Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

A ring-stabilized endogenous non-coding RNA is called circular RNA (circRNA). Intercellular communication is mediated by exosomes, and circRNA is enriched and stabilized in exosomes. It has recently been demonstrated that cancer cells and tissues exhibit abnormal expression of exosomal circRNAs. By controlling angiogenesis, metabolism, metastasis, epithelial mesenchymal transition (EMT), tumor chemoresistance, immune evasion, and cell proliferation, it may also have an impact on the development of different malignancies. Furthermore, exosomal circRNAs have strong tissue selectivity, stability, and other qualities that make them useful for diagnostic purposes. Consequently, exosomal circRNAs offer a wide range of potential applications in the therapy of cancer and can be utilized as biomarkers and anti-tumor targets. The features and purposes of circRNAs and exosomes are briefly discussed in this review, which also methodically explains the function and possible mechanism of the function of exosomal circRNA in the onset of gastric cancer (GC). Furthermore, their clinical uses as targets and biomarkers for gastric cancers are also summarized and discussed in this work.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096318527240909082011
2024-10-17
2026-02-06
Loading full text...

Full text loading...

References

  1. SmythE.C. NilssonM. GrabschH.I. van GriekenN.C.T. LordickF. Gastric cancer.Lancet20203961025163564810.1016/S0140‑6736(20)31288‑5 32861308
    [Google Scholar]
  2. EusebiL.H. TeleseA. MarascoG. BazzoliF. ZagariR.M. Gastric cancer prevention strategies: A global perspective.J. Gastroenterol. Hepatol.20203591495150210.1111/jgh.15037 32181516
    [Google Scholar]
  3. PiscioneM. MazzoneM. Di MarcantonioM.C. MuraroR. MincioneG. Eradication of Helicobacter pylori and gastric cancer: A controversial relationship.Front. Microbiol.20211263085210.3389/fmicb.2021.630852 33613500
    [Google Scholar]
  4. ArnoldM. AbnetC.C. NealeR.E. VignatJ. GiovannucciE.L. McGlynnK.A. BrayF. Global burden of 5 major types of gastrointestinal cancer.Gastroenterology20201591335349.e1510.1053/j.gastro.2020.02.068 32247694
    [Google Scholar]
  5. SextonR.E. Al HallakM.N. DiabM. AzmiA.S. Gastric cancer: A comprehensive review of current and future treatment strategies.Cancer Metastasis Rev.20203941179120310.1007/s10555‑020‑09925‑3 32894370
    [Google Scholar]
  6. MachlowskaJ. BajJ. SitarzM. MaciejewskiR. SitarzR. Gastric cancer: Epidemiology, risk factors, classification, genomic characteristics and treatment strategies.Int. J. Mol. Sci.20202111401210.3390/ijms21114012 32512697
    [Google Scholar]
  7. ContiC.B. AgnesiS. ScaravaglioM. MasseriaP. DinelliM.E. OldaniM. UggeriF. Early gastric cancer: Update on prevention, diagnosis and treatment.Int. J. Environ. Res. Public Health2023203214910.3390/ijerph20032149 36767516
    [Google Scholar]
  8. JohnstonF.M. BeckmanM. Updates on management of gastric cancer.Curr. Oncol. Rep.20192186710.1007/s11912‑019‑0820‑4 31236716
    [Google Scholar]
  9. TanZ. Recent advances in the surgical treatment of advanced gastric cancer: A review.Med. Sci. Monit.2019253537354110.12659/MSM.916475 31080234
    [Google Scholar]
  10. NeculaL. MateiL. DraguD. NeaguA.I. MambetC. NedeianuS. BleotuC. DiaconuC.C. Chivu-EconomescuM. Recent advances in gastric cancer early diagnosis.World J. Gastroenterol.201925172029204410.3748/wjg.v25.i17.2029 31114131
    [Google Scholar]
  11. JiangL. GongX. LiaoW. LvN. YanR. Molecular targeted treatment and drug delivery system for gastric cancer.J. Cancer Res. Clin. Oncol.2021147497398610.1007/s00432‑021‑03520‑x 33550445
    [Google Scholar]
