611
    [Google Scholar]
  9. SunG. RongD. LiZ. SunG. WuF. LiX. CaoH. ChengY. TangW. SunY. Role of small molecule targeted compounds in cancer: Progress, opportunities, and challenges.Front. Cell Dev. Biol.2021969436310.3389/fcell.2021.694363 34568317
    [Google Scholar]
  10. CohenP. CrossD. JänneP.A. Kinase drug discovery 20 years after imatinib: Progress and future directions.Nat. Rev. Drug Discov.202120755156910.1038/s41573‑021‑00195‑4 34002056
    [Google Scholar]
  11. AttwoodM.M. FabbroD. SokolovA.V. KnappS. SchiöthH.B. Trends in kinase drug discovery: Targets, indications and inhibitor design.Nat. Rev. Drug Discov.2021201183986110.1038/s41573‑021‑00252‑y 34354255
    [Google Scholar]
  12. FergusonF.M. GrayN.S. Kinase inhibitors: The road ahead.Nat. Rev. Drug Discov.201817535337710.1038/nrd.2018.21 29545548
    [Google Scholar]
  13. HoggS.J. BeavisP.A. DawsonM.A. JohnstoneR.W. Targeting the epigenetic regulation of antitumour immunity.Nat. Rev. Drug Discov.2020191177680010.1038/s41573‑020‑0077‑5 32929243
    [Google Scholar]
  14. GreeneB.L. KangG. CuiC. BennatiM. NoceraD.G. DrennanC.L. StubbeJ. Ribonucleotide reductases: Structure, chemistry, and metabolism suggest new therapeutic targets.Annu. Rev. Biochem.2020891457510.1146/annurev‑biochem‑013118‑111843 32569524
    [Google Scholar]
  15. BedardP.L. HymanD.M. DavidsM.S. SiuL.L. Small molecules, big impact: 20 years of targeted therapy in oncology.Lancet2020395102291078108810.1016/S0140‑6736(20)30164‑1 32222192
    [Google Scholar]
  16. MerinoD. KellyG.L. LesseneG. WeiA.H. RobertsA.W. StrasserA. BH3-mimetic drugs: Blazing the trail for new cancer medicines.Cancer Cell201834687989110.1016/j.ccell.2018.11.004 30537511
    [Google Scholar]
  17. CaseL.B. Membranes regulate biomolecular condensates.Nat. Cell Biol.202224440440510.1038/s41556‑022‑00892‑1 35411084
    [Google Scholar]
  18. KurreckA. StintzingS. ModestD.P. Efficacy, molecular biology, quality of life, or economic aspects: What do we really focus on?J. Clin. Oncol.202240111260126210.1200/JCO.21.02310 35192389
    [Google Scholar]
  19. AggarwalC. AlbeldaS.M. Molecular characterization of malig- nant mesothelioma: Time for new targets?Cancer Discov.20188121508151010.1158/2159‑8290.CD‑18‑1181 30510013
    [Google Scholar]
  20. Sudhir DhoteN. Dineshbhai PatelR. KuwarU. AgrawalM. AlexanderA. JainP. Application of thermoresponsive smart polymers based in situ gel as a novel carrier for tumor targeting.Curr. Cancer Drug Targets202424122
    [Google Scholar]
  21. PatelR. KuwarU. DhoteN. AlexanderA. NakhateK. JainP. Ajazuddin, Natural polymers as a carrier for the effective delivery of antineoplastic drugs.Curr. Drug Deliv.202421219321010.2174/1567201820666230112170035 36644864
    [Google Scholar]
  22. KatohM. Fibroblast growth factor receptors as treatment targets in clinical oncology.Nat. Rev. Clin. Oncol.201916210512210.1038/s41571‑018‑0115‑y 30367139
    [Google Scholar]
  23. CullyM. Multikinase-targeting therapy finds potential niche in thyroid cancer.Nat. Rev. Drug Discov.201514422910.1038/nrd4599 25829272
    [Google Scholar]
  24. GildM.L. TsangV.H.M. Clifton-BlighR.J. RobinsonB.G. Multikinase inhibitors in thyroid cancer: Timing of targeted therapy.Nat. Rev. Endocrinol.202117422523410.1038/s41574‑020‑00465‑y 33603220
    [Google Scholar]
  25. KlaegerS. HeinzlmeirS. WilhelmM. PolzerH. VickB. KoenigP.A. ReineckeM. RuprechtB. PetzoldtS. MengC. ZechaJ. ReiterK. QiaoH. HelmD. KochH. SchoofM. CanevariG. CasaleE. DepaoliniS.R. FeuchtingerA. WuZ. SchmidtT. RueckertL. BeckerW. HuengesJ. GarzA.K. GohlkeB.O. ZolgD.P. KayserG. VooderT. PreissnerR. HahneH. TõnissonN. KramerK. GötzeK. BassermannF. SchleglJ. EhrlichH.C. AicheS. WalchA. GreifP.A. SchneiderS. FelderE.R. RulandJ. MédardG. JeremiasI. SpiekermannK. KusterB. The target landscape of clinical kinase drugs.Science20173586367eaan436810.1126/science.aan4368 29191878
    [Google Scholar]
  26. LaetschT.W. DuBoisS.G. BenderJ.G. MacyM.E. MorenoL. Opportunities and challenges in drug development for pedi- atric cancers.Cancer Discov.202111354555910.1158/2159‑8290.CD‑20‑0779 33277309
    [Google Scholar]
  27. ArditoF. GiulianiM. PerroneD. TroianoG. MuzioL.L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review).Int. J. Mol. Med.201740227128010.3892/ijmm.2017.3036 28656226
    [Google Scholar]
  28. WilsonL.J. LinleyA. HammondD.E. HoodF.E. CoulsonJ.M. MacEwanD.J. RossS.J. SlupskyJ.R. SmithP.D. EyersP.A. PriorI.A. New perspectives, opportunities, and challenges in exploring the human protein kinome.Cancer Res.2018781152910.1158/0008‑5472.CAN‑17‑2291 29254998
    [Google Scholar]
  29. RoskoskiR.Jr Classification of small molecule protein kinase inhibitors based upon the structures of their drug-enzyme complexes.Pharmacol. Res.2016103264810.1016/j.phrs.2015.10.021 26529477
    [Google Scholar]
  30. ItoT. ToriM. HashigakiS. KimuraN. SatoK. OhkiE. SawakiA. OkusakaT. Efficacy and safety of sunitinib in Japanese patients with progressive, advanced/metastatic, well-differentiated, unresectable pancreatic neuroendocrine tumors: Final analyses from a phase II study.Jpn. J. Clin. Oncol.201949435436010.1093/jjco/hyz009 30834940
    [Google Scholar]
  31. ProcopioG. ApollonioG. CognettiF. MiceliR. MilellaM. MoscaA. ChiuriV.E. BearzA. MorelliF. OrtegaC. AtzoriF. DoniniM. RattaR. RaimondiA. ClapsM. MartinettiA. CapitanioU. de BraudF.G. CappellettiV. VerzoniE. Sorafenib versus observation following radical metastasectomy for clear-cell renal cell carcinoma: Results from the phase 2 randomized open-label RESORT study.Eur. Urol. Oncol.20192669970710.1016/j.euo.2019.08.011 31542243
    [Google Scholar]
  32. VerschuurA.C. BajčiováV. MascarenhasL. KhosravanR. LinX. IngrossoA. JanewayK.A. Sunitinib in pediatric patients with advanced gastrointestinal stromal tumor: Results from a phase I/II trial.Cancer Chemother. Pharmacol.2019841415010.1007/s00280‑019‑03814‑5 31006038
    [Google Scholar]
  33. ZahoorH. MirM.C. BarataP.C. StephensonA.J. CampbellS.C. FerganyA. DreicerR. GarciaJ.A. Phase II trial of continuous treatment with sunitinib in patients with high-risk (BCG-refractory) non-muscle invasive bladder cancer.Invest. New Drugs20193761231123810.1007/s10637‑018‑00716‑w 31231785
    [Google Scholar]
  34. MammatasL.H. ZandvlietA.S. RovithiM. HoneywellR.J. SwartE.L. PetersG.J. Menke-van der Houven van Oordt, C.W.; Verheul, H.M.W. Sorafenib administered using a high-dose, pulsatile regimen in patients with advanced solid malignancies: A phase I exposure escalation study.Cancer Chemother. Pharmacol.202085593194010.1007/s00280‑020‑04065‑5 32274565
    [Google Scholar]
  35. RuanglertboonW. SorichM.J. RowlandA. HopkinsA.M. Effect of early adverse events resulting in sorafenib dose adjustments on survival outcomes of advanced hepatocellular carcinoma patients.Int. J. Clin. Oncol.20202591672167710.1007/s10147‑020‑01698‑7 32417993
    [Google Scholar]
  36. MendelD.B. LairdA.D. XinX. LouieS.G. ChristensenJ.G. LiG. SchreckR.E. AbramsT.J. NgaiT.J. LeeL.B. MurrayL.J. CarverJ. ChanE. MossK.G. HaznedarJ.O. SukbuntherngJ. BlakeR.A. SunL. TangC. MillerT. ShirazianS. McMahonG. CherringtonJ.M. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship.Clin. Cancer Res.200391327337 12538485
    [Google Scholar]
  37. MorrisS.W. KirsteinM.N. ValentineM.B. DittmerK. ShapiroD.N. LookA.T. SaltmanD.L. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma.Science1995267519631631710.1126/science.267.5196.316.c 7824924
    [Google Scholar]
  38. IwaharaT. FujimotoJ. WenD. CupplesR. BucayN. ArakawaT. MoriS. RatzkinB. YamamotoT. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system.Oncogene199714443944910.1038/sj.onc.1200849 9053841
    [Google Scholar]
  39. CessnaM.H. ZhouH. SangerW.G. PerkinsS.L. TrippS. PickeringD. DainesC. CoffinC.M. Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: A study of 135 cases.Mod. Pathol.200215993193810.1097/01.MP.0000026615.04130.1F 12218210
    [Google Scholar]
  40. McManusD.T. CatherwoodM.A. CareyP.D. CuthbertR.J.G. AlexanderH.D. ALK-positive diffuse large B-cell lymphoma of the stomach associated with a clathrin-ALK rearrangement.Hum. Pathol.200435101285128810.1016/j.humpath.2004.06.001 15492998
    [Google Scholar]
  41. SodaM. ChoiY.L. EnomotoM. TakadaS. YamashitaY. IshikawaS. FujiwaraS. WatanabeH. KurashinaK. HatanakaH. BandoM. OhnoS. IshikawaY. AburataniH. NikiT. SoharaY. SugiyamaY. ManoH. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer.Nature2007448715356156610.1038/nature05945 17625570
    [Google Scholar]
  42. WaggottW. LoY.M.D. BastardC. GatterK.C. LerouxD. MasonD.Y. BoultwoodJ. WainscoatJ.S. Detection of NPM‐ALK DNA rearrangement in CD30 positive anaplastic large cell lymphoma.Br. J. Haematol.199589490590710.1111/j.1365‑2141.1995.tb08434.x 7772531
    [Google Scholar]
  43. TrineiM. LanfranconeL. CampoE. PulfordK. MasonD.Y. PelicciP.G. FaliniB. A new variant anaplastic lymphoma kinase (ALK)-fusion protein (ATIC-ALK) in a case of ALK-positive anaplastic large cell lymphoma.Cancer Res.2000604793798 10706082
    [Google Scholar]
  44. MaZ. HillD.A. CollinsM.H. MorrisS.W. SumegiJ. ZhouM. ZuppanC. BridgeJ.A. Fusion of ALK to the Ran‐binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor.Genes Chromosomes Cancer20033719810510.1002/gcc.10177 12661011
    [Google Scholar]
  45. KongX. PanP. SunH. XiaH. WangX. LiY. HouT. Drug discovery targeting anaplastic lymphoma kinase (ALK).J. Med. Chem.20196224109271095410.1021/acs.jmedchem.9b00446 31419130
    [Google Scholar]
  46. CuiJ.J. Tran-DubéM. ShenH. NambuM. KungP.P. PairishM. JiaL. MengJ. FunkL. BotrousI. McTigueM. GrodskyN. RyanK. PadriqueE. AltonG. TimofeevskiS. YamazakiS. LiQ. ZouH. ChristensenJ. MroczkowskiB. BenderS. KaniaR.S. EdwardsM.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK).J. Med. Chem.201154186342636310.1021/jm2007613 21812414
    [Google Scholar]
  47. ShawA.T. KimD.W. NakagawaK. SetoT. CrinóL. AhnM.J. De PasT. BesseB. SolomonB.J. BlackhallF. WuY.L. ThomasM. O’ByrneK.J. Moro-SibilotD. CamidgeD.R. MokT. HirshV. RielyG.J. IyerS. TassellV. PolliA. WilnerK.D. JänneP.A. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer.N. Engl. J. Med.2013368252385239410.1056/NEJMoa1214886 23724913
    [Google Scholar]
