Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Cancer is the second most common cause of death worldwide and one of the biggest public health issues arising day by day. Cancer treatment has experienced significant progressions in recent years, as emerging technologies have provided innovative strategies to combat this intricate ailment. Among these developments, nanotechnology has shown itself to be a potentially useful tool in the fight against cancer. In the last few years, there have been several researches performed in the field of nanoparticles because of their several advantages as compared to conventional drug delivery using nanoparticles along with updating technologies like artificial intelligence (AI). The use of nanoparticles decreases the chance of undesirable side effects and shows its action on the targeted site with the help of designed carriers.AI based nanoparticles can’t only be used for achieving the targeted site of action but can also help us in advanced imaging, drug release and optimizing the drug delivery in a more customized way, which opens the door of a new era for tailored made medicine.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096323618240911140624
2024-10-25
2025-12-20
Loading full text...

Full text loading...

References

  1. LeeB.K. YunY.H. ParkK. Smart nanoparticles for drug delivery: Boundaries and opportunities.Chem. Eng. Sci.201512515816410.1016/j.ces.2014.06.042 25684780
    [Google Scholar]
  2. ChowdhuryS. YusofF. SalimW.W.A.W. SulaimanN. FaruckM.O. An overview of drug delivery vehicles for cancer treatment: Nanocarriers and nanoparticles including photovoltaic nanoparticles.J. Photochem. Photobiol. B201616415115910.1016/j.jphotobiol.2016.09.013 27683958
    [Google Scholar]
  3. HooshyarS.P. PanahiH.A. MoniriE. FarsadroohM. Tailoring a new hyperbranched PEGylated dendrimer nano-polymer as a super-adsorbent for magnetic solid-phase extraction and determination of letrozole in biological and pharmaceutical samples.J. Mol. Liq.202133811677210.1016/j.molliq.2021.116772
    [Google Scholar]
  4. KumarB. JalodiaK. KumarP. GautamH.K. Recent advances in nanoparticle-mediated drug delivery.J. Drug Deliv. Sci. Technol.20174126026810.1016/j.jddst.2017.07.019
    [Google Scholar]
  5. ZhengX. ZhangC. GuoQ. WanX. ShaoX. LiuQ. ZhangQ. Dual-functional nanoparticles for precise drug delivery to Alzheimer’s disease lesions: Targeting mechanisms, pharmacodynamics and safety.Int. J. Pharm.2017525123724810.1016/j.ijpharm.2017.04.033 28432017
    [Google Scholar]
  6. PeerD. KarpJ.M. HongS. FarokhzadO.C. MargalitR. LangerR. Nanocarriers as an emerging platform for cancer therapy.Nat. Nanotechnol.200721275176010.1038/nnano.2007.387
    [Google Scholar]
  7. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  8. MathurP. SathishkumarK. ChaturvediM. DasP. StephenS. Cancer incidence estimates for 2022 & projection for 2025: Result from National Cancer Registry Programme, India.Indian J. Med. Res.2022156459860710.4103/ijmr.ijmr_1821_22 36510887
    [Google Scholar]
  9. SiddiquiM.A. AkhterJ. Aarzoo; Junaid Bashir, D.; Manzoor, S.; Rastogi, S.; Arora, I.; Aggarwal, N.B.; Samim, M. Resveratrol loaded nanoparticles attenuate cognitive impairment and inflammatory markers in PTZ-induced kindled mice.Int. Immunopharmacol.202110110828710.1016/j.intimp.2021.108287 34731689
    [Google Scholar]