  12. YanoT. WangK.K. Photodynamic therapy for gastrointestinal cancer.Photochem. Photobiol.202096351752310.1111/php.13206 31886891
    [Google Scholar]
  13. CabaL. FloreaL. GugC. DimitriuD.C. GorduzaE.V. Circular RNA—Is the Circle Perfect?Biomolecules20211112175510.3390/biom11121755 34944400
    [Google Scholar]
  14. LeiB. TianZ. FanW. NiB. Circular RNA: A novel biomarker and therapeutic target for human cancers.Int. J. Med. Sci.201916229230110.7150/ijms.28047 30745810
    [Google Scholar]
  15. WangH.Y. WangY.P. ZengX. ZhengY. GuoQ.H. JiR. ZhouY.N. Circular RNA is a popular molecule in tumors of the digestive system (Review).Int. J. Oncol.2020571214210.3892/ijo.2020.5054 32377736
    [Google Scholar]
  16. ZhouW.Y. CaiZ.R. LiuJ. WangD.S. JuH.Q. XuR.H. Circular RNA: Metabolism, functions and interactions with proteins.Mol. Cancer202019117210.1186/s12943‑020‑01286‑3 33317550
    [Google Scholar]
  17. ZhangZ. YangT. XiaoJ. Circular RNAs: Promising biomarkers for human diseases.EBioMedicine20183426727410.1016/j.ebiom.2018.07.036 30078734
    [Google Scholar]
  18. LiY. ZhengQ. BaoC. LiS. GuoW. ZhaoJ. ChenD. GuJ. HeX. HuangS. Circular RNA is enriched and stable in exosomes: A promising biomarker for cancer diagnosis.Cell Res.201525898198410.1038/cr.2015.82 26138677
    [Google Scholar]
  19. HanM. ZhangM. QiM. ZhouY. LiF. FangS. Regulatory mechanism and promising clinical application of exosomal circular RNA in gastric cancer.Front. Oncol.202313123667910.3389/fonc.2023.1236679 38094607
    [Google Scholar]
  20. LiuH. ChenL. PengY. YuS. LiuJ. WuL. ZhangL. WuQ. ChangX. YuX. LiuT. Dendritic cells loaded with tumor derived exosomes for cancer immunotherapy.Oncotarget2018922887289410.18632/oncotarget.20812 29416821
    [Google Scholar]
  21. SangerH.L. KlotzG. RiesnerD. GrossH.J. KleinschmidtA.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures.Proc. Natl. Acad. Sci. USA197673113852385610.1073/pnas.73.11.3852 1069269
    [Google Scholar]
  22. HuangA. ZhengH. WuZ. ChenM. HuangY. Circular RNA-protein interactions: Functions, mechanisms, and identification.Theranostics20201083503351710.7150/thno.42174 32206104
    [Google Scholar]
  23. ChenL.L. YangL. Regulation of circRNA biogenesis.RNA Biol.201512438138810.1080/15476286.2015.1020271 25746834
    [Google Scholar]
  24. QuS. ZhongY. ShangR. ZhangX. SongW. KjemsJ. LiH. The emerging landscape of circular RNA in life processes.RNA Biol.201714899299910.1080/15476286.2016.1220473 27617908
    [Google Scholar]
  25. EgerN. SchoppeL. SchusterS. LaufsU. BoeckelJ.N. Circular RNA splicing.Adv. Exp. Med. Biol.201810874152
    [Google Scholar]
  26. MengS. ZhouH. FengZ. XuZ. TangY. LiP. WuM. CircRNA: Functions and properties of a novel potential biomarker for cancer.Mol. Cancer20171619410.1186/s12943‑017‑0663‑2 28535767
    [Google Scholar]
  27. QuS. YangX. LiX. WangJ. GaoY. ShangR. SunW. DouK. LiH. Circular RNA: A new star of noncoding RNAs.Cancer Lett.2015365214114810.1016/j.canlet.2015.06.003 26052092
    [Google Scholar]
  28. AlteshaM.A. NiT. KhanA. LiuK. ZhengX. Circular RNA in cardiovascular disease.J. Cell. Physiol.201923455588560010.1002/jcp.27384 30341894
    [Google Scholar]
  29. MengX. LiX. ZhangP. WangJ. ZhouY. ChenM. Circular RNA: An emerging key player in RNA world.Brief. Bioinform.2017184547557 27255916
    [Google Scholar]
  30. HeJ. XieQ. XuH. LiJ. LiY. Circular RNAs and cancer.Cancer Lett.201739613814410.1016/j.canlet.2017.03.027 28342987
    [Google Scholar]
  31. JeckW.R. SharplessN.E. Detecting and characterizing circular RNAs.Nat. Biotechnol.201432545346110.1038/nbt.2890 24811520
    [Google Scholar]