  48. SolomonB.J. MokT. KimD.W. WuY.L. NakagawaK. MekhailT. FelipE. CappuzzoF. PaoliniJ. UsariT. IyerS. ReismanA. WilnerK.D. TursiJ. BlackhallF. First-line crizotinib versus chemotherapy in ALK-positive lung cancer.N. Engl. J. Med.2014371232167217710.1056/NEJMoa1408440 25470694
    [Google Scholar]
  49. SasakiT. KoivunenJ. OginoA. YanagitaM. NikiforowS. ZhengW. LathanC. MarcouxJ.P. DuJ. OkudaK. CapellettiM. ShimamuraT. ErcanD. StumpfovaM. XiaoY. WeremowiczS. ButaneyM. HeonS. WilnerK. ChristensenJ.G. EckM.J. WongK.K. LindemanN. GrayN.S. RodigS.J. JänneP.A. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors.Cancer Res.201171186051606010.1158/0008‑5472.CAN‑11‑1340 21791641
    [Google Scholar]
  50. CostaD.B. ShawA.T. OuS.H.I. SolomonB.J. RielyG.J. AhnM.J. ZhouC. ShreeveS.M. SelaruP. PolliA. SchnellP. WilnerK.D. WiltshireR. CamidgeD.R. CrinòL. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases.J. Clin. Oncol.201533171881188810.1200/JCO.2014.59.0539 25624436
    [Google Scholar]
  51. QianM. ZhuB. WangX. LiebmanM. Drug resistance in ALK-positiveNon-small cell lungcancer patients.Semin. Cell Dev. Biol.20176415015710.1016/j.semcdb.2016.09.016 27693505
    [Google Scholar]
  52. BasitS. AshrafZ. LeeK. LatifM. First macrocyclic 3 rd -generation ALK inhibitor for treatment of ALK/ROS1 cancer: Clinical and designing strategy update of lorlatinib.Eur. J. Med. Chem.201713434835610.1016/j.ejmech.2017.04.032 28431340
    [Google Scholar]
  53. SyedY.Y. Lorlatinib: First global approval.Drugs2019791939810.1007/s40265‑018‑1041‑0 30604291
    [Google Scholar]
  54. GuanJ. TuckerE.R. WanH. ChandD. DanielsonL.S. RuuthK. El WakilA. WitekB. JaminY. UmapathyG. RobinsonS.P. JohnsonT.W. SmealT. MartinssonT. CheslerL. PalmerR.H. HallbergB. The ALK inhibitor PF-06463922 is effective as a single agent in neuroblastoma driven by expression of ALK and MYCN.Dis. Model. Mech.20169994195210.1242/dmm.024448 27483357
    [Google Scholar]
  55. LennartssonJ. RönnstrandL. Stem cell factor receptor/c-Kit: From basic science to clinical implications.Physiol. Rev.20129241619164910.1152/physrev.00046.2011 23073628
    [Google Scholar]
  56. PathaniaS. PentikäinenO.T. SinghP.K. A holistic view on c-Kit in cancer: Structure, signaling, pathophysiology and its inhibitors.Biochim. Biophys. Acta Rev. Cancer20211876218863110.1016/j.bbcan.2021.188631 34606974
    [Google Scholar]
  57. KlugL.R. KhosroyaniH.M. KentJ.D. HeinrichM.C. New treatment strategies for advanced-stage gastrointestinal stromal tumours.Nat. Rev. Clin. Oncol.202219532834110.1038/s41571‑022‑00606‑4 35217782
    [Google Scholar]
  58. BlayJ.Y. KangY.K. NishidaT. von MehrenM. Gastrointestinal stromal tumours.Nat. Rev. Dis. Primers2021712210.1038/s41572‑021‑00254‑5 33737510
    [Google Scholar]
  59. DagherR. CohenM. WilliamsG. RothmannM. GobburuJ. RobbieG. RahmanA. ChenG. StatenA. GriebelD. PazdurR. Approval summary: Imatinib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors.Clin. Cancer Res.200281030343038 12374669
    [Google Scholar]
  60. DrukerB.J. TamuraS. BuchdungerE. OhnoS. SegalG.M. FanningS. ZimmermannJ. LydonN.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells.Nat. Med.19962556156610.1038/nm0596‑561 8616716
    [Google Scholar]
  61. TuvesonD.A. WillisN.A. JacksT. GriffinJ.D. SingerS. FletcherC.D.M. FletcherJ.A. DemetriG.D. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: Biological and clinical implications.Oncogene200120365054505810.1038/sj.onc.1204704 11526490
    [Google Scholar]
  62. HeinrichM.C. CorlessC.L. DemetriG.D. BlankeC.D. von MehrenM. JoensuuH. McGreeveyL.S. ChenC.J. Van den AbbeeleA.D. DrukerB.J. KieseB. EisenbergB. RobertsP.J. SingerS. FletcherC.D.M. SilbermanS. DimitrijevicS. FletcherJ.A. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor.J. Clin. Oncol.200321234342434910.1200/JCO.2003.04.190 14645423
    [Google Scholar]
  63. HeinrichM.C. OwzarK. CorlessC.L. HollisD. BordenE.C. FletcherC.D.M. RyanC.W. von MehrenM. BlankeC.D. RankinC. BenjaminR.S. BramwellV.H. DemetriG.D. BertagnolliM.M. FletcherJ.A. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group.J. Clin. Oncol.200826335360536710.1200/JCO.2008.17.4284 18955451
    [Google Scholar]
  64. CorlessC.L. BallmanK.V. AntonescuC.R. KolesnikovaV. MakiR.G. PistersP.W.T. BlacksteinM.E. BlankeC.D. DemetriG.D. HeinrichM.C. von MehrenM. PatelS. McCarterM.D. OwzarK. DeMatteoR.P. Pathologic and molecular features correlate with long-term outcome after adjuvant therapy of resected primary GI stromal tumor: The ACOSOG Z9001 trial.J. Clin. Oncol.201432151563157010.1200/JCO.2013.51.2046 24638003
    [Google Scholar]
  65. JoensuuH. ErikssonM. Sundby HallK. HartmannJ.T. PinkD. SchütteJ. RamadoriG. HohenbergerP. DuysterJ. Al-BatranS.E. SchlemmerM. BauerS. WardelmannE. Sarlomo-RikalaM. NilssonB. SihtoH. MongeO.R. BonoP. KallioR. VehtariA. LeinonenM. AlvegårdT. ReichardtP. One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor: A randomized trial.JAMA2012307121265127210.1001/jama.2012.347 22453568
    [Google Scholar]
  66. JoensuuH. ErikssonM. Sundby HallK. ReichardtA. HermesB. SchütteJ. CameronS. HohenbergerP. JostP.J. Al-BatranS.E. LindnerL.H. BauerS. WardelmannE. NilssonB. KallioR. JaakkolaP. JunnilaJ. AlvegårdT. ReichardtP. Survival out- comes associated with 3 years vs 1 year of adjuvant imatinib for patients with high-risk gastrointestinal stromal tumors: An analysis of a randomized clinical trial after 10-year follow-up.JAMA Oncol.2020681241124610.1001/jamaoncol.2020.2091 32469385
    [Google Scholar]
  67. JoensuuH. WardelmannE. SihtoH. ErikssonM. Sundby HallK. ReichardtA. HartmannJ.T. PinkD. CameronS. HohenbergerP. Al-BatranS.E. SchlemmerM. BauerS. NilssonB. KallioR. JunnilaJ. VehtariA. ReichardtP. Effect of KIT and PDGFRA mutations on survival in patients with gastroin- testinal stromal tumors treated with adjuvant imatinib: An exploratory analysis of a randomized clinical trial.JAMA Oncol.20173560260910.1001/jamaoncol.2016.5751 28334365
    [Google Scholar]
  68. von MehrenM. JoensuuH. Gastrointestinal stromal tumors.J. Clin. Oncol.201836213614310.1200/JCO.2017.74.9705 29220298
    [Google Scholar]
  69. SmithB.D. KaufmanM.D. LuW.P. Ripretinib (DCC-2618) is a switch control kinase inhibitor of a broad spectrum of oncogenic and drug-resistant KIT and PDGFRA variants.Cancer Cell2019355738751
    [Google Scholar]
  70. JankuF. Abdul RazakA.R. ChiP. HeinrichM.C. von MehrenM. JonesR.L. GanjooK. TrentJ. GelderblomH. SomaiahN. HuS. RosenO. SuY. Ruiz-SotoR. GordonM. GeorgeS. Switch control inhibition of KIT and PDGFRA in patients with advanced gas- trointestinal stromal tumor: A phase I study of ripretinib.J. Clin. Oncol.202038283294330310.1200/JCO.20.00522 32804590
    [Google Scholar]
  71. BlayJ.Y. SerranoC. HeinrichM.C. ZalcbergJ. BauerS. GelderblomH. SchöffskiP. JonesR.L. AttiaS. D’AmatoG. ChiP. ReichardtP. MeadeJ. ShiK. Ruiz-SotoR. GeorgeS. von MehrenM. Ripretinib in patients with advanced gastrointestinal stromal tumours (INVICTUS): A double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Oncol.202021792393410.1016/S1470‑2045(20)30168‑6 32511981
    [Google Scholar]
  72. BauerS. HeinrichM.C. GeorgeS. ZalcbergJ.R. SerranoC. GelderblomH. JonesR.L. AttiaS. D’AmatoG. ChiP. ReichardtP. MeadeJ. SuY. Ruiz-SotoR. BlayJ.Y. von MehrenM. SchöffskiP. Clinical activity of ripretinib in patients with advanced gastrointestinal stro- mal tumor harboring heterogeneous KIT/PDGFRA Muta- tions in the phase III INVICTUS study.Clin. Cancer Res.202127236333634210.1158/1078‑0432.CCR‑21‑1864 34503977
    [Google Scholar]
  73. JohnstonS.R.D. ToiM. O’ShaughnessyJ. RastogiP. CamponeM. NevenP. HuangC.S. HuoberJ. JaliffeG.G. CicinI. TolaneyS.M. GoetzM.P. RugoH.S. SenkusE. TestaL. Del MastroL. ShimizuC. WeiR. ShahirA. MunozM. San AntonioB. AndréV. HarbeckN. MartinM. Abemaciclib plus endocrine therapy for hormone receptor-positive, HER2-negative, node-positive, high-risk early breast cancer (monarchE): Results from a preplanned interim analysis of a randomised, open-label, phase 3 trial.Lancet Oncol.2023241779010.1016/S1470‑2045(22)00694‑5 36493792
    [Google Scholar]
  74. NakajimaE.C. DreznerN. LiX. Mishra-KalyaniP.S. LiuY. ZhaoH. BiY. LiuJ. RahmanA. WearneE. OjofeitimiI. HotakiL.T. SpillmanD. PazdurR. BeaverJ.A. SinghH. FDA approval summary: Sotorasib for KRAS G12C -mutated metastatic NSCLC.Clin. Cancer Res.20222881482148610.1158/1078‑0432.CCR‑21‑3074 34903582
    [Google Scholar]
  75. JacobsF. CaniM. MalapelleU. NovelloS. NapoliV.M. BironzoP. Targeting KRAS in NSCLC: Old failures and new options for “Non-G12c” patients.Cancers20211324633210.3390/cancers13246332 34944952
    [Google Scholar]
  76. TanH.Y. WangN. LamW. GuoW. FengY. ChengY.C. Targeting tumour microenvironment by tyrosine kinase inhibitor.Mol. Cancer20181714310.1186/s12943‑018‑0800‑6 29455663
    [Google Scholar]
  77. HuangL. JiangS. ShiY. Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020).J. Hematol. Oncol.202013114310.1186/s13045‑020‑00977‑0 33109256
    [Google Scholar]
  78. Esteban-VillarrubiaJ. Soto-CastilloJ.J. PozasJ. San Román-GilM. Orejana-MartínI. Torres-JiménezJ. CarratoA. Alonso-GordoaT. Molina-CerrilloJ. Tyrosine kinase receptors in oncology.Int. J. Mol. Sci.20202122852910.3390/ijms21228529 33198314
    [Google Scholar]
  79. PetrelliF. GhidiniM. LonatiV. TomaselloG. BorgonovoK. GhilardiM. CabidduM. BarniS. The efficacy of lapatinib and capecitabine in HER-2 positive breast cancer with brain metastases: A systematic review and pooled analysis.Eur. J. Cancer20178414114810.1016/j.ejca.2017.07.024 28810186
    [Google Scholar]
  80. TevaarwerkA.J. KolesarJ.M. Lapatinib: A small-molecule inhibitor of epidermal growth factor receptor and human epidermal growth factor receptor-2 tyrosine kinases used in the treatment of breast cancer.Clin. Ther.200931Pt 22332234810.1016/j.clinthera.2009.11.029 20110044
    [Google Scholar]
  81. HackshawM.D. DanyshH.E. HendersonM. WangE. TuN. IslamZ. LadnerA. RitcheyM.E. SalasM. Prognostic factors of brain metastasis and survival among HER2-positive metastatic breast cancer patients: A systematic literature review.BMC Cancer202121196710.1186/s12885‑021‑08708‑5 34454469
    [Google Scholar]