  10. KumariD. PerveenS. SharmaR. SinghK. Advancement in leishmaniasis diagnosis and therapeutics: An update.Eur. J. Pharmacol.202191017443610.1016/j.ejphar.2021.174436 34428435
    [Google Scholar]
  11. MitchellM.J. BillingsleyM.M. HaleyR.M. WechslerM.E. PeppasN.A. LangerR. Engineering precision nanoparticles for drug delivery.Nat. Rev. Drug Discov.20212010112410.1038/s41573‑020‑0090‑8
    [Google Scholar]
  12. LiuY. LiK. LiuB. FengS.S. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery.Biomaterials201031359145915510.1016/j.biomaterials.2010.08.053 20864169
    [Google Scholar]
  13. DemirciU. CoşkunU. GöçünP.U. GurlekB. SakaB. ÖztürkB. BenekliM. BüyükberberS. Four different malignancies in one patient: A case report.Cases J.2010315310.1186/1757‑1626‑3‑53 20205852
    [Google Scholar]
  14. DobruchJ. OszczudłowskiM. Bladder cancer: Current challenges and future directions.Medicina (Kaunas)202157874910.3390/medicina57080749 34440955
    [Google Scholar]
  15. CharltonM.E. AdamoM.P. SunL. DeorahS. Bladder cancer collaborative stage variables and their data quality, usage, and clinical implications: A review of SEER data, 2004‐2010.Cancer2014120S233815382510.1002/cncr.29047 25412393
    [Google Scholar]
  16. FengY. SpeziaM. HuangS. YuanC. ZengZ. ZhangL. JiX. LiuW. HuangB. LuoW. LiuB. LeiY. DuS. VuppalapatiA. LuuH.H. HaydonR.C. HeT.C. RenG. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.001 30258937
    [Google Scholar]
  17. AtaollahiM.R. SharifiJ. PaknahadM.R. PaknahadA. Breast cancer and associated factors: A review.J. Med. Life20158611 28316699
    [Google Scholar]
  18. KnowltonC.A. MackayM.K. SpeerT.W. VeraR.B. ArthurD.W. WazerD.E. LancianoR. BrashearsJ.H. KnowltonC.A. MackayM.K. TroickiF.T. PoliJ. YaegerT.E. YaegerT.E. MoseS. TroickiF.T. PoliJ. DragunA.E. RenganR. ThomasC.R. DonahueB.R. CooperJ.S. SpeerT.W. TroickiF.T. PoliJ. SpeerT.W. GuerrieriP. MontemaggiP. NiederC. SpeerT.W. ChristodouleasJ.P. OliaiC. YaegerT.E. HeeseC. PerezC.A. ThorstadW.L. MichalskiD. HuqM.S. KnowltonC.A. MackayM.K. FisherB.J. LimbergenE. ChooB.A. LuJ.J. BradyL.W. FisherB.J. DaughertyL.C. RübeC. YeungD. PaltaJ. HuthB.J. DragunA.E. HuthB.J. HuthB.J. RübeC.E. ReiffJ.E. YaegerT.E. YaegerT.E. SpeerT.W. DragunA.E. NiederC. TroickiF.T. PoliJ. BudachV. GracelyE.J. HolmesT. ScanderbegD.J. ChristodouleasJ.P. HolmesT. FisherB.J. DaughertyL.C. SpeerT.W. ClassenJ. MoseS. HeeseC. LaramoreG.E. LiaoJ.J. RockhillJ.K. RübeC. Cancer Colon.Encycl. Radiat. Oncol.2013Jun777710.1007/978‑3‑540‑85516‑3_1047
    [Google Scholar]
  19. LuoC. CenS. DingG. WuW. Mucinous colorectal adenocarcinoma: Clinical pathology and treatment options.Cancer Commun. (Lond.)201939111310.1186/s40880‑019‑0361‑0 30922401
    [Google Scholar]
  20. OhJ.H. JunD.W. The latest global burden of liver cancer: A past and present threat.Clin. Mol. Hepatol.202329235535710.3350/cmh.2023.0070 36891606
    [Google Scholar]
  21. PhilipsC.A. RajeshS. NairD.C. AhamedR. AbduljaleelJ.K. AugustineP. Hepatocellular carcinoma in 2021: An exhaustive update.Cureus20211311e1927410.7759/cureus.19274 34754704
    [Google Scholar]
  22. Chidambaranathan-ReghupatyS. FisherP.B. SarkarD. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification.Adv. Cancer Res.202114916110.1016/bs.acr.2020.10.001 33579421
    [Google Scholar]
  23. SiddiquiF. VaqarS. SiddiquiA.H. Lung Cancer.StatPearls Publishing2023 29493979
    [Google Scholar]
  24. PurandareN.C. RangarajanV. Imaging of lung cancer: Implications on staging and management.Indian J. Radiol. Imaging201525210912010.4103/0971‑3026.155831 25969634