  32. MemczakS. JensM. ElefsiniotiA. TortiF. KruegerJ. RybakA. MaierL. MackowiakS.D. GregersenL.H. MunschauerM. LoewerA. ZieboldU. LandthalerM. KocksC. le NobleF. RajewskyN. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013495744133333810.1038/nature11928 23446348
    [Google Scholar]
  33. ChenL.L. The expanding regulatory mechanisms and cellular functions of circular RNAs.Nat. Rev. Mol. Cell Biol.202021847549010.1038/s41580‑020‑0243‑y 32366901
    [Google Scholar]
  34. WangM. XieF. LinJ. ZhaoY. ZhangQ. LiaoZ. WeiP. Diagnostic and prognostic value of circulating CircRNAs in cancer.Front. Med. (Lausanne)2021864938310.3389/fmed.2021.649383 33816529
    [Google Scholar]
  35. SuzukiH. ZuoY. WangJ. ZhangM.Q. MalhotraA. MayedaA. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing.Nucleic Acids Res.2006348e63e6310.1093/nar/gkl151 16682442
    [Google Scholar]
  36. SalzmanJ. ChenR.E. OlsenM.N. WangP.L. BrownP.O. Cell-type specific features of circular RNA expression.PLoS Genet.201399e100377710.1371/journal.pgen.1003777 24039610
    [Google Scholar]
  37. JeckW.R. SorrentinoJ.A. WangK. SlevinM.K. BurdC.E. LiuJ. MarzluffW.F. SharplessN.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA201319214115710.1261/rna.035667.112 23249747
    [Google Scholar]
  38. GlažarP. PapavasileiouP. RajewskyN. circBase: A database for circular RNAs.RNA201420111666167010.1261/rna.043687.113 25234927
    [Google Scholar]
  39. LiR. JiangJ. ShiH. QianH. ZhangX. XuW. CircRNA: A rising star in gastric cancer.Cell. Mol. Life Sci.20207791661168010.1007/s00018‑019‑03345‑5 31659415
    [Google Scholar]
  40. ShiY. JiaX. XuJ. The new function of circRNA: Translation.Clin. Transl. Oncol.202022122162216910.1007/s12094‑020‑02371‑1 32449127
    [Google Scholar]
  41. LiJ. SunD. PuW. WangJ. PengY. Circular RNAs in cancer: Biogenesis, function, and clinical significance.Trends Cancer20206431933610.1016/j.trecan.2020.01.012 32209446
    [Google Scholar]
  42. WangK. GaoX.Q. WangT. ZhouL.Y. The function and therapeutic potential of circular RNA in cardiovascular diseases.Cardiovasc. Drugs Ther.20212021118 34269929
    [Google Scholar]
  43. FanW. PangH. XieZ. HuangG. ZhouZ. Circular RNAs in diabetes mellitus and its complications.Front. Endocrinol. (Lausanne)20221388565010.3389/fendo.2022.885650 35979435
    [Google Scholar]
  44. WangY. MoY. PengM. ZhangS. GongZ. YanQ. TangY. HeY. LiaoQ. LiX. WuX. XiangB. ZhouM. LiY. LiG. LiX. ZengZ. GuoC. XiongW. The influence of circular RNAs on autophagy and disease progression.Autophagy202218224025310.1080/15548627.2021.1917131 33904341
    [Google Scholar]
  45. ChenY. LiC. TanC. MaiG. LiuX. [Circular RNA in human disease and their potential clinic significance].Zhonghua Yi Xue Yi Chuan Xue Za Zhi2017341133137 28186613
    [Google Scholar]
  46. LiW. LiuJ.Q. ChenM. XuJ. ZhuD. Circular RNA in cancer development and immune regulation.J. Cell. Mol. Med.20222661785179810.1111/jcmm.16102 33277969
    [Google Scholar]
  47. HuangJ. SunH. ChenZ. ShaoY. GuW. Mechanism and Function of Circular RNA in Regulating Solid Tumor Radiosensitivity.Int. J. Mol. Sci.202223181044410.3390/ijms231810444 36142355
    [Google Scholar]
  48. ChenL. ShanG. CircRNA in cancer: Fundamental mechanism and clinical potential.Cancer Lett.2021505495710.1016/j.canlet.2021.02.004 33609610
    [Google Scholar]
  49. AkramF. HaqI. NasirN. ShahF.I. Circular RNAs: Insights into Clinical and Therapeutic Approaches for Various Cancers.Curr. Protein Pept. Sci.202324213014210.2174/1389203724666230111113715 36635927
    [Google Scholar]
  50. ShanC. ZhangY. HaoX. GaoJ. ChenX. WangK. Biogenesis, functions and clinical significance of circRNAs in gastric cancer.Mol. Cancer201918113610.1186/s12943‑019‑1069‑0 31519189
    [Google Scholar]