  82. Sartore-BianchiA. TrusolinoL. MartinoC. BencardinoK. LonardiS. BergamoF. ZagonelV. LeoneF. DepetrisI. MartinelliE. TroianiT. CiardielloF. RaccaP. BertottiA. SiravegnaG. TorriV. AmatuA. GhezziS. MarrapeseG. PalmeriL. ValtortaE. CassingenaA. LauricellaC. VanzulliA. ReggeD. VeroneseS. ComoglioP.M. BardelliA. MarsoniS. SienaS. Dual-targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 12/13 wild-type, HER2-positive metastatic colorectal cancer (HERACLES): A proof-of-concept, multicentre, open-label, phase 2 trial.Lancet Oncol.201617673874610.1016/S1470‑2045(16)00150‑9 27108243
    [Google Scholar]
  83. LiuC.Y. ChuP.Y. HuangC.T. ChenJ.L. YangH.P. WangW.L. LauK.Y. LeeC.H. LanT.Y. HuangT.T. LinP.H. DaiM.S. TsengL.M. Varlitinib downregulates HER/ERK signaling and induces apoptosis in triple negative breast cancer cells.Cancers201911110510.3390/cancers11010105 30658422
    [Google Scholar]
  84. LeeM.X. WongA.L.A. OwS. SundarR. TanD.S.P. SooR.A. CheeC.E. LimJ.S.J. YongW.P. LimS.E. GohB.C. WangL. LeeS.C. Phase Ib dose-finding study of varlitinib combined with weekly paclitaxel with or without carboplatin ± trastuzumab in advanced solid tumors.Target. Oncol.202217214115110.1007/s11523‑022‑00867‑0 35195837
    [Google Scholar]
  85. JavleM.M. OhD.Y. IkedaM. YongW.P. HsuK. LindmarkB. McIntyreN. FirthC. Varlitinib plus capecitabine in second-line advanced biliary tract cancer: A randomized, phase II study (TreeTopp).ESMO Open20227110031410.1016/j.esmoop.2021.100314 34922298
    [Google Scholar]
  86. TakigawaH. KitadaiY. ShinagawaK. YugeR. HigashiY. TanakaS. YasuiW. ChayamaK. Multikinase inhibitor regorafenib inhibits the growth and metastasis of colon cancer with abundant stroma.Cancer Sci.2016107560160810.1111/cas.12907 26865419
    [Google Scholar]
  87. WongA.L.A. LimJ.S.J. SinhaA. GopinathanA. LimR. TanC.S. SohT. VenkateshS. TitinC. SapariN.S. LeeS.C. YongW.P. TanD.S.P. PangB. WangT.T. ZeeY.K. SoongR. TrnkovaZ. LathiaC. ThieryJ.P. WilhelmS. JeffersM. GohB.C. Tumour pharmacodynamics and circulating cell free DNA in patients with refractory colorectal carcinoma treated with regorafenib.J. Transl. Med.20151315710.1186/s12967‑015‑0405‑4 25889309
    [Google Scholar]
  88. CronaD.J. KeislerM.D. WalkoC.M. Regorafenib.Ann. Pharmacother.201347121685169610.1177/1060028013509792 24259629
    [Google Scholar]
  89. JainA. JainP. SoniP. TiwariA. TiwariS.P. Design and characterization of silver nanoparticles of different species of curcuma in the treatment of cancer using human colon cancer cell line (HT-29).J. Gastrointest. Cancer2023541909510.1007/s12029‑021‑00788‑7 35043370
    [Google Scholar]
  90. Quintás-CardamaA. CortesJ. Molecular biology of bcr-abl1–positive chronic myeloid leukemia.Blood200911381619163010.1182/blood‑2008‑03‑144790 18827185
    [Google Scholar]
  91. RedaelliA. BellC. CasagrandeJ. StephensJ. BottemanM. LaskinB. PashosC. Clinical and epidemiologic burden of chronic myelogenous leukemia.Expert Rev. Anticancer Ther.200441859610.1586/14737140.4.1.85 14748660
    [Google Scholar]
  92. KurzrockR. KantarjianH.M. DrukerB.J. TalpazM. Philadelphia chromosome-positive leukemias: From basic mechanisms to molecular therapeutics.Ann. Intern. Med.20031381081983010.7326/0003‑4819‑138‑10‑200305200‑00010 12755554
    [Google Scholar]
  93. KleinF. FeldhahnN. HarderL. WangH. WartenbergM. HofmannW.K. WernetP. SiebertR. MüschenM. The BCR-ABL1 kinase bypasses selection for the expression of a pre-B cell receptor in pre-B acute lymphoblastic leukemia cells.J. Exp. Med.2004199567368510.1084/jem.20031637 14993251
    [Google Scholar]
  94. DeiningerM. BuchdungerE. DrukerB.J. The development of imatinib as a therapeutic agent for chronic myeloid leukemia.Blood200510572640265310.1182/blood‑2004‑08‑3097 15618470
    [Google Scholar]
  95. DrukerB.J. GuilhotF. O’BrienS.G. GathmannI. KantarjianH. GattermannN. DeiningerM.W.N. SilverR.T. GoldmanJ.M. StoneR.M. CervantesF. HochhausA. PowellB.L. GabriloveJ.L. RousselotP. ReiffersJ. CornelissenJ.J. HughesT. AgisH. FischerT. VerhoefG. ShepherdJ. SaglioG. GratwohlA. NielsenJ.L. RadichJ.P. SimonssonB. TaylorK. BaccaraniM. SoC. LetvakL. LarsonR.A. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia.N. Engl. J. Med.2006355232408241710.1056/NEJMoa062867 17151364
    [Google Scholar]
  96. HochhausA. KreilS. CorbinA.S. La RoséeP. MüllerM.C. LahayeT. HanfsteinB. SchochC. CrossN.C.P. BergerU. GschaidmeierH. DrukerB.J. HehlmannR. Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy.Leukemia200216112190219610.1038/sj.leu.2402741 12399961
    [Google Scholar]
  97. HantschelO. GrebienF. Superti-FurgaG. The growing arsenal of ATP-competitive and allosteric inhibitors of BCR-ABL.Cancer Res.201272194890489510.1158/0008‑5472.CAN‑12‑1276 23002203
    [Google Scholar]
  98. AzamM. LatekR.R. DaleyG.Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL.Cell2003112683184310.1016/S0092‑8674(03)00190‑9 12654249
    [Google Scholar]
  99. JabbourE. CortesJ. KantarjianH. Treatment selection after imatinib resistance in chronic myeloid leukemia.Target. Oncol.20094131010.1007/s11523‑008‑0100‑y 19343297
    [Google Scholar]
  100. WeisbergE. ManleyP.W. BreitensteinW. BrüggenJ. Cowan-JacobS.W. RayA. HuntlyB. FabbroD. FendrichG. Hall-MeyersE. KungA.L. MestanJ. DaleyG.Q. CallahanL. CatleyL. CavazzaC. MohammedA. NeubergD. WrightR.D. GillilandD.G. GriffinJ.D. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl.Cancer Cell20057212914110.1016/j.ccr.2005.01.007 15710326
    [Google Scholar]
  101. PuttiniM. ColucciaA.M.L. BoschelliF. ClerisL. MarchesiE. Donella-DeanaA. AhmedS. RedaelliS. PiazzaR. MagistroniV. AndreoniF. ScapozzaL. FormelliF. Gambacorti-PasseriniC. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells.Cancer Res.20066623113141132210.1158/0008‑5472.CAN‑06‑1199 17114238
    [Google Scholar]
  102. SawyersC.L. Even better kinase inhibitors for chronic myeloid leukemia.N. Engl. J. Med.2010362242314231510.1056/NEJMe1004430 20525994
    [Google Scholar]
  103. O’HareT. WaltersD.K. StoffregenE.P. JiaT. ManleyP.W. MestanJ. Cowan-JacobS.W. LeeF.Y. HeinrichM.C. DeiningerM.W.N. DrukerB.J. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants.Cancer Res.200565114500450510.1158/0008‑5472.CAN‑05‑0259 15930265
    [Google Scholar]
  104. O’HareT. DeiningerM.W.N. EideC.A. ClacksonT. DrukerB.J. Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia.Clin. Cancer Res.201117221222110.1158/1078‑0432.CCR‑09‑3314 21098337
    [Google Scholar]
  105. O’HareT. ShakespeareW.C. ZhuX. EideC.A. RiveraV.M. WangF. AdrianL.T. ZhouT. HuangW.S. XuQ. MetcalfC.A.III TynerJ.W. LoriauxM.M. CorbinA.S. WardwellS. NingY. KeatsJ.A. WangY. SundaramoorthiR. ThomasM. ZhouD. SnodgrassJ. CommodoreL. SawyerT.K. DalgarnoD.C. DeiningerM.W.N. DrukerB.J. ClacksonT. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance.Cancer Cell200916540141210.1016/j.ccr.2009.09.028 19878872
    [Google Scholar]
  106. WylieA.A. SchoepferJ. JahnkeW. Cowan-JacobS.W. LooA. FuretP. MarzinzikA.L. PelleX. DonovanJ. ZhuW. BuonamiciS. HassanA.Q. LombardoF. IyerV. PalmerM. BerelliniG. DoddS. ThohanS. BitterH. BranfordS. RossD.M. HughesT.P. PetruzzelliL. VanasseK.G. WarmuthM. HofmannF. KeenN.J. SellersW.R. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1.Nature2017543764773373710.1038/nature21702 28329763
    [Google Scholar]
  107. EideC.A. AdrianL.T. TynerJ.W. Mac PartlinM. AndersonD.J. WiseS.C. SmithB.D. PetilloP.A. FlynnD.L. DeiningerM.W.N. O’HareT. DrukerB.J. The ABL switch control inhibitor DCC-2036 is active against the chronic myeloid leukemia mutant BCR-ABLT315I and exhibits a narrow resistance profile.Cancer Res.20117193189319510.1158/0008‑5472.CAN‑10‑3224 21505103
    [Google Scholar]
  108. YokotaA. KimuraS. MasudaS. AshiharaE. KurodaJ. SatoK. KamitsujiY. KawataE. DeguchiY. UrasakiY. TeruiY. RuthardtM. UedaT. HatakeK. InuiK. MaekawaT. INNO-406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity.Blood2007109130631410.1182/blood‑2006‑03‑013250 16954504
    [Google Scholar]
  109. OgboguP.U. BochnerB.S. ButterfieldJ.H. GleichG.J. Huss-MarpJ. KahnJ.E. LeifermanK.M. NutmanT.B. PfabF. RingJ. RothenbergM.E. RoufosseF. SajousM.H. SheikhJ. SimonD. SimonH.U. SteinM.L. WardlawA. WellerP.F. KlionA.D. Hypereosinophilic syndrome: A multicenter, retrospective analysis of clinical characteristics and response to therapy.J. Allergy Clin. Immunol.2009124613191325.e310.1016/j.jaci.2009.09.022 19910029
    [Google Scholar]
  110. MontemurroM. CioffiA. DômontJ. RutkowskiP. RothA.D. von MoosR. InauenR. ToulmondeM. BurkhardR.O. KnuesliC. BauerS. CassierP. SchwarbH. Le CesneA. KoeberleD. BärtschiD. DietrichD. BiaggiC. PriorJ. LeyvrazS. Long‐term outcome of dasatinib first‐line treatment in gastrointestinal stromal tumor: A multicenter, 2‐stage phase 2 trial (Swiss Group for Clinical Cancer Research 56/07).Cancer201812471449145410.1002/cncr.31234 29315500
    [Google Scholar]
  111. RossariF. MinutoloF. OrciuoloE. Past, present, and future of Bcr-Abl inhibitors: From chemical development to clinical efficacy.J. Hematol. Oncol.20181118410.1186/s13045‑018‑0624‑2 29925402
    [Google Scholar]
  112. TanakaS. BabaY. B cell receptor signaling.Adv. Exp. Med. Biol.20201254233610.1007/978‑981‑15‑3532‑1_2 32323266
    [Google Scholar]
  113. HendriksR.W. YuvarajS. KilL.P. Targeting Bruton’s tyrosine kinase in B cell malignancies.Nat. Rev. Cancer201414421923210.1038/nrc3702 24658273
    [Google Scholar]
  114. SchwartzbergP.L. FinkelsteinL.D. ReadingerJ.A. TEC-family kinases: Regulators of T-helper-cell differentiation.Nat. Rev. Immunol.20055428429510.1038/nri1591 15803148
    [Google Scholar]
  115. KhanW.N. AltF.W. GersteinR.M. MalynnB.A. LarssonI. RathbunG. DavidsonL. MüllerS. KantorA.B. HerzenbergL.A. RosenF.S. SiderasP. Defective B cell development and function in Btk-deficient mice.Immunity19953328329910.1016/1074‑7613(95)90114‑0 7552994
    [Google Scholar]
  116. MaL. ClaytonJ.R. WalgrenR.A. ZhaoB. EvansR.J. SmithM.C. Heinz-TahenyK.M. KreklauE.L. BloemL. PitouC. ShenW. StrelowJ.M. HalsteadC. RempalaM.E. ParthasarathyS. GilligJ.R. HeinzL.J. PeiH. WangY. StancatoL.F. DowlessM.S. IversenP.W. BurkholderT.P. Discovery and characterization of LY2784544, a small-molecule tyrosine kinase inhibitor of JAK2V617F.Blood Cancer J.201334e10910.1038/bcj.2013.6 23584399
    [Google Scholar]