    [Google Scholar]
  25. ThrelfallT. WittorffJ. BoutdaraP. HeyworthJ. KatrisP. SheinerH. FritschiL. Collection of population-based cancer staging information in Western Australia – A feasibility study.Popul. Health Metr.200531910.1186/1478‑7954‑3‑9 16105180
    [Google Scholar]
  26. ChennamadhavuniA. LyengarV. MukkamallaS.K.R. ShimanovskyA. Leukemia.StatPearls Publishing2023 32809325
    [Google Scholar]
  27. ShanbhagS. AmbinderR.F. Hodgkin lymphoma: A review and update on recent progress.CA Cancer J. Clin.201868211613210.3322/caac.21438 29194581
    [Google Scholar]
  28. Hernández-BlanquisettA. Quintero-CarreñoV. Martínez-ÁvilaM.C. PortoM. Manzur-BarburM.C. BuendíaE. Metastatic pancreatic cancer: Where are we?Oncol. Rev.2024171136410.3389/or.2023.11364 38304752
    [Google Scholar]
  29. LambertA.W. PattabiramanD.R. WeinbergR.A. Emerging biological principles of metastasis.Cell2017168467069110.1016/j.cell.2016.11.037 28187288
    [Google Scholar]
  30. ChakrabortyS. RahmanT. The difficulties in cancer treatment.Ecancermedicalscience20126ed1610.3332/ECANCER.2012.ED16 24883085
    [Google Scholar]
  31. RamamoorthyA. JanardhananS. JeevakarunyamS. JeddyN. EagappanS. Integrative oncology in Indian subcontinent: An overview.J. Clin. Diagn. Res.201593XE01XE0310.7860/JCDR/2015/12185.5714 25954692
    [Google Scholar]
  32. Latte-NaorS. MaoJ.J. Putting integrative oncology into practice: Concepts and approaches.J. Oncol. Pract.201915171410.1200/JOP.18.00554 30629900
    [Google Scholar]
  33. Mosleh-ShiraziS. AbbasiM. MoaddeliM. VaezA. ShafieeM. KasaeeS.R. AmaniA.M. HatamS. Nanotechnology advances in the detection and treatment of cancer: An overview.Nanotheranostics20226440042310.7150/ntno.74613 36051855
    [Google Scholar]
  34. DinF. AmanW. UllahI. QureshiO.S. MustaphaO. ShafiqueS. ZebA. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  35. ChengX. XieQ. SunY. Advances in nanomaterial-based targeted drug delivery systems.Front. Bioeng. Biotechnol.202311117715110.3389/fbioe.2023.1177151 37122851
    [Google Scholar]
  36. ShamsM. AbdallahS. AlsadounL. HamidY.H. GasimR. HassanA. Oncological horizons: The synergy of medical and surgical innovations in cancer treatment.Cureus20231511e4924910.7759/cureus.49249 38143618
    [Google Scholar]
  37. DavisJ.L. MurrayJ.F. History and physical examination.Murray Nadel’s Textb. Respir. Med.20161263277.e210.1016/B978‑1‑4557‑3383‑5.00016‑6
    [Google Scholar]
  38. LewandowskaA. RudzkiG. LewandowskiT. RudzkiS. The problems and needs of patients diagnosed with cancer and their caregivers.Int. J. Environ. Res. Public Health20201818710.3390/ijerph18010087 33374440
    [Google Scholar]
  39. MaximL.D. NieboR. UtellM.J. Screening tests: A review with examples.Inhal. Toxicol.2014261381182810.3109/08958378.2014.955932 25264934
    [Google Scholar]
  40. MohseniS. ShojaiefardA. KhorgamiZ. AlinejadS. GhorbaniA. GhafouriA. Peripheral lymphadenopathy: Approach and diagnostic tools.Iran. J. Med. Sci.201439158170 24753638
    [Google Scholar]
  41. DeCouJ. NagalliS. Lymphadenopathy.Pediatr. Surg. Diagnosis Treat.2022Aug62162710.1007/978‑3‑030‑96542‑6_55 32644344
    [Google Scholar]
  42. GautamD. TalwanP. SinghR. KumarS. JoshiG. Nanotechnological carriers in the treatment of cancer: A review.Curr. Nanomed.20231310.2174/0124681873270774231008100554
    [Google Scholar]
  43. FassL. Imaging and cancer: A review.Mol. Oncol.20082211515210.1016/j.molonc.2008.04.001 19383333