  51. LuY. LiK. GaoY. LiangW. WangX. ChenL. CircRNAs in gastric cancer: Current research and potential clinical implications.FEBS Lett.2021595212644265410.1002/1873‑3468.14196 34561854
    [Google Scholar]
  52. LässerC. EldhM. LötvallJ. Isolation and characterization of RNA-containing exosomes.J. Vis. Exp.201259e3037 22257828
    [Google Scholar]
  53. PegtelD.M. GouldS.J. Exosomes.Annu. Rev. Biochem.201988148751410.1146/annurev‑biochem‑013118‑111902 31220978
    [Google Scholar]
  54. Kupcova SkalnikovaH. BohuslavovaB. TurnovcovaK. JuhasovaJ. JuhasS. RodinovaM. VodickaP. Isolation and characterization of small extracellular vesicles from porcine blood plasma, cerebrospinal fluid, and seminal plasma.Proteomes2019721710.3390/proteomes7020017 31027284
    [Google Scholar]
  55. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau6977 32029601
    [Google Scholar]
  56. ZhengD. HuoM. LiB. WangW. PiaoH. WangY. ZhuZ. LiD. WangT. LiuK. The role of exosomes and exosomal microRNA in cardiovascular disease.Front. Cell Dev. Biol.2021861616110.3389/fcell.2020.616161 33511124
    [Google Scholar]
  57. GuoZ.Y. TangY. ChengY.C. Exosomes as targeted delivery drug system: Advances in exosome loading, surface functionalization and potential for clinical application.Curr. Drug Deliv.202421447348710.2174/1567201819666220613150814 35702803
    [Google Scholar]
  58. ArenaccioC. FedericoM. The multifaceted functions of exosomes in health and disease: An overview.Adv. Exp. Med. Biol.2017998319
    [Google Scholar]
  59. HeC. ZhengS. LuoY. WangB. Exosome theranostics: Biology and translational medicine.Theranostics20188123725510.7150/thno.21945 29290805
    [Google Scholar]
  60. BarileL. VassalliG. Exosomes: Therapy delivery tools and biomarkers of diseases.Pharmacol. Ther.2017174637810.1016/j.pharmthera.2017.02.020 28202367
    [Google Scholar]
  61. ZhouY. ZhangY. GongH. LuoS. CuiY. The role of exosomes and their applications in cancer.Int. J. Mol. Sci.202122221220410.3390/ijms222212204 34830085
    [Google Scholar]
  62. LiC. HouX. ZhangP. LiJ. LiuX. WangY. GuanQ. ZhouY. Exosome-based tumor therapy: Opportunities and challenges.Curr. Drug Metab.202021533935110.2174/1389200221666200515103354 32410558
    [Google Scholar]
  63. MashouriL. YousefiH. ArefA.R. AhadiA. MolaeiF. AlahariS.K. Exosomes: Composition, biogenesis, and mechanisms in cancer metastasis and drug resistance.Mol. Cancer20191817510.1186/s12943‑019‑0991‑5 30940145
    [Google Scholar]
  64. ZhaoX. WuD. MaX. WangJ. HouW. ZhangW. Exosomes as drug carriers for cancer therapy and challenges regarding exosome uptake.Biomed. Pharmacother.202012811023710.1016/j.biopha.2020.110237 32470747
    [Google Scholar]
  65. KahrobaH. HejaziM.S. SamadiN. Exosomes: From carcinogenesis and metastasis to diagnosis and treatment of gastric cancer.Cell. Mol. Life Sci.20197691747175810.1007/s00018‑019‑03035‑2 30734835
    [Google Scholar]
  66. ChenT. ShaoS. LiW. LiuY. CaoY. RETRACTED ARTICLE: The circular RNA hsa-circ-0072309 plays anti-tumour roles by sponging miR-100 through the deactivation of PI3K/AKT and mTOR pathways in the renal carcinoma cell lines.Artif. Cells Nanomed. Biotechnol.20194713638364810.1080/21691401.2019.1657873 31456425
    [Google Scholar]
  67. HeY. ZhengL. YuanM. FanJ. RongL. ZhanT. ZhangJ. Exosomal circPRRX1 functions as a ceRNA for miR-596 to promote the proliferation, migration, invasion, and reduce radiation sensitivity of gastric cancer cells via the upregulation of NF-κB activating protein.Anticancer Drugs202233101114112510.1097/CAD.0000000000001358 36206097
    [Google Scholar]
  68. ZhouT. ZhaoS. TangS. WangY. WuR. ZengX. YangP. ZhangX. TianX. Guggulsterone promotes nasopharyngeal carcinoma cells exosomal Circfip1L1 to mediate miR-125a-5p/VEGFA affecting tumor angiogenesis.Curr. Mol. Pharmacol.2023168870880 36635928