  117. DavidsM.S. BrownJ.R. Ibrutinib: A first in class covalent inhibitor of Bruton’s tyrosine kinase.Future Oncol.201410695796710.2217/fon.14.51 24941982
    [Google Scholar]
  118. SkarzynskiM. NiemannC.U. LeeY.S. MartyrS. MaricI. SalemD. Stetler-StevensonM. MartiG.E. CalvoK.R. YuanC. ValdezJ. SotoS. FarooquiM.Z.H. HermanS.E.M. WiestnerA. Interactions between ibrutinib and anti-CD20 antibodies: Competing effects on the outcome of combination therapy.Clin. Cancer Res.2016221869510.1158/1078‑0432.CCR‑15‑1304 26283682
    [Google Scholar]
  119. NoyA. de VosS. ThieblemontC. MartinP. FlowersC.R. MorschhauserF. CollinsG.P. MaS. ColemanM. PelesS. SmithS. BarrientosJ.C. SmithA. MunnekeB. DimeryI. BeaupreD.M. ChenR. Targeting Bruton tyrosine kinase with ibrutinib in relapsed/refractory marginal zone lymphoma.Blood2017129162224223210.1182/blood‑2016‑10‑747345 28167659
    [Google Scholar]
  120. MatoA.R. NabhanC. ThompsonM.C. LamannaN. BranderD.M. HillB. HowlettC. SkarbnikA. ChesonB.D. ZentC. PuJ. KiselevP. GoyA. ClaxtonD. IsaacK. KennardK.H. TimlinC. LandsburgD. WinterA. NastaS.D. BachowS.H. SchusterS.J. DorseyC. SvobodaJ. BarrP. UjjaniC.S. Toxicities and outcomes of 616 ibrutinib-treated patients in the United States: A real-world analysis.Haematologica2018103587487910.3324/haematol.2017.182907 29419429
    [Google Scholar]
  121. RajasekaranN. SadaramM. HebbJ. Sagiv-BarfiI. AmbulkarS. RajapaksaA. ChangS. ChesterC. WallerE. WangL. LannuttiB. JohnsonD. LevyR. KohrtH.E. Three BTK-specific inhibitors, in contrast to ibrutinib, do not antagonize rituximab-dependent NK-cell mediated cytotoxicity.Blood201412421311810.1182/blood.V124.21.3118.3118
    [Google Scholar]
  122. WuJ. ZhangM. LiuD. Acalabrutinib (ACP-196): A selective second-generation BTK inhibitor.J. Hematol. Oncol.2016912110.1186/s13045‑016‑0250‑9 26957112
    [Google Scholar]
  123. WuJ. LiuC. TsuiS.T. LiuD. Second-generation inhibitors of Bruton tyrosine kinase.J. Hematol. Oncol.2016918010.1186/s13045‑016‑0313‑y 27590878
    [Google Scholar]
  124. HermanS.E.M. MontravetaA. NiemannC.U. Mora-JensenH. GulrajaniM. KrantzF. MantelR. SmithL.L. McClanahanF. HarringtonB.K. ColomerD. CoveyT. ByrdJ.C. IzumiR. KapteinA. UlrichR. JohnsonA.J. LannuttiB.J. WiestnerA. WoyachJ.A. The Bruton tyrosine kinase (BTK) inhibitor acalabrutinib demonstrates potent on-target effects and efficacy in two mouse models of chronic lymphocytic leukemia.Clin. Cancer Res.201723112831284110.1158/1078‑0432.CCR‑16‑0463 27903679
    [Google Scholar]
  125. GuoY. LiuY. HuN. YuD. ZhouC. ShiG. ZhangB. WeiM. LiuJ. LuoL. TangZ. SongH. GuoY. LiuX. SuD. ZhangS. SongX. ZhouX. HongY. ChenS. ChengZ. YoungS. WeiQ. WangH. WangQ. LvL. WangF. XuH. SunH. XingH. LiN. ZhangW. WangZ. LiuG. SunZ. ZhouD. LiW. LiuL. WangL. WangZ. Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase.J. Med. Chem.201962177923794010.1021/acs.jmedchem.9b00687 31381333
    [Google Scholar]
  126. a SyedY.Y. Zanubrutinib: First Approval.Drugs2020801919710.1007/s40265‑019‑01252‑4 31933167
    [Google Scholar]
  127. b BlumK.A. B-cell receptor pathway modulators in NHL.Hematology201520151829110.1182/asheducation‑2015.1.82 26637705
    [Google Scholar]
  128. SchwartzM. ZhangY. RosenblattJ.D. B cell regulation of the anti-tumor response and role in carcinogenesis.J. Immunother. Cancer2016414010.1186/s40425‑016‑0145‑x 27437104
    [Google Scholar]
  129. BurgerJ.A. Bruton’s tyrosine kinase (BTK) inhibitors in clinical trials.Curr. Hematol. Malig. Rep.201491444910.1007/s11899‑013‑0188‑8 24357428
    [Google Scholar]
  130. WalterH.S. RuleS.A. DyerM.J.S. KarlinL. JonesC. CazinB. QuittetP. ShahN. HutchinsonC.V. HondaH. DuffyK. BirkettJ. JamiesonV. Courtenay-LuckN. YoshizawaT. SharpeJ. OhnoT. AbeS. NishimuraA. CartronG. MorschhauserF. FeganC. SallesG. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies.Blood2016127441141910.1182/blood‑2015‑08‑664086 26542378
    [Google Scholar]
  131. DanilovA.V. HerbauxC. WalterH.S. HillmenP. RuleS.A. KioE.A. KarlinL. DyerM.J.S. MitraS.S. YiP.C. HumeniukR. HuangX. ZhouZ. BhargavaP. JürgensmeierJ.M. FeganC.D. Phase Ib study of tirabrutinib in combination with idelalisib or entospletinib in previously treated chronic lymphocytic leukemia.Clin. Cancer Res.202026122810281810.1158/1078‑0432.CCR‑19‑3504 32156743
    [Google Scholar]
  132. EvansE.K. TesterR. AslanianS. KarpR. SheetsM. LabenskiM.T. WitowskiS.R. LounsburyH. ChaturvediP. MazdiyasniH. ZhuZ. NachtM. FreedM.I. PetterR.C. DubrovskiyA. SinghJ. WestlinW.F. Inhibition of Btk with CC-292 provides early pharmacodynamic assessment of activity in mice and humans.J. Pharmacol. Exp. Ther.2013346221922810.1124/jpet.113.203489 23709115
    [Google Scholar]
  133. AbdelhameedA.S. AttwaM.W. Al-ShakliaN.S. KadiA.A. A highly sensitive LC-MS/MS method to determine novel Bruton’s tyrosine kinase inhibitor spebrutinib: Application to metabolic stability evaluation.R. Soc. Open Sci.20196619043410.1098/rsos.190434 31312501
    [Google Scholar]
  134. BrownJ.R. HarbW.A. HillB.T. GabriloveJ. SharmanJ.P. SchreederM.T. BarrP.M. ForanJ.M. MillerT.P. BurgerJ.A. KellyK.R. MahadevanD. MaS. LiY. PierceD.W. BarnettE. MarineJ. MirandaM. AzaryanA. YuX. Nava-ParadaP. MeiJ. KippsT.J. Phase I study of single-agent CC-292, a highly selective Brutons tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia.Haematologica20161017e295e29810.3324/haematol.2015.140806 27151992
    [Google Scholar]
  135. KimH.O. Development of BTK inhibitors for the treatment of B-cell malignancies.Arch. Pharm. Res.201942217118110.1007/s12272‑019‑01124‑1 30706214
    [Google Scholar]
  136. WoyachJ.A. RuppertA.S. GuinnD. LehmanA. BlachlyJ.S. LozanskiA. HeeremaN.A. ZhaoW. ColemanJ. JonesD. AbruzzoL. GordonA. MantelR. SmithL.L. McWhorterS. DavisM. DoongT.J. NyF. LucasM. ChaseW. JonesJ.A. FlynnJ.M. MaddocksK. RogersK. JaglowskiS. AndritsosL.A. AwanF.T. BlumK.A. GreverM.R. LozanskiG. JohnsonA.J. ByrdJ.C. BTK(C481S)-mediated resistance to ibrutinib in chronic lymphocytic leukemia.J. Clin. Oncol.201735131437144310.1200/JCO.2016.70.2282 28418267
    [Google Scholar]
  137. ThreadgillD.W. DlugoszA.A. HansenL.A. TennenbaumT. LichtiU. YeeD. LaMantiaC. MourtonT. HerrupK. HarrisR.C. BarnardJ.A. YuspaS.H. CoffeyR.J. MagnusonT. Targeted disruption of mouse EGF receptor: Effect of genetic background on mutant phenotype.Science1995269522123023410.1126/science.7618084 7618084
    [Google Scholar]
  138. BlobelC.P. ADAMs: Key components in EGFR signalling and development.Nat. Rev. Mol. Cell Biol.200561324310.1038/nrm1548 15688065
    [Google Scholar]
  139. SalomonD.S. BrandtR. CiardielloF. NormannoN. Epidermal growth factor-related peptides and their receptors in human malignancies.Crit. Rev. Oncol. Hematol.199519318323210.1016/1040‑8428(94)00144‑I 7612182
    [Google Scholar]
  140. MetroG. FinocchiaroG. ToschiL. BartoliniS. MagriniE. CancellieriA. TrisoliniR. CastaldiniL. TalliniG. CrinoL. CappuzzoF. Epidermal growth factor receptor (EGFR) targeted therapies in non-small cell lung cancer (NSCLC).Rev. Recent Clin. Trials20061111310.2174/157488706775246157 18393776
    [Google Scholar]
  141. RoskoskiR.Jr The ErbB/HER family of protein-tyrosine kinases and cancer.Pharmacol. Res.201479347410.1016/j.phrs.2013.11.002 24269963
    [Google Scholar]
  142. GuA. ShiC. XiongL. ChuT. PeiJ. HanB. Efficacy and safety evaluation of icotinib in patients with advanced non-small cell lung cancer.Chin. J. Cancer Res.20132519094 23372346
    [Google Scholar]
  143. LynchT.J. BellD.W. SordellaR. GurubhagavatulaS. OkimotoR.A. BranniganB.W. HarrisP.L. HaserlatS.M. SupkoJ.G. HaluskaF.G. LouisD.N. ChristianiD.C. SettlemanJ. HaberD.A. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib.N. Engl. J. Med.2004350212129213910.1056/NEJMoa040938 15118073
    [Google Scholar]
  144. KulkeM.H. BlaszkowskyL.S. RyanD.P. ClarkJ.W. MeyerhardtJ.A. ZhuA.X. EnzingerP.C. KwakE.L. MuzikanskyA. LawrenceC. FuchsC.S. Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer.J. Clin. Oncol.200725304787479210.1200/JCO.2007.11.8521 17947726
    [Google Scholar]
  145. MaioneP. SaccoP.C. SgambatoA. CasaluceF. RossiA. GridelliC. Overcoming resistance to targeted therapies in NSCLC: Current approaches and clinical application.Ther. Adv. Med. Oncol.20157526327310.1177/1758834015595048 26327924
    [Google Scholar]
  146. MillerV.A. HirshV. CadranelJ. ChenY.M. ParkK. KimS.W. ZhouC. SuW.C. WangM. SunY. HeoD.S. CrinoL. TanE.H. ChaoT.Y. ShahidiM. CongX.J. LorenceR.M. YangJ.C.H. Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung 1): A phase 2b/3 randomised trial.Lancet Oncol.201213552853810.1016/S1470‑2045(12)70087‑6 22452896
    [Google Scholar]
  147. LavacchiD. MazzoniF. GiacconeG. Clinical evaluation of dacomitinib for the treatment of metastatic non-small cell lung cancer (NSCLC): Current perspectives.Drug Des. Devel. Ther.2019133187319810.2147/DDDT.S194231 31564835
    [Google Scholar]
  148. SchrankZ. ChhabraG. LinL. IderzorigT. OsudeC. KhanN. KuckovicA. SinghS. MillerR. PuriN. Current molecular-targeted therapies in NSCLC and their mechanism of resistance.Cancers201810722410.3390/cancers10070224 29973561
    [Google Scholar]
  149. YverA. Osimertinib (AZD9291)-a science-driven, collaborative approach to rapid drug design and development.Ann. Oncol.20162761165117010.1093/annonc/mdw129 26961148
    [Google Scholar]
  150. YangJ.C.H. CamidgeD.R. YangC.T. ZhouJ. GuoR. ChiuC.H. ChangG.C. ShiahH.S. ChenY. WangC.C. BerzD. SuW.C. YangN. WangZ. FangJ. ChenJ. NikolinakosP. LuY. PanH. ManiamA. BazhenovaL. ShiraiK. JahanzebM. WillisM. MasoodN. ChowhanN. HsiaT.C. JianH. LuS. Safety, efficacy, and pharmacokinetics of almonertinib (HS-10296) in pretreated patients with EGFR-mutated advanced NSCLC: A multi center, open-label, phase 1 trial.J. Thorac. Oncol.202015121907191810.1016/j.jtho.2020.09.001 32916310
    [Google Scholar]
  151. GillilandD.G. GriffinJ.D. The roles of FLT3 in hematopoiesis and leukemia.Blood200210051532154210.1182/blood‑2002‑02‑0492 12176867
    [Google Scholar]
  152. KiyoiH. OhnoR. UedaR. SaitoH. NaoeT. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain.Oncogene200221162555256310.1038/sj.onc.1205332 11971190
    [Google Scholar]
  153. QuentmeierH. ReinhardtJ. ZaborskiM. DrexlerH.G. FLT3 mutations in acute myeloid leukemia cell lines.Leukemia200317112012410.1038/sj.leu.2402740 12529668