    [Google Scholar]
  44. KangH. LeeH.Y. LeeK.S. KimJ.H. Imaging-based tumor treatment response evaluation: Review of conventional, new, and emerging concepts.Korean J. Radiol.201213437139010.3348/kjr.2012.13.4.371 22778559
    [Google Scholar]
  45. KumarR. SrivastavaR. SrivastavaS. Detection and classification of cancer from microscopic biopsy images using clinically significant and biologically interpretable features.J. Med. Eng.2015201511410.1155/2015/457906 27006938
    [Google Scholar]
  46. KasraeianS. AllisonD.C. AhlmannE.R. FedenkoA.N. MenendezL.R. A comparison of fine-needle aspiration, core biopsy, and surgical biopsy in the diagnosis of extremity soft tissue masses.Clin. Orthop. Relat. Res.2010468112992300210.1007/s11999‑010‑1401‑x 20512437
    [Google Scholar]
  47. ŁukasiewiczE. ZiemieckaA. JakubowskiW. VojinovicJ. BogucevskaM. Dobruch-SobczakK. Fine-needle versus core-needle biopsy – Which one to choose in preoperative assessment of focal lesions in the breasts? Literature review.J. Ultrason.2017177126727410.15557/JoU.2017.0039 29375902
    [Google Scholar]
  48. SarhadiV.K. ArmengolG. Molecular biomarkers in cancer.Biomolecules2022128102110.3390/biom12081021 35892331
    [Google Scholar]
  49. SinghS. NagpalM. SinghP. ChauhanP. ZaidiM. Tumor markers: A diagnostic tool.Natl. J. Maxillofac. Surg.201671172010.4103/0975‑5950.196135 28163473
    [Google Scholar]
  50. SharmaS. Tumor markers in clinical practice: General principles and guidelines.Indian J. Med. Paediatr. Oncol.20093011810.4103/0971‑5851.56328 20668599
    [Google Scholar]
  51. FarjadianF. GhasemiA. GohariO. RoointanA. KarimiM. HamblinM.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities.Nanomedicine (Lond.)20191419312610.2217/nnm‑2018‑0120 30451076
    [Google Scholar]
  52. SultanaA. ZareM. ThomasV. KumarT.S.S. RamakrishnaS. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects.Medicine in Drug Discovery20221510013410.1016/j.medidd.2022.100134
    [Google Scholar]
  53. BaranwalJ. BarseB. Di PetrilloA. GattoG. PiliaL. KumarA. Nanoparticles in cancer diagnosis and treatment.Materials (Basel)20231615535410.3390/ma16155354 37570057
    [Google Scholar]
  54. GhazalH. WaqarA. YaseenF. ShahidM. SultanaM. TariqM. BashirM.K. TahseenH. RazaT. AhmadF. Role of nanoparticles in enhancing chemotherapy efficacy for cancer treatment.Next Materials2024210012810.1016/j.nxmate.2024.100128
    [Google Scholar]
  55. RahmanM. Magnetic resonance imaging and iron-oxide nanoparticles in the era of personalized medicine.Nanotheranostics20237442444910.7150/ntno.86467 37650011
    [Google Scholar]
  56. YangY. ZhengX. ChenL. GongX. YangH. DuanX. ZhuY. Multifunctional gold nanoparticles in cancer diagnosis and treatment.Int. J. Nanomedicine2022172041206710.2147/IJN.S355142 35571258
    [Google Scholar]
  57. LimZ.Z.J. LiJ.E.J. NgC.T. YungL.Y.L. BayB.H. Gold nanoparticles in cancer therapy.Acta Pharmacol. Sin.201132898399010.1038/aps.2011.82
    [Google Scholar]
  58. RavanshadR. Karimi ZadehA. AmaniA.M. MousaviS.M. HashemiS.A. Savar DashtakiA. MirzaeiE. ZareB. Application of nanoparticles in cancer detection by Raman scattering based techniques.Nano Rev. Exp.201891137355110.1080/20022727.2017.1373551 30410710
    [Google Scholar]
  59. DeviS. KumarM. TiwariA. TiwariV. KaushikD. VermaR. BhattS. SahooB.M. BhattacharyaT. AlshehriS. GhoneimM.M. BabalghithA.O. BatihaG.E-S. Quantum dots: An emerging approach for cancer therapy.Front. Mater.2022879844010.3389/fmats.2021.798440