    [Google Scholar]
  69. HosseiniM. KhatamianfarS. HassanianS.M. NedaeiniaR. ShafieeM. MaftouhM. Ghayour-MobarhanM. ShahidSales, S.; Avan, A. Exosome-encapsulated microRNAs as potential circulating biomarkers in colon cancer.Curr. Pharm. Des.201723111705170910.2174/1381612822666161201144634 27908272
    [Google Scholar]
  70. ThakurP. DahiyaH. KaushalA. GuptaV.K. SainiA.K. SainiR.V. Exosomal miRNAs as next-generation therapy vehicles in breast cancer.Curr. Gene Ther.202323533034210.2174/1566523223666230215103524 37728084
    [Google Scholar]
  71. XuY. HanJ. ZhangX. ZhangX. SongJ. GaoZ. QianH. JinJ. LiangZ. Exosomal circRNAs in gastrointestinal cancer: Role in occurrence, development, diagnosis and clinical application (Review).Oncol. Rep.2024512114 38099408
    [Google Scholar]
  72. LuL. FangS. ZhangY. JinL. XuW. LiangZ. Exosomes and exosomal circRNAs: The rising stars in the progression, diagnosis and prognosis of gastric cancer.Cancer Manag. Res.2021138121812910.2147/CMAR.S331221 34737640
    [Google Scholar]
  73. Molina-CastroS. Pereira-MarquesJ. FigueiredoC. MachadoJ.C. VaronC. Gastric cancer: Basic aspects.Helicobacter201722S1Suppl. 1e1241210.1111/hel.12412 28891129
    [Google Scholar]
  74. WortzelI. DrorS. KenificC.M. LydenD. Exosome-mediated metastasis: Communication from a distance.Dev. Cell201949334736010.1016/j.devcel.2019.04.011 31063754
    [Google Scholar]
  75. YuL. XieJ. LiuX. YuY. WangS. Plasma exosomal CircNEK9 accelerates the progression of gastric cancer via miR-409-3p/MAP7 axis.Dig. Dis. Sci.202166124274428910.1007/s10620‑020‑06816‑z 33449227
    [Google Scholar]
  76. HuiC. TianL. HeX. Circular RNA circNHSL1 contributes to gastric cancer progression through the miR-149-5p/YWHAZ axis.Cancer Manag. Res.2020127117713010.2147/CMAR.S253152 32848466
    [Google Scholar]
  77. YangL. VennetiS. NagrathD. Glutaminolysis: A hallmark of cancer metabolism.Annu. Rev. Biomed. Eng.201719116319410.1146/annurev‑bioeng‑071516‑044546 28301735
    [Google Scholar]
  78. ZhuZ. RongZ. LuoZ. YuZ. ZhangJ. QiuZ. HuangC. Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis.Mol. Cancer201918112610.1186/s12943‑019‑1054‑7 31438963
    [Google Scholar]
  79. WangY. WangH. ZhengR. WuP. SunZ. ChenJ. ZhangL. ZhangC. QianH. JiangJ. XuW. Circular RNA ITCH suppresses metastasis of gastric cancer via regulating miR-199a-5p/Klotho axis.Cell Cycle2021205-652253610.1080/15384101.2021.1878327 33499704
    [Google Scholar]
  80. LiQ. TianY. LiangY. LiC. CircHIPK3/miR-876-5p/PIK3R1 axis regulates regulation proliferation, migration, invasion, and glutaminolysis in gastric cancer cells.Cancer Cell Int.202020139110.1186/s12935‑020‑01455‑w 32817745
    [Google Scholar]
  81. LuJ. WangY. YoonC. HuangX. XuY. XieJ. WangJ. LinJ. ChenQ. CaoL. ZhengC. LiP. HuangC. Circular RNA circ-RanGAP1 regulates VEGFA expression by targeting miR-877–3p to facilitate gastric cancer invasion and metastasis.Cancer Lett.2020471384810.1016/j.canlet.2019.11.038 31811909
    [Google Scholar]
  82. SangH. ZhangW. PengL. WeiS. ZhuX. HuangK. YangJ. ChenM. DangY. ZhangG. Exosomal circRELL1 serves as a miR-637 sponge to modulate gastric cancer progression via regulating autophagy activation.Cell Death Dis.20221315610.1038/s41419‑021‑04364‑6 35027539
    [Google Scholar]
  83. SherwoodL.M. ParrisE.E. FolkmanJ. Tumor angiogenesis: Therapeutic implications.N. Engl. J. Med.1971285211182118610.1056/NEJM197111182852108 4938153
    [Google Scholar]
  84. BhatS.M. BadigerV.A. VasishtaS. ChakrabortyJ. PrasadS. GhoshS. JoshiM.B. 3D tumor angiogenesis models: Recent advances and challenges.J. Cancer Res. Clin. Oncol.2021147123477349410.1007/s00432‑021‑03814‑0 34613483