    [Google Scholar]
  154. TallmanM.S. GillilandD.G. RoweJ.M. Drug therapy for acute myeloid leukemia.Blood200510641154116310.1182/blood‑2005‑01‑0178 15870183
    [Google Scholar]
  155. DaverN. SchlenkR.F. RussellN.H. LevisM.J. Targeting FLT3 mutations in AML: Review of current knowledge and evidence.Leukemia201933229931210.1038/s41375‑018‑0357‑9 30651634
    [Google Scholar]
  156. AuclairD. MillerD. YatsulaV. PickettW. CarterC. ChangY. ZhangX. WilkieD. BurdA. ShiH. RocksS. GedrichR. AbriolaL. VasavadaH. LynchM. DumasJ. TrailP.A. WilhelmS.M. Antitumor activity of sorafenib in FLT3-driven leukemic cells.Leukemia200721343944510.1038/sj.leu.2404508 17205056
    [Google Scholar]
  157. StoneR.M. MandrekarS.J. SanfordB.L. LaumannK. GeyerS. BloomfieldC.D. ThiedeC. PriorT.W. DöhnerK. MarcucciG. Lo-CocoF. KlisovicR.B. WeiA. SierraJ. SanzM.A. BrandweinJ.M. de WitteT. NiederwieserD. AppelbaumF.R. MedeirosB.C. TallmanM.S. KrauterJ. SchlenkR.F. GanserA. ServeH. EhningerG. AmadoriS. LarsonR.A. DöhnerH. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation.N. Engl. J. Med.2017377545446410.1056/NEJMoa1614359 28644114
    [Google Scholar]
  158. GarciaJ.S. StoneR.M. The development of FLT3 inhibitors in acute myeloid leukemia.Hematol. Oncol. Clin. North Am.201731466368010.1016/j.hoc.2017.03.002 28673394
    [Google Scholar]
  159. KnapperS. The clinical development of FLT3 inhibitors in acute myeloid leukemia.Expert Opin. Investig. Drugs201120101377139510.1517/13543784.2011.611802 21895538
    [Google Scholar]
  160. BaldiG.G. GronchiA. StacchiottiS. Pexidartinib for the treatment of adult symptomatic patients with tenosynovial giant cell tumors.Expert Rev. Clin. Pharmacol.202013657157610.1080/17512433.2020.1771179 32478598
    [Google Scholar]
  161. MoriM. KanekoN. UenoY. YamadaM. TanakaR. SaitoR. ShimadaI. MoriK. KuromitsuS. Gilteritinib, a FLT3/AXL inhibitor, shows antileukemic activity in mouse models of FLT3 mutated acute myeloid leukemia.Invest. New Drugs201735555656510.1007/s10637‑017‑0470‑z 28516360
    [Google Scholar]
  162. ZarrinkarP.P. GunawardaneR.N. CramerM.D. GardnerM.F. BrighamD. BelliB. KaramanM.W. PratzK.W. PallaresG. ChaoQ. SprankleK.G. PatelH.K. LevisM. ArmstrongR.C. JamesJ. BhagwatS.S. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML).Blood2009114142984299210.1182/blood‑2009‑05‑222034 19654408
    [Google Scholar]
  163. CortesJ. PerlA.E. DöhnerH. KantarjianH. MartinelliG. KovacsovicsT. RousselotP. SteffenB. DombretH. EsteyE. StricklandS. AltmanJ.K. BaldusC.D. BurnettA. KrämerA. RussellN. ShahN.P. SmithC.C. WangE.S. IfrahN. GammonG. TroneD. LazzarettoD. LevisM. Quizartinib, an FLT3 inhibitor, as monotherapy in patients with relapsed or refractory acute myeloid leukaemia: An open-label, multicentre, single-arm, phase 2 trial.Lancet Oncol.201819788990310.1016/S1470‑2045(18)30240‑7 29859851
    [Google Scholar]
  164. GalanisA. MaH. RajkhowaT. RamachandranA. SmallD. CortesJ. LevisM. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants.Blood201412319410010.1182/blood‑2013‑10‑529313 24227820
    [Google Scholar]
  165. CaoZ-X. LiuJ-J. ZhengR-L. YangJ. ZhongL. XuY. WangL-J. ZhangC-H. WangB-L. MaS. WangZ-R. XieH-Z. WeiY-Q. YangS-Y. SKLB1028, a novel oral multikinase inhibitor of EGFR, FLT3 and Abl, displays exceptional activity in models of FLT3-driven AML and considerable potency in models of CML harboring Abl mutants.Leukemia20122681892189510.1038/leu.2012.67 22402607
    [Google Scholar]
  166. SutamtewagulG. VigilC.E. Clinical use of FLT3 inhibitors in acute myeloid leukemia.OncoTargets Ther.2018117041705210.2147/OTT.S171640 30410361
    [Google Scholar]
  167. LimS.H. DubieleckaP.M. RaghunathanV.M. Molecular targeting in acute myeloid leukemia.J. Transl. Med.201715118310.1186/s12967‑017‑1281‑x 28851395
    [Google Scholar]
  168. MillerG.D. BrunoB.J. LimC.S. Resistant mutations in CML and Ph(+)ALL - Role of ponatinib.Biologics20148243254 25349473
    [Google Scholar]
  169. ParkM. DeanM. CooperC.S. SchmidtM. O’BrienS.J. BlairD.G. Vande WoudeG.F. Mechanism of met oncogene activation.Cell198645689590410.1016/0092‑8674(86)90564‑7 2423252
    [Google Scholar]
  170. BaldanziG. GrazianiA. Physiological signaling and structure of the HGF receptor MET.Biomedicines20143113110.3390/biomedicines3010001 28536396
    [Google Scholar]
  171. HolmesO. PillozziS. DeakinJ.A. CarafoliF. KempL. ButlerP.J.G. LyonM. GherardiE. Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains.J. Mol. Biol.2007367239540810.1016/j.jmb.2006.12.061 17258232
    [Google Scholar]
  172. OrganS.L. TsaoM.S. An overview of the c-MET signaling pathway.Ther. Adv. Med. Oncol.201131_suppl)(Suppl.S7S1910.1177/1758834011422556 22128289
    [Google Scholar]
  173. BlumenscheinG.R.Jr MillsG.B. Gonzalez-AnguloA.M. Targeting the hepatocyte growth factor-cMET axis in cancer therapy.J. Clin. Oncol.201230263287329610.1200/JCO.2011.40.3774 22869872
    [Google Scholar]
  174. TurkeA.B. ZejnullahuK. WuY.L. SongY. Dias-SantagataD. LifshitsE. ToschiL. RogersA. MokT. SequistL. LindemanN.I. MurphyC. AkhavanfardS. YeapB.Y. XiaoY. CapellettiM. IafrateA.J. LeeC. ChristensenJ.G. EngelmanJ.A. JänneP.A. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC.Cancer Cell2010171778810.1016/j.ccr.2009.11.022 20129249
    [Google Scholar]
  175. FramptonG.M. AliS.M. RosenzweigM. ChmieleckiJ. LuX. BauerT.M. AkimovM. BufillJ.A. LeeC. JentzD. HooverR. OuS.H.I. SalgiaR. BrennanT. ChalmersZ.R. JaegerS. HuangA. ElvinJ.A. ErlichR. FichtenholtzA. GowenK.A. GreenboweJ. JohnsonA. KhairaD. McMahonC. SanfordE.M. RoelsS. WhiteJ. GreshockJ. SchlegelR. LipsonD. YelenskyR. MorosiniD. RossJ.S. CollissonE. PetersM. StephensP.J. MillerV.A. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors.Cancer Discov.20155885085910.1158/2159‑8290.CD‑15‑0285 25971938
    [Google Scholar]
  176. GarajováI. GiovannettiE. BiascoG. PetersG.J. c-met as a target for personalized therapy.Transl. Oncogenomics20157Suppl. 11331 26628860
    [Google Scholar]
  177. HeigenerD.F. ReckM. Crizotinib.Recent Results Cancer Res.2018211576510.1007/978‑3‑319‑91442‑8_4 30069759
    [Google Scholar]
  178. ChoueiriT.K. EscudierB. PowlesT. TannirN.M. MainwaringP.N. RiniB.I. HammersH.J. DonskovF. RothB.J. PeltolaK. LeeJ.L. HengD.Y.C. SchmidingerM. AgarwalN. SternbergC.N. McDermottD.F. AftabD.T. HesselC. ScheffoldC. SchwabG. HutsonT.E. PalS. MotzerR.J. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): Final results from a randomised, open-label, phase 3 trial.Lancet Oncol.201617791792710.1016/S1470‑2045(16)30107‑3 27279544
    [Google Scholar]
  179. LiuX. WangQ. YangG. MarandoC. KoblishH.K. HallL.M. FridmanJ.S. BehshadE. WynnR. LiY. BoerJ. DiamondS. HeC. XuM. ZhuoJ. YaoW. NewtonR.C. ScherleP.A. A novel kinase inhibitor, INCB28060, blocks c-MET-dependent signaling, neoplastic activities, and cross-talk with EGFR and HER-3.Clin. Cancer Res.201117227127713810.1158/1078‑0432.CCR‑11‑1157 21918175
    [Google Scholar]
  180. WolfJ. SetoT. HanJ.Y. ReguartN. GaronE.B. GroenH.J.M. TanD.S.W. HidaT. de JongeM. OrlovS.V. SmitE.F. SouquetP.J. VansteenkisteJ. HochmairM. FelipE. NishioM. ThomasM. OhashiK. ToyozawaR. OverbeckT.R. de MarinisF. KimT.M. LaackE. RobevaA. Le MouhaerS. Waldron-LynchM. SankaranB. BalbinO.A. CuiX. GiovanniniM. AkimovM. HeistR.S. Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer.N. Engl. J. Med.20203831094495710.1056/NEJMoa2002787 32877583
    [Google Scholar]
  181. WuY.L. ZhangL. KimD.W. LiuX. LeeD.H. YangJ.C.H. AhnM.J. VansteenkisteJ.F. SuW.C. FelipE. ChiaV. GlaserS. PultarP. ZhaoS. PengB. AkimovM. TanD.S.W. Phase Ib/II study of capmatinib (INC280) plus gefitinib after failure of epidermal growth factor receptor (EGFR) inhibitor therapy in patients with EGFR-mutated, MET factor-dysregulated non-small-cell lung cancer.J. Clin. Oncol.201836313101310910.1200/JCO.2018.77.7326 30156984
    [Google Scholar]
  182. LaraM.S. HollandW.S. ChinnD. BurichR.A. LaraP.N.Jr GandaraD.R. KellyK. MackP.C. Preclinical evaluation of MET inhibitor INC-280 with or without the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung cancer.Clin. Lung Cancer201718328128510.1016/j.cllc.2016.11.006 28038979
    [Google Scholar]
  183. BladtF. FadenB. Friese-HamimM. KnuehlC. WilmC. FittschenC. GrädlerU. MeyringM. DorschD. JaehrlingF. PehlU. StieberF. SchadtO. BlaukatA. EMD 1214063 and EMD 1204831 constitute a new class of potent and highly selective c-Met inhibitors.Clin. Cancer Res.201319112941295110.1158/1078‑0432.CCR‑12‑3247 23553846
    [Google Scholar]
  184. Friese-HamimM. BladtF. LocatelliG. StammbergerU. BlaukatA. The selective c-Met inhibitor tepotinib can overcome epidermal growth factor receptor inhibitor resistance mediated by aberrant c-Met activation in NSCLC models.Am. J. Cancer Res.201774962972 28469968
    [Google Scholar]
  185. MarkhamA. Tepotinib: First Approval.Drugs202080882983310.1007/s40265‑020‑01317‑9 32361823
    [Google Scholar]
  186. BradleyC.A. Salto-TellezM. Laurent-PuigP. BardelliA. RolfoC. TaberneroJ. KhawajaH.A. LawlerM. JohnstonP.G. SchaeybroeckS.V. Targeting c-MET in gastrointestinal tumours: Rationale, opportunities and challenges.Nat. Rev. Clin. Oncol.201714956257610.1038/nrclinonc.2017.40 28374784
    [Google Scholar]
  187. SalgiaR. MET in lung cancer: Biomarker selection based on scientific rationale.Mol. Cancer Ther.201716455556510.1158/1535‑7163.MCT‑16‑0472 28373408
    [Google Scholar]
  188. QiJ. McTigueM.A. RogersA. LifshitsE. ChristensenJ.G. JänneP.A. EngelmanJ.A. Multiple mutations and bypass mechanisms can contribute to development of acquired resistance to MET inhibitors.Cancer Res.20117131081109110.1158/0008‑5472.CAN‑10‑1623 21266357
    [Google Scholar]
  189. CeperoV. SierraJ.R. CorsoS. GhisoE. CasorzoL. PereraT. ComoglioP.M. GiordanoS. MET and KRAS gene amplification mediates acquired resistance to MET tyrosine kinase inhibitors.Cancer Res.201070197580759010.1158/0008‑5472.CAN‑10‑0436 20841479
    [Google Scholar]
  190. TarakhovskyA. Tools and landscapes of epigenetics.Nat. Immunol.201011756556810.1038/ni0710‑565 20562839
    [Google Scholar]
  191. ChengY. HeC. WangM. MaX. MoF. YangS. HanJ. WeiX. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials.Signal Transduct. Target. Ther.2019416210.1038/s41392‑019‑0095‑0 31871779