    [Google Scholar]
  60. FangM. PengC.W. PangD.W. LiY. Quantum dots for cancer research: Current status, remaining issues, and future perspectives.Cancer Biol. Med.20129315116310.7497/J.ISSN.2095‑3941.2012.03.001 23691472
    [Google Scholar]
  61. DirheimerL. PonsT. MarchalF. BezdetnayaL. Quantum dots mediated imaging and phototherapy in cancer spheroid models: State of the art and perspectives.Pharmaceutics20221410213610.3390/pharmaceutics14102136 36297571
    [Google Scholar]
  62. WangS. ChenY. GuoJ. HuangQ. Liposomes for tumor targeted therapy: A review.Int. J. Mol. Sci.2023243264310.3390/ijms24032643 36768966
    [Google Scholar]
  63. AkbarzadehA. Rezaei-SadabadyR. DavaranS. JooS.W. ZarghamiN. HanifehpourY. SamieiM. KouhiM. Nejati-KoshkiK. Liposome: Classification, preparation, and applications.Nanoscale Res. Lett.20138110210.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  64. ZhaoY. RenW. ZhongT. ZhangS. HuangD. GuoY. YaoX. WangC. ZhangW.Q. ZhangX. ZhangQ. Tumor-specific pH-responsive peptide-modified pH-sensitive liposomes containing doxorubicin for enhancing glioma targeting and anti-tumor activity.J. Control. Release2016222566610.1016/j.jconrel.2015.12.006 26682502
    [Google Scholar]
  65. ZhangJ.A. AnyarambhatlaG. MaL. UgwuS. XuanT. SardoneT. AhmadI. Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation.Eur. J. Pharm. Biopharm.200559117718710.1016/j.ejpb.2004.06.009 15567316
    [Google Scholar]
  66. Sánchez-LópezE. GomesD. EsteruelasG. BonillaL. Lopez-MachadoA.L. GalindoR. CanoA. EspinaM. EttchetoM. CaminsA. SilvaA.M. DurazzoA. SantiniA. GarciaM.L. SoutoE.B. Metal-based nanoparticles as antimicrobial agents: An overview.Nanomaterials (Basel)202010229210.3390/nano10020292 32050443
    [Google Scholar]
  67. YanX. ChangY. ZhaoW. QianC. YinX. FanX. ZhuX. ZhaoX. MaX.F. Transcriptome profiling reveals that foliar water uptake occurs with C3 and crassulacean acid metabolism facultative photosynthesis in Tamarix ramosissima under extreme drought.AoB Plants2022141plab06010.1093/aobpla/plab060 35047161
    [Google Scholar]
  68. AnbazhaganR. MuthusamyG. KrishnamoorthiR. KumaresanS. Rajendra PrasadN. LaiJ.Y. YangJ.M. TsaiH.C. PAMAM G4.5 dendrimers for targeted delivery of ferulic acid and paclitaxel to overcome P‐glycoprotein‐mediated multidrug resistance.Biotechnol. Bioeng.202111831213122310.1002/bit.27645 33289076
    [Google Scholar]
  69. GagliardiA. GiulianoE. VenkateswararaoE. FrestaM. BulottaS. AwasthiV. CoscoD. Biodegradable polymeric nanoparticles for drug delivery to solid tumors.Front. Pharmacol.20211260162610.3389/fphar.2021.601626 33613290
    [Google Scholar]
  70. XiaoX. TengF. ShiC. ChenJ. WuS. WangB. MengX. Essiet ImehA. LiW. Polymeric nanoparticles—Promising carriers for cancer therapy.Front. Bioeng. Biotechnol.202210102414310.3389/fbioe.2022.1024143 36277396
    [Google Scholar]
  71. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. PechoR.D.C. JayasankarN. RaoD.P. ThamaraikaniT. VasanthanM. ViktorP. LakshmaiyaN. SaadhM.J. AmajdA. Abo-ZaidM.A. Castillo-AcoboR.Y. IsmailA.H. AminA.H. Akhavan-SigariR. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  72. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms24076199 37047172
    [Google Scholar]
  73. KhanM.Z. TahirD. AsimM. IsrarM. HaiderA. XuD.D. Revolutionizing cancer care: Advances in carbon-based materials for diagnosis and treatment.Cureus2024161e5251110.7759/cureus.52511 38371088