    [Google Scholar]
  85. QiS. DengS. LianZ. YuK. Novel drugs with high efficacy against tumor angiogenesis.Int. J. Mol. Sci.20222313693410.3390/ijms23136934 35805939
    [Google Scholar]
  86. MitchellD.C. BryanB.A. Anti‐angiogenic therapy: Adapting strategies to overcome resistant tumors.J. Cell. Biochem.2010111354355310.1002/jcb.22764 20626031
    [Google Scholar]
  87. ZhangX.P. PeiJ.P. ZhangC.D. YusupuM. HanM.H. DaiD.Q. Exosomal circRNAs: A key factor of tumor angiogenesis and therapeutic intervention.Biomed. Pharmacother.202215611392110.1016/j.biopha.2022.113921 36411614
    [Google Scholar]
  88. SiveenK.S. PrabhuK. KrishnankuttyR. KuttikrishnanS. TsakouM. AlaliF.Q. DermimeS. MohammadR.M. UddinS. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: Potential and challenges.Curr. Vasc. Pharmacol.2017154339351 28056756
    [Google Scholar]
  89. XieM. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation.Mol. Cancer202019122
    [Google Scholar]
  90. LiS. LiJ. ZhangH. ZhangY. WangX. YangH. ZhouZ. HaoX. YingG. BaY. Gastric cancer derived exosomes mediate the delivery of circRNA to promote angiogenesis by targeting miR-29a/VEGF axis in endothelial cells.Biochem. Biophys. Res. Commun.2021560374410.1016/j.bbrc.2021.04.099 33965787
    [Google Scholar]
  91. LiuC. YangJ. ZhuF. ZhaoZ. GaoL. Exosomal circ_0001190 regulates the progression of gastric cancer via miR-586/SOSTDC1 axis.Biochem. Genet.20226061895191310.1007/s10528‑021‑10180‑6 35138469
    [Google Scholar]
  92. VasanN. BaselgaJ. HymanD.M. A view on drug resistance in cancer.Nature2019575778229930910.1038/s41586‑019‑1730‑1 31723286
    [Google Scholar]
  93. WangJ. ZhangY. LiuL. YangT. SongJ. Circular RNAs: New biomarkers of chemoresistance in cancer.Cancer Biol. Med.202118242143610.20892/j.issn.2095‑3941.2020.0312 33738995
    [Google Scholar]
  94. LinZ. JiY. ZhouJ. LiG. WuY. LiuW. LiZ. LiuT. Exosomal circRNAs in cancer: Implications for therapy resistance and biomarkers.Cancer Lett.202356621624510.1016/j.canlet.2023.216245 37247772
    [Google Scholar]
  95. YaoW. GuoP. MuQ. WangY. Exosome-derived Circ-PVT1 contributes to cisplatin resistance by regulating autophagy, invasion, and apoptosis via miR-30a-5p/YAP1 axis in gastric cancer cells.Cancer Biother. Radiopharm.202136434735910.1089/cbr.2020.3578 32799541
    [Google Scholar]
  96. LiuS. WuM. PengM. Circ_0000260 regulates the development and deterioration of gastric adenocarcinoma with cisplatin resistance by upregulating MMP11 via targeting MiR-129-5p.Cancer Manag. Res.202012105051051910.2147/CMAR.S272324 33122949
    [Google Scholar]
  97. YangG. TanJ. GuoJ. WuZ. ZhanQ. Exosome-mediated transfer of circ_0063526 enhances cisplatin resistance in gastric cancer cells via regulating miR-449a/SHMT2 axis.Anticancer Drugs202233101047105710.1097/CAD.0000000000001386 36206102
    [Google Scholar]
  98. ZhongY. WangD. DingY. TianG. JiangB. Circular RNA circ_0032821 contributes to oxaliplatin (OXA) resistance of gastric cancer cells by regulating SOX9 via miR-515-5p.Biotechnol. Lett.202143233935110.1007/s10529‑020‑03036‑3 33123829
    [Google Scholar]
  99. LiangQ. ChuF. ZhangL. JiangY. LiL. WuH. circ-LDLRAD3 knockdown reduces cisplatin chemoresistance and inhibits the development of gastric cancer with cisplatin resistance through miR-588 enrichment-mediated SOX5 inhibition.Gut Liver202317338940310.5009/gnl210195 35975639
    [Google Scholar]
  100. ChenY. LiuH. ZouJ. CaoG. LiY. XingC. WuJ. Exosomal circ_0091741 promotes gastric cancer cell autophagy and chemoresistance via the miR-330-3p/TRIM14/Dvl2/Wnt/β-catenin axis.Hum. Cell202236125827510.1007/s13577‑022‑00790‑6 36323918