    [Google Scholar]
  192. AdamsJ. The proteasome: Structure, function, and role in the cell.Cancer Treat. Rev.200329Suppl. 13910.1016/S0305‑7372(03)00081‑1 12738238
    [Google Scholar]
  193. BurgerA.M. SethA.K. The ubiquitin-mediated protein degradation pathway in cancer: Therapeutic implications.Eur. J. Cancer200440152217222910.1016/j.ejca.2004.07.006 15454246
    [Google Scholar]
  194. KodrońA. MussuliniB.H. PileckaI. ChacińskaA. The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine.Pharmacol. Res.202116310524810.1016/j.phrs.2020.105248 33065283
    [Google Scholar]
  195. AdamsJ. The proteasome: A suitable antineoplastic target.Nat. Rev. Cancer20044534936010.1038/nrc1361 15122206
    [Google Scholar]
  196. GandolfiS. LaubachJ.P. HideshimaT. ChauhanD. AndersonK.C. RichardsonP.G. The proteasome and proteasome inhibitors in multiple myeloma.Cancer Metastasis Rev.201736456158410.1007/s10555‑017‑9707‑8 29196868
    [Google Scholar]
  197. AdamsJ. KauffmanM. Development of the proteasome inhibitor Velcade (Bortezomib).Cancer Invest.200422230431110.1081/CNV‑120030218 15199612
    [Google Scholar]
  198. FrickerL.D. Proteasome inhibitor drugs.Annu. Rev. Pharmacol. Toxicol.202060145747610.1146/annurev‑pharmtox‑010919‑023603 31479618
    [Google Scholar]
  199. DimopoulosM.A. RichardsonP.G. MoreauP. AndersonK.C. Current treatment landscape for relapsed and/or refractory multiple myeloma.Nat. Rev. Clin. Oncol.2015121425410.1038/nrclinonc.2014.200 25421279
    [Google Scholar]
  200. DickL.R. FlemingP.E. Building on bortezomib: Second-generation proteasome inhibitors as anti-cancer therapy.Drug Discov. Today2010155-624324910.1016/j.drudis.2010.01.008 20116451
    [Google Scholar]
  201. HerndonT.M. DeisserothA. KaminskasE. KaneR.C. KotiK.M. RothmannM.D. HabtemariamB. BullockJ. BrayJ.D. HawesJ. PalmbyT.R. JeeJ. AdamsW. MahayniH. BrownJ. DorantesA. SridharaR. FarrellA.T. PazdurR.U.s. Food and drug administration approval: Carfilzomib for the treatment of multiple myeloma.Clin. Cancer Res.201319174559456310.1158/1078‑0432.CCR‑13‑0755 23775332
    [Google Scholar]
  202. ZanwarS. AbeykoonJ.P. KapoorP. Ixazomib: A novel drug for multiple myeloma.Expert Rev. Hematol.2018111076177110.1080/17474086.2018.1518129 30173621
    [Google Scholar]
  203. KuppermanE. LeeE.C. CaoY. BannermanB. FitzgeraldM. BergerA. YuJ. YangY. HalesP. BruzzeseF. LiuJ. BlankJ. GarciaK. TsuC. DickL. FlemingP. YuL. ManfrediM. RolfeM. BolenJ. Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer.Cancer Res.20107051970198010.1158/0008‑5472.CAN‑09‑2766 20160034
    [Google Scholar]
  204. XieJ. WanN. LiangZ. ZhangT. JiangJ. Ixazomib – The first oral proteasome inhibitor.Leuk. Lymphoma201960361061810.1080/10428194.2018.1523398 30614337
    [Google Scholar]
  205. CaldecottK.W. Protein ADP-ribosylation and the cellular response to DNA strand breaks.DNA Repair20141910811310.1016/j.dnarep.2014.03.021 24755000
    [Google Scholar]
  206. VyasS. ChangP. New PARP targets for cancer therapy.Nat. Rev. Cancer201414750250910.1038/nrc3748 24898058
    [Google Scholar]
  207. DobzhanskyT. Genetics of natural populations; Recombination and variability in populations of Drosophila pseudoobscura.Genetics194631326929010.1093/genetics/31.3.269 20985721
    [Google Scholar]
  208. Pujade-LauraineE. LedermannJ.A. SelleF. GebskiV. PensonR.T. OzaA.M. KorachJ. HuzarskiT. PovedaA. PignataS. FriedlanderM. ColomboN. HarterP. FujiwaraK. Ray-CoquardI. BanerjeeS. LiuJ. LoweE.S. BloomfieldR. PautierP. KorachJ. HuzarskiT. ByrskiT. PautierP. FriedlanderM. HarterP. ColomboN. PignataS. ScambiaG. NicolettoM. NusseyF. ClampA. PensonR. OzaA. Poveda VelascoA. RodriguesM. LotzJ-P. SelleF. Ray-CoquardI. ProvencherD. Prat AparicioA. Vidal BoixaderL. ScottC. TamuraK. YunokawaM. LisyanskayaA. MedioniJ. PécuchetN. DubotC. de la Motte RougeT. KaminskyM-C. WeberB. LortholaryA. ParkinsonC. LedermannJ. WilliamsS. BanerjeeS. CosinJ. HoffmanJ. PensonR. PlanteM. CovensA. SonkeG. JolyF. FloquetA. BanerjeeS. HirteH. AmitA. Park-SimonT-W. MatsumotoK. TjulandinS. KimJ.H. GladieffL. SabbatiniR. O’MalleyD. TimminsP. KredentserD. Laínez MilagroN. Barretina GinestaM.P. Tibau MartorellA. Gómez de Liaño ListaA. Ojeda GonzálezB. MileshkinL. MandaiM. BoereI. OttevangerP. NamJ-H. FilhoE. HamiziS. CognettiF. WarshalD. Dickson-MichelsonE. KamelleS. McKenzieN. RodriguezG. ArmstrongD. ChalasE. CelanoP. BehbakhtK. DavidsonS. WelchS. HelpmanL. FishmanA. BruchimI. SikorskaM. SłowińskaA. RogowskiW. BidzińskiM. ŚpiewankiewiczB. Casado HerraezA. Mendiola FernándezC. Gropp-MeierM. SaitoT. TakeharaK. EnomotoT. WatariH. ChoiC.H. KimB-G. KimJ.W. HeggR. VergoteI. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): A double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Oncol.20171891274128410.1016/S1470‑2045(17)30469‑2 28754483
    [Google Scholar]
  209. KonstantinopoulosP.A. WaggonerS. VidalG.A. MitaM. MoroneyJ.W. HollowayR. Van LeL. SachdevJ.C. Chapman-DavisE. Colon-OteroG. PensonR.T. MatulonisU.A. KimY.B. MooreK.N. SwisherE.M. FärkkiläA. D’AndreaA. Stringer-ReasorE. WangJ. BuerstatteN. AroraS. GrahamJ.R. BobilevD. DezubeB.J. MunsterP. Single-Arm phases 1 and 2 trial of niraparib in combination with pembrolizumab in patients with recurrent platinum-resistant ovarian carcinoma.JAMA Oncol.2019581141114910.1001/jamaoncol.2019.1048 31194228
    [Google Scholar]
  210. SachdevE. TabatabaiR. RoyV. RimelB.J. MitaM.M. PARP inhibition in cancer: An update on clinical development.Target. Oncol.201914665767910.1007/s11523‑019‑00680‑2 31625002
    [Google Scholar]
  211. MateoJ. LordC.J. SerraV. TuttA. BalmañaJ. Castroviejo-BermejoM. CruzC. OakninA. KayeS.B. de BonoJ.S. A decade of clinical development of PARP inhibitors in perspective.Ann. Oncol.20193091437144710.1093/annonc/mdz192 31218365
    [Google Scholar]
  212. DonawhoC.K. LuoY. LuoY. PenningT.D. BauchJ.L. BouskaJ.J. Bontcheva-DiazV.D. CoxB.F. DeWeeseT.L. DillehayL.E. FergusonD.C. Ghoreishi-HaackN.S. GrimmD.R. GuanR. HanE.K. Holley-ShanksR.R. HristovB. IdlerK.B. JarvisK. JohnsonE.F. KleinbergL.R. KlinghoferV. LaskoL.M. LiuX. MarshK.C. McGonigalT.P. MeulbroekJ.A. OlsonA.M. PalmaJ.P. RodriguezL.E. ShiY. StavropoulosJ.A. TsurutaniA.C. ZhuG.D. RosenbergS.H. GirandaV.L. FrostD.J. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models.Clin. Cancer Res.20071392728273710.1158/1078‑0432.CCR‑06‑3039 17473206
    [Google Scholar]
  213. ColemanR.L. FlemingG.F. BradyM.F. SwisherE.M. SteffensenK.D. FriedlanderM. OkamotoA. MooreK.N. Efrat Ben-BaruchN. WernerT.L. ClovenN.G. OakninA. DiSilvestroP.A. MorganM.A. NamJ.H. LeathC.A.III NicumS. HagemannA.R. LittellR.D. CellaD. Baron-HayS. Garcia-DonasJ. MizunoM. Bell-McGuinnK. SullivanD.M. BachB.A. BhattacharyaS. RatajczakC.K. AnsellP.J. DinhM.H. AghajanianC. BookmanM.A. Veliparib with first-line chemotherapy and as maintenance therapy in ovarian cancer.N. Engl. J. Med.2019381252403241510.1056/NEJMoa1909707 31562800
    [Google Scholar]
  214. FranzoiM.A. AgostinettoE. PerachinoM. Del MastroL. de AzambujaE. Vaz-LuisI. PartridgeA.H. LambertiniM. Evidence-based approaches for the management of side-effects of adjuvant endocrine therapy in patients with breast cancer.Lancet Oncol.2021227e303e31310.1016/S1470‑2045(20)30666‑5 33891888
    [Google Scholar]
  215. SawS.P.L. OngB.H. ChuaK.L.M. TakanoA. TanD.S.W. Revisiting neoadjuvant therapy in non-small-cell lung cancer.Lancet Oncol.20212211e501e51610.1016/S1470‑2045(21)00383‑1 34735819
    [Google Scholar]
  216. ChaftJ.E. ShyrY. SepesiB. FordeP.M. Preoperative and post- operative systemic therapy for operable non-small-cell lung cancer.J. Clin. Oncol.202240654655510.1200/JCO.21.01589 34985966
    [Google Scholar]
  217. MaioM. LewisK. DemidovL. MandalàM. BondarenkoI. AsciertoP.A. HerbertC. MackiewiczA. RutkowskiP. GuminskiA. GoodmanG.R. SimmonsB. YeC. YanY. SchadendorfD. CinatG. FeinL.E. BrownM. GuminskiA. HaydonA. KhattakA. McNeilC. ParenteP. PowerJ. Roberts-ThomsonR. SandhuS. UnderhillC. VarmaS. BergerT. AwadaA. BlockxN. BuyseV. MebisJ. FrankeF.A. Jobim de AzevedoS. Silva LazarettiN. JamalR. MihalcioiuC. PetrellaT. SavageK. SongX. WongR. DabelicN. PlestinaS. VojnovicZ. ArenbergerP. KocakI. KrajsovaI. KubalaE. MelicharB. VantuchovaY. PutnikK. DrenoB. DutriauxC. GrobJ-J. JolyP. LacourJ-P. MeyerN. MortierL. ThomasL. FluckM. GambichlerT. HasselJ. HauschildA. SchadendorfD. DonnellanP. McCaffreyJ. PowerD. AriadS. Bar-SelaG. HendlerD. RonI. SchachterJ. AsciertoP. BerrutiA. BianchiL. Chiarion SileniV. CognettiF. DanielliR. Di GiacomoA.M. GianniL. GoldhirschA. GuidaM. MaioM. MandalàM. MarchettiP. QueiroloP. SantoroA. KapiteijnE. MackiewiczA. RutkowskiP. FerreiraP. DemidovL. GaftonG. MakarovaY. AndricZ. BabovicN. JovanovicD. Kandolf SekulovicL. CohenG. DreostiL. VorobiofD. Curiel GarciaM.T. Diaz BeveridgeR. Majem TarruellaM. Marquez RodasI. Puliats RodriguezJ-M. Rueda DominguezA. MarotiM. PapworthK. MichielinO. BondarenkoI. BrownE. CorrieP. HarriesM. HerbertC. KumarS. Martin-ClavijoA. MiddletonM. PatelP. TalbotT. AgarwalaS. ChapmanP. ConryR. DoolittleG. GangadharT. HallmeyerS. HamidO. Hernandez-AyaL. JohnsonD. KassF. KolevskaT. LewisK. LuninS. SalamaA. SikicB. SomerB. SpigelD. WhitmanE. Adjuvant vemurafenib in resected, BRAFV600 mutation-positive melanoma (BRIM8): A randomised, double-blind, placebo-controlled, multicentre, phase 3 trial.Lancet Oncol.201819451052010.1016/S1470‑2045(18)30106‑2 29477665
    [Google Scholar]
  218. PunS.C. NeilanT.G. Cardiovascular side effects of small molecule therapies for cancer.Eur. Heart J.201637362742274510.1093/eurheartj/ehw361 27694541
    [Google Scholar]
  219. LongG.V. SawR.P.M. LoS. NiewegO.E. ShannonK.F. GonzalezM. GuminskiA. LeeJ.H. LeeH. FergusonP.M. RawsonR.V. WilmottJ.S. ThompsonJ.F. KeffordR.F. Ch’ngS. StretchJ.R. EmmettL. KapoorR. RizosH. SpillaneA.J. ScolyerR.A. MenziesA.M. Neoadjuvant dabrafenib combined with trametinib for resectable, stage IIIB–C, BRAFV600 mutation-positive melanoma (NeoCombi): A single-arm, open-label, single-centre, phase 2 trial.Lancet Oncol.201920796197110.1016/S1470‑2045(19)30331‑6 31171444
    [Google Scholar]
  220. ShahM.P. NealJ.W. Targeting acquired and intrinsic resistance mechanisms in epidermal growth factor receptor mutant non small-cell lung cancer.Drugs202282664966210.1007/s40265‑022‑01698‑z 35412115