    [Google Scholar]
  74. TanJ.M. BulloS. FakuraziS. HusseinM.Z. Preparation, characterisation and biological evaluation of biopolymer-coated multi-walled carbon nanotubes for sustained-delivery of silibinin.Sci. Rep.20201011694110.1038/s41598‑020‑73963‑8 33037287
    [Google Scholar]
  75. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.201901058 32196144
    [Google Scholar]
  76. AladesuyiO.A. OluwafemiO.S. The role of magnetic nanoparticles in cancer management. Nano-Struct.Nano-Objects20233610105310.1016/j.nanoso.2023.101053
    [Google Scholar]
  77. FarinhaP. CoelhoJ.M.P. ReisC.P. GasparM.M. A comprehensive updated review on magnetic nanoparticles in diagnostics.Nanomaterials (Basel)20211112343210.3390/nano11123432 34947781
    [Google Scholar]
  78. MahatoK. NagpalS. ShahMA. SrivastavaA. MauryaPK. RoyS. JaiswalA. SinghR. ChandraP. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics.3 Biotech2019925710.1007/s13205‑019‑1577‑z
    [Google Scholar]
  79. ArvizoR. BhattacharyaR. MukherjeeP. Gold nanoparticles: Opportunities and challenges in nanomedicine.Expert Opin. Drug Deliv.20107675376310.1517/17425241003777010 20408736
    [Google Scholar]
  80. ChristG.J. SaulJ.M. FurthM.E. AnderssonK.E. The pharmacology of regenerative medicine.Pharmacol. Rev.20136531091113310.1124/pr.112.007393 23818131
    [Google Scholar]
  81. SinghS. DhawanA. KarhanaS. BhatM. DindaA.K. Quantum dots: An emerging tool for point-of-care testing.Micromachines (Basel)20201112105810.3390/mi11121058 33260478
    [Google Scholar]
  82. LiangZ. KhawarM.B. LiangJ. SunH. Bio-conjugated quantum dots for cancer research: Detection and imaging.Front. Oncol.20211174997010.3389/fonc.2021.749970 34745974
    [Google Scholar]
  83. PengC. LiuJ. YangG. LiY. Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression: Quantum dot-based identification of biomarkers in cancer stromal cells.Int. J. Nanomedicine20171316117410.2147/IJN.S143871 29343955
    [Google Scholar]
  84. BazakR. HouriM. AchyS.E. HusseinW. RefaatT. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature.Mol. Clin. Oncol.20142690490810.3892/mco.2014.356 25279172
    [Google Scholar]
  85. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm11060571 34207137
    [Google Scholar]
  86. BazakR. HouriM. El AchyS. KamelS. RefaatT. Cancer active targeting by nanoparticles: A comprehensive review of literature.J. Cancer Res. Clin. Oncol.2015141576978410.1007/s00432‑014‑1767‑3 25005786
    [Google Scholar]
  87. MehrotraP. Biosensors and their applications – A review.J. Oral Biol. Craniofac. Res.20166215315910.1016/j.jobcr.2015.12.002 27195214
    [Google Scholar]
  88. HaleemA. JavaidM. SinghR.P. SumanR. RabS. Biosensors applications in medical field: A brief review.Sensors Int.2021210010010.1016/j.sintl.2021.100100
    [Google Scholar]
  89. QuaziS. Application of biosensors in cancers, an overview.Front. Bioeng. Biotechnol.202311119349310.3389/fbioe.2023.1193493 37691902
    [Google Scholar]
  90. NareshV. LeeN. A review on biosensors and recent development of nanostructured materials-enabled biosensors.Sensors (Basel)2021214110910.3390/s21041109 33562639
    [Google Scholar]
  91. MousaS. MousaS.A. Biosensors: The new wave in cancer diagnosis.Nanotechnol. Sci. Appl.20104111010.2147/NSA.S13465 24198482
    [Google Scholar]