    [Google Scholar]
  101. PastushenkoI. BlanpainC. EMT transition states during tumor progression and metastasis.Trends Cell Biol.201929321222610.1016/j.tcb.2018.12.001 30594349
    [Google Scholar]
  102. SinghM. YelleN. VenugopalC. SinghS.K. EMT: Mechanisms and therapeutic implications.Pharmacol. Ther.2018182809410.1016/j.pharmthera.2017.08.009 28834698
    [Google Scholar]
  103. DongreA. WeinbergR.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer.Nat. Rev. Mol. Cell Biol.2019202698410.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  104. ZhangX. WangS. WangH. CaoJ. HuangX. ChenZ. XuP. SunG. XuJ. LvJ. XuZ. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway.Mol. Cancer20191812010.1186/s12943‑018‑0935‑5 30717751
    [Google Scholar]
  105. YangJ. ZhangX. CaoJ. XuP. ChenZ. WangS. LiB. ZhangL. XieL. FangL. XuZ. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis.Cell Death Dis.2021121091010.1038/s41419‑021‑04216‑3 34611143
    [Google Scholar]
  106. JiangJ. LiR. WangJ. HouJ. QianH. XuW. Circular RNA cdr1as inhibits the metastasis of gastric cancer through targeting miR-876-5p/GNG7 axis.Gastroenterol. Res. Pract.2021202111310.1155/2021/5583029 34221006
    [Google Scholar]
  107. LeiX. LeiY. LiJ.K. DuW.X. LiR.G. YangJ. LiJ. LiF. TanH.B. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.Cancer Lett.202047012613310.1016/j.canlet.2019.11.009 31730903
    [Google Scholar]
  108. ChenX. YangT. WangW. XiW. ZhangT. LiQ. YangA. WangT. Circular RNAs in immune responses and immune diseases.Theranostics20199258860710.7150/thno.29678 30809295
    [Google Scholar]
  109. MantovaniA. MarchesiF. MalesciA. LaghiL. AllavenaP. Tumour-associated macrophages as treatment targets in oncology.Nat. Rev. Clin. Oncol.201714739941610.1038/nrclinonc.2016.217 28117416
    [Google Scholar]
  110. PanY. YuY. WangX. ZhangT. Tumor-associated macrophages in tumor immunity.Front. Immunol.20201158308410.3389/fimmu.2020.583084 33365025
    [Google Scholar]
  111. SongJ. XuX. HeS. WangN. BaiY. LiB. ZhangS. Exosomal hsa_circ_0017252 attenuates the development of gastric cancer via inhibiting macrophage M2 polarization.Hum. Cell20223551499151110.1007/s13577‑022‑00739‑9 35796939
    [Google Scholar]
  112. MatsuokaT. YashiroM. Biomarkers of gastric cancer: Current topics and future perspective.World J. Gastroenterol.201824262818283210.3748/wjg.v24.i26.2818 30018477
    [Google Scholar]
  113. WangY. LiuJ. MaJ. SunT. ZhouQ. WangW. WangG. WuP. WangH. JiangL. YuanW. SunZ. MingL. Exosomal circRNAs: Biogenesis, effect and application in human diseases.Mol. Cancer201918111610.1186/s12943‑019‑1041‑z 31277663
    [Google Scholar]
  114. ZhongD. WangZ. YeZ. WangY. CaiX. Cancer-derived exosomes as novel biomarkers in metastatic gastrointestinal cancer.Mol. Cancer20242316710.1186/s12943‑024‑01948‑6 38561768
    [Google Scholar]
  115. XuL. WuL.F. DengF.Y. Exosome: An emerging source of biomarkers for human diseases.Curr. Mol. Med.201919638739410.2174/1566524019666190429144310 31288712
    [Google Scholar]
  116. TangW. FuK. SunH. RongD. WangH. CaoH. CircRNA microarray profiling identifies a novel circulating biomarker for detection of gastric cancer.Mol. Cancer201817113710.1186/s12943‑018‑0888‑8 30236115
    [Google Scholar]
  117. LiX. LinY.L. ShaoJ.K. WuX.J. LiX. YaoH. ShiF.L. LiL.S. ZhangW.G. ChangZ.Y. ChaiN.L. WangY.L. LinghuE.Q. Plasma exosomal hsa_circ_0079439 as a novel biomarker for early detection of gastric cancer.World J. Gastroenterol.202329223482349610.3748/wjg.v29.i22.3482 37389236
    [Google Scholar]
  118. SunH. TangW. RongD. JinH. FuK. ZhangW. LiuZ. CaoH. CaoX. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma.Cancer Biomark.201821229930610.3233/CBM‑170379 29103021