    [Google Scholar]
  221. GiuglianoF. CriminiE. TarantinoP. ZagamiP. UlianoJ. CortiC. TrapaniD. CuriglianoG. AsciertoP.A. First line treatment of BRAF mutated advanced melanoma: Does one size fit all?Cancer Treat. Rev.20219910225310.1016/j.ctrv.2021.102253 34186441
    [Google Scholar]
  222. RonkinaN. GaestelM. MAPK-activated protein kinases: Ser- vant or partner?Annu. Rev. Biochem.202291150554010.1146/annurev‑biochem‑081720‑114505 35303787
    [Google Scholar]
  223. PattonE.E. MuellerK.L. AdamsD.J. AnandasabapathyN. AplinA.E. BertolottoC. BosenbergM. CeolC.J. BurdC.E. ChiP. HerlynM. HolmenS.L. KarrethF.A. KaufmanC.K. KhanS. KoboldS. LeucciE. LevyC. LombardD.B. LundA.W. MarieK.L. MarineJ.C. MaraisR. McMahonM. Robles-EspinozaC.D. RonaiZ.A. SamuelsY. SoengasM.S. VillanuevaJ. WeeraratnaA.T. WhiteR.M. YehI. ZhuJ. ZonL.I. HurlbertM.S. MerlinoG. Melanoma models for the next generation of therapies.Cancer Cell202139561063110.1016/j.ccell.2021.01.011 33545064
    [Google Scholar]
  224. ChiP. QinL.X. NguyenB. KellyC.M. D’AngeloS.P. DicksonM.A. GounderM.M. KeohanM.L. MovvaS. NacevB.A. RosenbaumE. ThorntonK.A. CragoA.M. YoonS. UlanerG. YehR. MartindaleM. PhelanH.T. BiniakewitzM.D. WardaS. LeeC.J. BergerM.F. SchultzN.D. SingerS. HwangS. ChenY. AntonescuC.R. TapW.D. Phase II trial of imatinib plus binimetinib in patients with treatment-naive advanced gastrointestinal stromal tumor.J. Clin. Oncol.2022409997100810.1200/JCO.21.02029 35041493
    [Google Scholar]
  225. HarrisonC.N. GarciaJ.S. SomervailleT.C.P. ForanJ.M. VerstovsekS. JamiesonC. MesaR. RitchieE.K. TantravahiS.K. VachhaniP. O’ConnellC.L. KomrokjiR.S. HarbJ. HuttiJ.E. HolesL. MasudA.A. NuthalapatiS. PotluriJ. PemmarajuN. Addition of navitoclax to ongoing ruxolitinib therapy for patients with myelofibrosis with progression or suboptimal response: phase II safety and efficacy.J. Clin. Oncol.202240151671168010.1200/JCO.21.02188 35180010
    [Google Scholar]
  226. KawashimaY. FukuharaT. SaitoH. FuruyaN. WatanabeK. SugawaraS. IwasawaS. TsunezukaY. YamaguchiO. OkadaM. YoshimoriK. NakachiI. SeikeM. AzumaK. KurimotoF. TsubataY. FujitaY. NagashimaH. AsaiG. WatanabeS. MiyazakiM. HagiwaraK. NukiwaT. MoritaS. KobayashiK. MaemondoM. Bevacizumab plus erlotinib versus erlotinib alone in Japanese patients with advanced, metastatic, EGFR-mutant non-small-cell lung cancer (NEJ026): overall survival analysis of an open-label, randomised, multicentre, phase 3 trial.Lancet Respir. Med.2022101728210.1016/S2213‑2600(21)00166‑1 34454653
    [Google Scholar]
  227. NakagawaK. GaronE.B. SetoT. NishioM. Ponce AixS. Paz-AresL. ChiuC.H. ParkK. NovelloS. NadalE. ImamuraF. YohK. ShihJ.Y. AuK.H. Moro-SibilotD. EnatsuS. ZimmermannA. Frimodt-MollerB. Visseren-GrulC. ReckM. ChuQ. CortotA. PujolJ-L. Moro-SibilotD. FabreE. LamourC. BischoffH. KollmeierJ. ReckM. KimmichM. Engel-RiedelW. HammerschmidtS. SchütteW. SyrigosK. HoJ.C.M. AuK-H. NovelloS. ArdizzoniA. PaselloG. GregorcV. Del ConteA. GalettaD. TakahashiT. NakagawaK. NishioM. YohK. SetoT. ImamuraF. KumagaiT. HottaK. GotoY. HosomiY. SakaiH. TakiguchiY. KimY.H. KurataT. YamaguchiH. DagaH. OkamotoI. SatouchiM. IkedaS. KasaharaK. AtagiS. AzumaK. KumagaiT. AoeK. KumagaiT. AoeK. HorioY. YamamotoN. TanakaH. WatanabeS. NogamiN. OzakiT. KoyamaR. HirashimaT. KanedaH. TomiiK. FujitaY. SeikeM. NishimuraN. KatoT. IchikiM. SakaH. HiranoK. NakaharaY. SugawaraS. ParkK. KimS-W. MinY.J. LeeH.W. KangJ-H. AnH.J. LeeK.H. KimJ-S. LeeG-W. LeeS.Y. AlexandruA. UdreaA.A. Juan-VidalÓ. Nadal-AlforjaE. Gil-BazoI. Ponce-AixS. Paz-AresL. Rubio-ViqueiraB. Alonso GarciaM. Felip FontE. Fuentes PraderaJ. Coves SartoJ. LinM-C. SuW-C. HsiaT-C. ChangG-C. WeiY-F. ChiuC-H. ShihJ-Y. SuJ. CicinI. GokselT. HarputluogluH. OzyilkanO. HenningI. PopatS. HatcherO. MilehamK. AcobaJ. GaronE. JungG. RajM. MartinW. DakhilS. Ramucirumab plus erlotinib in patients with untreated, EGFR-mutated, advanced non-small-cell lung cancer (RELAY): A randomised, double-blind, placebo-controlled, phase 3 trial.Lancet Oncol.201920121655166910.1016/S1470‑2045(19)30634‑5 31591063
    [Google Scholar]
  228. FangH. GuoZ. ChenJ. LinL. HuY. LiY. TianH. ChenX. Combination of epigenetic regulation with gene therapy-mediated immune checkpoint blockade induces anti-tumour effects and immune response in vivo.Nat. Commun.2021121674210.1038/s41467‑021‑27078‑x 34795289
    [Google Scholar]
  229. Dall’OlioF.G. MarabelleA. CaramellaC. GarciaC. AldeaM. ChaputN. RobertC. BesseB. Tumour burden and efficacy of immune-checkpoint inhibitors.Nat. Rev. Clin. Oncol.2022192759010.1038/s41571‑021‑00564‑3 34642484
    [Google Scholar]
  230. ZarrinA.A. BaoK. LupardusP. VucicD. Kinase inhibition in autoimmunity and inflammation.Nat. Rev. Drug Discov.2021201396310.1038/s41573‑020‑0082‑8 33077936
    [Google Scholar]
  231. YamaguchiH. HsuJ.M. YangW.H. HungM.C. Mechanisms regulating PD-L1 expression in cancers and associated opportunities for novel small-molecule therapeutics.Nat. Rev. Clin. Oncol.202219528730510.1038/s41571‑022‑00601‑9 35132224
    [Google Scholar]
  232. LisbergA. CummingsA. GoldmanJ.W. BornazyanK. ReeseN. WangT. ColuzziP. LedezmaB. MendenhallM. HuntJ. WolfB. JonesB. MadrigalJ. HortonJ. SpiegelM. CarrollJ. GukasyanJ. WilliamsT. SauerL. WellsC. HardyA. LinaresP. LimC. MaL. AdameC. GaronE.B. A phase II study of pembrolizumab in EGFR-mutant, PD-L1+, tyrosine kinase inhibitor naïve patients with advanced NSCLC.J. Thorac. Oncol.20181381138114510.1016/j.jtho.2018.03.035 29874546
    [Google Scholar]
  233. WeiA.H. MontesinosP. IvanovV. DiNardoC.D. NovakJ. LaribiK. KimI. StevensD.A. FiedlerW. PagoniM. SamoilovaO. HuY. AnagnostopoulosA. BergeronJ. HouJ.Z. MurthyV. YamauchiT. McDonaldA. ChylaB. GopalakrishnanS. JiangQ. MendesW. HayslipJ. PanayiotidisP. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: A phase 3 randomized placebo-controlled trial.Blood2020135242137214510.1182/blood.2020004856 32219442
    [Google Scholar]
  234. CarratoA. Swieboda-SadlejA. Staszewska-SkurczynskaM. LimR. RomanL. ShparykY. BondarenkoI. JonkerD.J. SunY. De la CruzJ.A. WilliamsJ.A. KorytowskyB. ChristensenJ.G. LinX. TursiJ.M. LechugaM.J. Van CutsemE. Fluorouracil, leucovorin, and irinotecan plus either sunitinib or placebo in metastatic colorectal cancer: A randomized, phase III trial.J. Clin. Oncol.201331101341134710.1200/JCO.2012.45.1930 23358972
    [Google Scholar]
  235. MokT.S.K. KimS.W. WuY.L. NakagawaK. YangJ.J. AhnM.J. WangJ. YangJ.C.H. LuY. AtagiS. PonceS. ShiX. RukazenkovY. HaddadV. ThressK.S. SoriaJ.C. Gefitinib plus chemotherapy versus chemotherapy in epidermal growth factor receptor mutation-positive non-small-cell lung cancer resistant to first-line gefitinib (IMPRESS): overall survival and biomarkeranalyses.J. Clin. Oncol.201735364027403410.1200/JCO.2017.73.9250 28968167
    [Google Scholar]
  236. Salvador-BarberoB. Álvarez-FernándezM. Zapatero-SolanaE. CDK4/6 inhibitors impair recovery from cytotoxic chemotherapy in pancreatic adenocarcinoma.Cancer Cell2020373340353
    [Google Scholar]
  237. DrilonA. SienaS. OuS.H.I. PatelM. AhnM.J. LeeJ. BauerT.M. FaragoA.F. WhelerJ.J. LiuS.V. DoebeleR. GiannettaL. CereaG. MarrapeseG. SchirruM. AmatuA. BencardinoK. PalmeriL. Sartore-BianchiA. VanzulliA. CrestaS. DamianS. DucaM. ArdiniE. LiG. ChristiansenJ. KowalskiK. JohnsonA.D. PatelR. LuoD. Chow-ManevalE. HornbyZ. MultaniP.S. ShawA.T. De BraudF.G. Safety and antitumor activity of the multitargeted pan-TRK, ROS1, and ALK inhibitor entrectinib: combined results from two phase I trials (ALKA-372-001 and STARTRK-1).Cancer Discov.20177440040910.1158/2159‑8290.CD‑16‑1237 28183697
    [Google Scholar]
  238. SachdevJ. ArkenauH.T. InfanteJ.R. MitaM.M. AnthonyS.P. NataleR.B. EjadiS. WilcoxenK. KansraV. LakenH. HughesL. MartellR. WeissG.J. 506 phase (Ph) 1/2a study of TSR-011, a potent inhibitor of ALK and TRK, in advanced solid tumors including crizotinib-resistant ALK positive non-small cell lung cancer.Eur. J. Cancer20145016510.1016/S0959‑8049(14)70632‑X
    [Google Scholar]
  239. DrilonA. OuS.H.I. ChoB.C. KimD.W. LeeJ. LinJ.J. ZhuV.W. AhnM.J. CamidgeD.R. NguyenJ. ZhaiD. DengW. HuangZ. RogersE. LiuJ. WhittenJ. LimJ.K. StopatschinskajaS. HymanD.M. DoebeleR.C. CuiJ.J. ShawA.T. Repotrectinib (TPX-0005) Is a next-generation ROS1/TRK/ALK inhibitor that potently inhibits ROS1/TRK/ALK solvent-front mutations.Cancer Discov.20188101227123610.1158/2159‑8290.CD‑18‑0484 30093503
    [Google Scholar]
  240. MenichincheriM. ArdiniE. MagnaghiP. AvanziN. BanfiP. BossiR. BuffaL. CanevariG. CerianiL. ColomboM. CortiL. DonatiD. FasoliniM. FelderE. FiorelliC. FiorentiniF. GalvaniA. IsacchiA. BorgiaA.L. MarchionniC. NesiM. OrreniusC. PanzeriA. PesentiE. RusconiL. SaccardoM.B. VanottiE. PerroneE. OrsiniP. Discovery of entrectinib: A new 3-aminoindazole as a potent anaplastic lymphoma kinase (ALK), c-ros oncogene 1 kinase (ROS1), and pan-tropomyosin receptor kinases (Pan-TRKs) inhibitor.J. Med. Chem.20165973392340810.1021/acs.jmedchem.6b00064 27003761
    [Google Scholar]
  241. InfanteJ.R. CamidgeD.R. MileshkinL.R. ChenE.X. HicksR.J. RischinD. FingertH. PierceK.J. XuH. RobertsW.G. ShreeveS.M. BurrisH.A. SiuL.L. Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors.J. Clin. Oncol.201230131527153310.1200/JCO.2011.38.9346 22454420
    [Google Scholar]
  242. ShawA.T. FribouletL. LeshchinerI. GainorJ.F. BergqvistS. BroounA. BurkeB.J. DengY.L. LiuW. DardaeiL. FriasR.L. SchultzK.R. LoganJ. JamesL.P. SmealT. TimofeevskiS. KatayamaR. IafrateA.J. LeL. McTigueM. GetzG. JohnsonT.W. EngelmanJ.A. Resensitization to crizotinib by the lorlatinib ALK resistance mutation L1198F.N. Engl. J. Med.20163741546110.1056/NEJMoa1508887 26698910
    [Google Scholar]
  243. ChenZ. SasakiT. TanX. CarreteroJ. ShimamuraT. LiD. XuC. WangY. AdelmantG.O. CapellettiM. LeeH.J. RodigS.J. BorgmanC. ParkS. KimH.R. PaderaR. MartoJ.A. GrayN.S. KungA.L. ShapiroG.I. JänneP.A. WongK.K. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene.Cancer Res.201070239827983610.1158/0008‑5472.CAN‑10‑1671 20952506
    [Google Scholar]
  244. RoskoskiR. Jr Anaplastic lymphoma kinase (ALK) inhibitors in the treatment of ALK-driven lung cancers.Pharmacol. Res.201711734335610.1016/j.phrs.2017.01.007 28077299
    [Google Scholar]