  92. DasS. DevireddyR. GartiaM.R. Surface Plasmon Resonance (SPR) sensor for cancer biomarker detection.Biosensors (Basel)202313339610.3390/bios13030396 36979608
    [Google Scholar]
  93. SolhiE. HasanzadehM. Critical role of biosensing on the efficient monitoring of cancer proteins/biomarkers using label-free aptamer based bioassay.Biomed. Pharmacother.202013211084910.1016/j.biopha.2020.110849 33068928
    [Google Scholar]
  94. PolatE.O. CetinM.M. TabakA.F. Bilget GüvenE. UysalB.Ö. ArsanT. KabbaniA. HamedH. GülS.B. Transducer technologies for biosensors and their wearable applications.Biosensors (Basel)202212638510.3390/bios12060385
    [Google Scholar]
  95. BhallaN. JollyP. FormisanoN. EstrelaP. Introduction to biosensors.Essays Biochem.20166011810.1042/EBC20150001 27365030
    [Google Scholar]
  96. SoltaniM. Moradi KashkooliF. SouriM. Zare HarofteS. HaratiT. KhademA. Haeri PourM. RaahemifarK. Enhancing clinical translation of cancer using nanoinformatics.Cancers (Basel)20211310248110.3390/cancers13102481 34069606
    [Google Scholar]
  97. AliK. A. MohinS. MondalP. GoswamiS. GhoshS. ChoudhuriS. Influence of artificial intelligence in modern pharmaceutical formulation and drug development.Fut J Pharm Sci202410110.1186/s43094‑024‑00625‑1
    [Google Scholar]
  98. KashyapB.K. SinghV.V. SolankiM.K. KumarA. RuokolainenJ. KesariK.K. Smart nanomaterials in cancer theranostics: Challenges and opportunities.ACS Omega2023816142901432010.1021/acsomega.2c07840 37125102
    [Google Scholar]
  99. FanD. CaoY. CaoM. WangY. CaoY. GongT. Nanomedicine in cancer therapy.Signal Transduct. Target. Ther.20238129310.1038/s41392‑023‑01536‑y
    [Google Scholar]
  100. DasK.P. J, C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges.Front. Med. Technol.20234106714410.3389/fmedt.2022.1067144 36688144
    [Google Scholar]
  101. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  102. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  103. MendesB.B. ConniotJ. AvitalA. YaoD. JiangX. ZhouX. Sharf-PaukerN. XiaoY. AdirO. LiangH. Nanodelivery of nucleic acids.Nat. Rev. Methods Primers202222410.1038/s43586‑022‑00104‑y
    [Google Scholar]
  104. SunY. MaX. HuH. Application of nano-drug delivery system based on cascade technology in cancer treatment.Int. J. Mol. Sci.20212211569810.3390/ijms22115698 34071794
    [Google Scholar]
  105. ToyR. BauerL. HoimesC. GhaghadaKB. KarathanasisE. Targeted nanotechnology for cancer imaging.Adv Drug Deliv Rev201476799710.1016/j.addr.2014.08.002
    [Google Scholar]
  106. TiwariH. RaiN. SinghS. GuptaP. VermaA. SinghA.K. Kajal; Salvi, P.; Singh, S.K.; Gautam, V. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics.Bioengineering (Basel)202310776010.3390/bioengineering10070760 37508788
    [Google Scholar]
  107. MalikS. WaheedY. Emerging applications of nanotechnology in dentistry.Dent. J.2023111126610.3390/dj11110266 37999030
    [Google Scholar]
  108. EgwuatuO.P. AI-enabled diagnostics and monitoring in nanomedicine review article: AI-enabled diagnostics and monitoring in nanomedicine.Eurasian J. Sci. Technol.20244March20822910.48309/EJST.2024.426725.1116
    [Google Scholar]
  109. SufyanM. ShokatZ. AshfaqU.A. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective.Comput. Biol. Med.202316510735610.1016/j.compbiomed.2023.107356 37688994
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096323618240911140624
Loading
/content/journals/ccdt/10.2174/0115680096323618240911140624
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test