    [Google Scholar]
  119. ShaoY. TaoX. LuR. ZhangH. GeJ. XiaoB. YeG. GuoJ. Hsa_circ_0065149 is an indicator for early gastric cancer screening and prognosis prediction.Pathol. Oncol. Res.20202631475148210.1007/s12253‑019‑00716‑y 31432324
    [Google Scholar]
  120. AndreM. CaobiA. MilesJ.S. VashistA. RuizM.A. RaymondA.D. Diagnostic potential of exosomal extracellular vesicles in oncology.BMC Cancer202424132210.1186/s12885‑024‑11819‑4 38454346
    [Google Scholar]
  121. GanW. SongW. GaoY. ZhengX. WangF. ZhangZ. ZenK. LiangH. YanX. Exosomal circRNAs in the plasma serve as novel biomarkers for IPF diagnosis and progression prediction.J. Transl. Med.202422126410.1186/s12967‑024‑05034‑9 38462601
    [Google Scholar]
  122. SongZ. WuY. YangJ. YangD. FangX. Progress in the treatment of advanced gastric cancer.Tumour Biol.20173971462610.1177/1010428317714626 28671042
    [Google Scholar]
  123. TaoX. ShaoY. LuR. YeQ. XiaoB. YeG. GuoJ. Clinical significance of hsa_circ_0000419 in gastric cancer screening and prognosis estimation.Pathol. Res. Pract.2020216115276310.1016/j.prp.2019.152763 31810586
    [Google Scholar]
  124. ZhangH. ZhuL. BaiM. LiuY. ZhanY. DengT. YangH. SunW. WangX. ZhuK. FanQ. LiJ. YingG. BaY. Retracted: Exosomal circRNA derived from gastric tumor promotes white adipose browning by targeting the miR‐133/PRDM16 pathway.Int. J. Cancer2019144102501251510.1002/ijc.31977 30412280
    [Google Scholar]
  125. ZhengP. GaoH. XieX. LuP. Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric cancer.Pathol. Oncol. Res.202228161044610.3389/pore.2022.1610446 35755416
    [Google Scholar]
  126. YouJ. ChenY. ChenD. LiY. WangT. ZhuJ. HongQ. LiQ. Circular RNA 0001789 sponges miR-140-3p and regulates PAK2 to promote the progression of gastric cancer.J. Transl. Med.20232118310.1186/s12967‑022‑03853‑2 36740679
    [Google Scholar]
  127. WangY. LiZ. XuS. GuoJ. Novel potential tumor biomarkers: Circular RNAs and exosomal circular RNAs in gastrointestinal malignancies.J. Clin. Lab. Anal.2020347e2335910.1002/jcla.23359 32419229
    [Google Scholar]
  128. KristensenL.S. HansenT.B. VenøM.T. KjemsJ. Circular RNAs in cancer: Opportunities and challenges in the field.Oncogene201837555556510.1038/onc.2017.361 28991235
    [Google Scholar]
  129. PofaliP. MondalA. LondheV. Exosome as a natural gene delivery vector for cancer treatment.Curr. Cancer Drug Targets2020201182183010.2174/1568009620666200924154149 32972340
    [Google Scholar]
  130. SyedaS. RawatK. ShrivastavaA. Pharmacological inhibition of exosome machinery: An emerging prospect in cancer therapeutics.Curr. Cancer Drug Targets202222756057610.2174/1568009622666220401093316 35366773
    [Google Scholar]
  131. WangX. ZhangH. YangH. BaiM. NingT. LiS. LiJ. DengT. YingG. BaY. Cell-derived exosomes as promising carriers for drug delivery and targeted therapy.Curr. Cancer Drug Targets201818434735410.2174/1568009617666170710120311 28699500
    [Google Scholar]
  132. YangQ. LiS. OuH. ZhangY. ZhuG. LiS. LeiL. Exosome-based delivery strategies for tumor therapy: An update on modification, loading, and clinical application.J. Nanobiotechnology20242214110.1186/s12951‑024‑02298‑7 38281957
    [Google Scholar]
  133. HanQ. ChaoJ. Circular RNA and its mechanisms in disease: from the bench to the clinic.Pharmacol. Therapeutics.2018187314410.1186/s12951‑024‑02298‑7 38281957
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096318527240909082011
Loading
/content/journals/ccdt/10.2174/0115680096318527240909082011
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarkers; circRNA; diagnosis; Exosomes; gastric cancer; tumor targets
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test