  245. CourtinA. SmythT. HearnK. SainiH.K. ThompsonN.T. LyonsJ.F. WallisN.G. Emergence of resistance to tyrosine kinase inhibitors in non-small-cell lung cancer can be delayed by an upfront combination with the HSP90 inhibitor onalespib.Br. J. Cancer201611591069107710.1038/bjc.2016.294 27673365
    [Google Scholar]
  246. ZhangC. HanX.R. YangX. JiangB. LiuJ. XiongY. JinJ. Proteolysis targeting chimeras (PROTACs) of anaplastic lym- phoma kinase (ALK).Eur. J. Med. Chem.201815130431410.1016/j.ejmech.2018.03.071 29627725
    [Google Scholar]
  247. GeorgeS. von MehrenM. FletcherJ.A. SunJ. ZhangS. PritchardJ.R. HodgsonJ.G. KersteinD. RiveraV.M. HaluskaF.G. HeinrichM.C. Phase II study of ponatinib in advanced gastrointestinal stromal tumors: Effi- cacy, safety, and impact of liquid biopsy and other biomarkers.Clin. Cancer Res.20222871268127610.1158/1078‑0432.CCR‑21‑2037 35091442
    [Google Scholar]
  248. BlayJ.Y. ShenL. KangY.K. RutkowskiP. QinS. NosovD. WanD. TrentJ. SrimuninnimitV. PápaiZ. Le CesneA. NovickS. TaningcoL. MoS. GreenS. ReichardtP. DemetriG.D. Nilotinib versus imatinib as first-line therapy for patients with unresectable or metastatic gastrointestinal stromal tumours (ENESTg1): A randomised phase 3 trial.Lancet Oncol.201516555056010.1016/S1470‑2045(15)70105‑1 25882987
    [Google Scholar]
  249. HodiF.S. CorlessC.L. Giobbie-HurderA. FletcherJ.A. ZhuM. Marino-EnriquezA. FriedlanderP. GonzalezR. WeberJ.S. GajewskiT.F. O’DayS.J. KimK.B. LawrenceD. FlahertyK.T. LukeJ.J. CollichioF.A. ErnstoffM.S. HeinrichM.C. BeadlingC. ZukotynskiK.A. YapJ.T. Van den AbbeeleA.D. DemetriG.D. FisherD.E. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin.J. Clin. Oncol.201331263182319010.1200/JCO.2012.47.7836 23775962
    [Google Scholar]
  250. GuoJ. SiL. KongY. FlahertyK.T. XuX. ZhuY. CorlessC.L. LiL. LiH. ShengX. CuiC. ChiZ. LiS. HanM. MaoL. LinX. DuN. ZhangX. LiJ. WangB. QinS. Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification.J. Clin. Oncol.201129212904290910.1200/JCO.2010.33.9275 21690468
    [Google Scholar]
  251. CarvajalR.D. AntonescuC.R. WolchokJ.D. ChapmanP.B. RomanR.A. TeitcherJ. PanageasK.S. BusamK.J. ChmielowskiB. LutzkyJ. PavlickA.C. FuscoA. CaneL. TakebeN. VemulaS. BouvierN. BastianB.C. SchwartzG.K. KIT as a therapeutic target in metastatic melanoma.JAMA2011305222327233410.1001/jama.2011.746 21642685
    [Google Scholar]
  252. GuoJ. CarvajalR.D. DummerR. HauschildA. DaudA. BastianB.C. MarkovicS.N. QueiroloP. AranceA. BerkingC. CamargoV. HerchenhornD. PetrellaT.M. SchadendorfD. SharfmanW. TestoriA. NovickS. HertleS. NourryC. ChenQ. HodiF.S. Efficacy and safety of nilotinib in patients with KIT-mutated metastatic or inoperable melanoma: Final results from the global, single-arm, phase II TEAM trial.Ann. Oncol.20172861380138710.1093/annonc/mdx079 28327988
    [Google Scholar]
  253. KalinskyK. LeeS. RubinK.M. LawrenceD.P. IafrarteA.J. BorgerD.R. MargolinK.A. LeitaoM.M.Jr TarhiniA.A. KoonH.B. PecoraA.L. JaslowskiA.J. CohenG.I. KuzelT.M. LaoC.D. KirkwoodJ.M. A phase 2 trial of dasatinib in patients with locally advanced or stage IV mucosal, acral, or vulvovaginal melanoma: A trial of the ECOG‐ACRIN Cancer Research Group (E2607).Cancer2017123142688269710.1002/cncr.30663 28334439
    [Google Scholar]
  254. Le CesneA. BlayJ.Y. BuiB.N. BouchéO. AdenisA. DomontJ. CioffiA. Ray-CoquardI. LassauN. BonvalotS. MoussyA. KinetJ.P. HermineO. Phase II study of oral masitinib mesilate in imatinib-naïve patients with locally advanced or metastatic gastro-intestinal stromal tumour (GIST).Eur. J. Cancer20104681344135110.1016/j.ejca.2010.02.014 20211560
    [Google Scholar]
  255. TibesR. FineG. ChoyG. RedkarS. TavernaP. OganesianA. SahaiA. AzabM. TolcherA.W. A phase I, first-in-human dose-escalation study of amuvatinib, a multi-targeted tyrosine kinase inhibitor, in patients with advanced solid tumors.Cancer Chemother. Pharmacol.201371246347110.1007/s00280‑012‑2019‑3 23178951
    [Google Scholar]
  256. KettleJ.G. AnjumR. BarryE. BhavsarD. BrownC. BoydS. CampbellA. GoldbergK. GrondineM. GuichardS. HardyC.J. HuntT. JonesR.D.O. LiX. MolevaO. OggD. OvermanR.C. PackerM.J. PearsonS. SchimplM. ShaoW. SmithA. SmithJ.M. SteadD. StokesS. TuckerM. YeY. Discovery of N -(4-[5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]aminophenyl)-2-[4-(propan-2-yl)-1 H -1,2,3-triazol-1-yl]acetamide (AZD3229), a potent pan-KIT mutant inhibitor for the treatment of gastrointestinal stromal tumors.J. Med. Chem.201861198797881010.1021/acs.jmedchem.8b00938 30204441
    [Google Scholar]
  257. JänneP.A. RielyG.J. GadgeelS.M. HeistR.S. OuS.H.I. PachecoJ.M. JohnsonM.L. SabariJ.K. LeventakosK. YauE. BazhenovaL. NegraoM.V. PennellN.A. ZhangJ. AnderesK. Der-TorossianH. KheohT. VelasteguiK. YanX. ChristensenJ.G. ChaoR.C. SpiraA.I. Adagrasib in non–small-cell lung cancer harboring a KRAS G12C mutation.N. Engl. J. Med.2022387212013110.1056/NEJMoa2204619 35658005
    [Google Scholar]
  258. YaegerR. WeissJ. PelsterM.S. SpiraA.I. BarveM. OuS.H.I. LealT.A. Bekaii-SaabT.S. PaweletzC.P. HeaveyG.A. ChristensenJ.G. VelasteguiK. KheohT. Der-TorossianH. KlempnerS.J. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C.N. Engl. J. Med.20233881445410.1056/NEJMoa2212419 36546659
    [Google Scholar]
  259. ZhangZ. ZhangD. LiuY. YangD. RanF. WangM.L. ZhaoG. Targeting Bruton’s tyrosine kinase for the treatment of B cell associated malignancies and autoimmune diseases: Preclinical and clinical developments of small molecule inhibitors.Arch. Pharm.20183517170036910.1002/ardp.201700369 29741794
    [Google Scholar]
  260. KimE.S. Olmutinib: First global approval.Drugs201676111153115710.1007/s40265‑016‑0606‑z 27357069
    [Google Scholar]
  261. RoskoskiR. Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers.Pharmacol. Res.201913939541110.1016/j.phrs.2018.11.014 30500458
    [Google Scholar]
  262. KimD.W. LeeD.H. HanJ.Y. LeeJ. ChoB.C. KangJ.H. LeeK.H. ChoE.K. KimJ.S. MinY.J. ChoJ.Y. AnH.J. KimH.G. LeeK.H. KimB.S. JangI.J. YoonS. HanO. NohY.S. HongK.Y. ParkK. Safety, tolerability, and anti-tumor activity of olmutinib in non-small cell lung cancer with T790M mutation: A single arm, open label, phase 1/2 trial.Lung Cancer2019135667210.1016/j.lungcan.2019.07.007 31447004
    [Google Scholar]
  263. ErlichmanC. HidalgoM. BoniJ.P. MartinsP. QuinnS.E. ZacharchukC. AmorusiP. AdjeiA.A. RowinskyE.K. Phase I study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor, in patients with advanced solid tumors.J. Clin. Oncol.200624152252226010.1200/JCO.2005.01.8960 16710023
    [Google Scholar]
  264. LeighlN.B. TsaoM.S. LiuG. TuD. HoC. ShepherdF.A. MurrayN. GoffinJ.R. NicholasG. SakashitaS. ChenZ. KimL. PowersJ. SeymourL. GossG. BradburyP.A. A phase I study of foretinib plus erlotinib in patients with previously treated advanced non-small cell lung cancer: Canadian cancer trials group IND.196.Oncotarget2017841696516966210.18632/oncotarget.18753 29050231
    [Google Scholar]
  265. EngstromL.D. ArandaR. LeeM. TovarE.A. EssenburgC.J. MadajZ. ChiangH. BriereD. HallinJ. Lopez-CasasP.P. BañosN. MenendezC. HidalgoM. TassellV. ChaoR. ChudovaD.I. LanmanR.B. OlsonP. BazhenovaL. PatelS.P. GraveelC. NishinoM. ShapiroG.I. PeledN. AwadM.M. JänneP.A. ChristensenJ.G. Glesatinib exhibits antitumor activity in lung cancer models and patients harboring MET exon 14 mutations and overcomes mutation- mediated resistance to type I MET inhibitors in nonclinical models.Clin. Cancer Res.201723216661667210.1158/1078‑0432.CCR‑17‑1192 28765324
    [Google Scholar]
  266. MirandaO. FarooquiM. SiegfriedJ.M. Status of agents targeting the HGF/c- met axis in lung cancer.Cancers201810928010.3390/cancers10090280 30134579
    [Google Scholar]
  267. RodonJ. Postel-VinayS. HollebecqueA. NuciforoP. AzaroA. CattanV. MarfaiL. SudeyI. BrendelK. DelmasA. MalasseS. SoriaJ.C. First-in-human phase I study of oral S49076, a unique MET/AXL/FGFR inhibitor, in advanced solid tumours.Eur. J. Cancer20178114215010.1016/j.ejca.2017.05.007 28624695
    [Google Scholar]
  268. GrollM. HuberR. PottsB.C.M. Crystal structures of Salinosporamide A (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of beta-lactone ring opening and a mechanism for irreversible binding.J. Am. Chem. Soc.2006128155136514110.1021/ja058320b 16608349
    [Google Scholar]
  269. MaL. DiaoA. Marizomib, a potent second generation proteasome inhibitor from natural origin.Anticancer. Agents Med. Chem.201515329830610.2174/1871520614666141114202606 25403165
    [Google Scholar]
  270. ZhouH.J. AujayM.A. BennettM.K. DajeeM. DemoS.D. FangY. HoM.N. JiangJ. KirkC.J. LaidigG.J. LewisE.R. LuY. MuchamuelT. ParlatiF. RingE. ShenkK.D. ShieldsJ. ShwonekP.J. StantonT. SunC.M. SylvainC. WooT.M. YangJ. Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047).J. Med. Chem.20095293028303810.1021/jm801329v 19348473
    [Google Scholar]
  271. PivaR. RuggeriB. WilliamsM. CostaG. TamagnoI. FerreroD. GiaiV. CosciaM. PeolaS. MassaiaM. PezzoniG. AllieviC. PescalliN. CassinM. di GiovineS. NicoliP. de FeudisP. StrepponiI. RoatoI. FerraciniR. BussolatiB. CamussiG. Jones-BolinS. HunterK. ZhaoH. NeriA. PalumboA. BerkersC. OvaaH. BernareggiA. InghiramiG. CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib.Blood200811152765277510.1182/blood‑2007‑07‑100651 18057228
    [Google Scholar]
  272. GalleraniE. ZucchettiM. BrunelliD. MarangonE. NoberascoC. HessD. DelmonteA. MartinelliG. BöhmS. DriessenC. De BraudF. MarsoniS. CeredaR. SalaF. D’IncalciM. SessaC. A first in human phase I study of the proteasome inhibitor CEP-18770 in patients with advanced solid tumours and multiple myeloma.Eur. J. Cancer201349229029610.1016/j.ejca.2012.09.009 23058787
    [Google Scholar]
  273. VoglD.T. MartinT.G. VijR. HariP. MikhaelJ.R. SiegelD. WuK.L. DelforgeM. GasparettoC. Phase I/II study of the novel proteasome inhibitor delanzomib (CEP-18770) for relapsed and refractory multiple myeloma.Leuk. Lymphoma20175881872187910.1080/10428194.2016.1263842 28140719
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096331827240911165227
Loading
/content/journals/ccdt/10.2174/0115680096331827240911165227
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cancer; chemotherapy; KRAS; metastasis; receptor; target
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test