Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Cancer stands as one of the leading causes of death worldwide, and lung cancer represents its most aggressive and persistent form. Traditional strategies for addressing lung cancer involve various medical therapies such as radiotherapy, chemotherapy, and surgical excision. Despite their prevalence, these conventional methods lack precision and inadvertently cause collateral damage to neighbouring healthy cells. Recently, nanotechnology has emerged as a potential strategy for the treatment and management of lung carcinomas, bringing about a transformative shift in existing approaches. The primary focus of this shift is on minimizing harmful effects and improving the bioavailability of chemotherapy drugs specifically targeted at tumour cells. Currently, transferosome nanocarrier systems are widely employed to overcome the obstacles presented by lung cancer. The utilisation of transferosome-loaded therapeutic medication administration technologies holds tremendous potential in regulating tumour cell growth and treating lung cancer. The purpose of this study is to provide an overview and analysis of current advancements in transferosome-based drug delivery systems, employing inhalational nanoparticle strategies for precise drug targeting in lung cancer management.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096329205240905053934
2024-10-29
2025-12-19
Loading full text...

Full text loading...

References

  1. FoxA.H. NishinoM. OsarogiagbonR.U. RiveraM.P. RosenthalL.S. SmithR.A. FarjahF. ShollL.M. SilvestriG.A. JohnsonB.E. Acquiring tissue for advanced lung cancer diagnosis and comprehensive biomarker testing: A national lung cancer roundtable best‐practice guide.CA Cancer J. Clin.202373435837510.3322/caac.21774 36859638
    [Google Scholar]
  2. BadeB.C. Dela CruzC.S. Lung Cancer 2020.Clin. Chest Med.202041112410.1016/j.ccm.2019.10.001 32008623
    [Google Scholar]
  3. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  4. NooreldeenR. BachH. Current and future development in lung cancer diagnosis.Int. J. Mol. Sci.202122168661
    [Google Scholar]
  5. HoyH. LynchT. BeckM. Surgical treatment of lung cancer.Crit. Care Nurs. Clin.201931330331310.1016/j.cnc.2019.05.002 31351552
    [Google Scholar]
  6. WangB. HuW. YanH. ChenG. ZhangY. MaoJ. WangL. Lung cancer chemotherapy using nanoparticles: Enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel.Biomed. Pharmacother.202113611124910.1016/j.biopha.2021.111249 33450493
    [Google Scholar]
  7. Sainz de AjaJ. DostA.F. KimC.F. Alveolar progenitor cells and the origin of lung cancer.J. Intern. Med.2021289562963510.1111/joim.13201 33340175
    [Google Scholar]
  8. SukumarU.K. BhushanB. DubeyP. MataiI. SachdevA. PackirisamyG. Emerging applications of nanoparticles for lung cancer diagnosis and therapy.Int. Nano Lett.2013314510.1186/2228‑5326‑3‑45
    [Google Scholar]
  9. S MS. NaveenN.R. RaoG.K. GopanG. ChopraH. ParkM.N. Alshahrani, M.M.; Jose, J.; Emran, T.B.; Kim, B. A spotlight on alkaloid nanoformulations for the treatment of lung cancer.Front. Oncol.20221299415510.3389/fonc.2022.994155 36330493
    [Google Scholar]
  10. GuM. LuanJ. SongK. QiuC. ZhangX. ZhangM. Development of paclitaxel loaded pegylated gelatin targeted nanoparticles for improved treatment efficacy in non-small cell lung cancer (NSCLC): An in vitro and in vivo evaluation study.Acta Biochim. Pol.202168458359110.18388/abp.2020_5431 34355554
    [Google Scholar]
  11. PatraJ.K. DasG. FracetoL.F. CamposE.V. Rodriguez-TorresM.P. Acosta-TorresL.S. Diaz-TorresL.A. GrilloR. SwamyM.K. SharmaS. HabtemariamS. ShinH.S. Nano based drug delivery systems: Recent developments and future prospects.J. Nanobiotechnol.20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  12. SahinT.K. RizzoA. AksoyS. GuvenD.C. Prognostic significance of the royal marsden hospital (RMH) score in patients with cancer: A systematic review and meta-analysis.Cancers202416101835
    [Google Scholar]
  13. GuX Elemene injection overcomes paclitaxel resistance in breast cancer through ar/runx1 signal: Network pharmacology and experimental validation.Curr. Pharmaceu. Design20242024
    [Google Scholar]
  14. JuaidN. AminA. AbdallaA. ReeseK. AlamriZ. MoulayM. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights.Int. Jo. Mol. Sci2021221910774
    [Google Scholar]
  15. Al HroutA. Cervantes-GraciaK. ChahwanR. AminA. Modelling liver cancer microenvironment using a novel 3D culture system.Sci. Rep.2022121800310.1038/s41598‑022‑11641‑7 35568708
    [Google Scholar]
  16. AminA. FarrukhA. MuraliC. SoleimaniA. PrazF. GrazianiG. BrimH. AshktorabH. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability.Molecules20212613385510.3390/molecules26133855 34202689
    [Google Scholar]
  17. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.777500 35177980
    [Google Scholar]
  18. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci. Rep.2021111706210.1038/s41598‑021‑86391‑z 33782460
    [Google Scholar]
  19. XieY. MuC. KazybayB. SunQ. KutzhanovaA. NazarbekG. XuN. NurtayL. WangQ. AminA. LiX. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery.Drug Deliv.20212812187219710.1080/10717544.2021.1977422 34662244
    [Google Scholar]
  20. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  21. Dall’OlioF.G. RizzoA. MollicaV. MassucciM. MaggioI. MassariF. Immortal time bias in the association between toxicity and response for immune checkpoint inhibitors: A meta-analysisImmunotherapy2021133257270
    [Google Scholar]
  22. AhmadJ. AkhterS. RizwanullahM. AminS. RahmanM. AhmadM.Z. RizviM.A. KamalM.A. AhmadF.J. Nanotechnology-based inhalation treatments for lung cancer: state of the art.Nanotechnol. Sci. Appl.20158Nov5566 26640374
    [Google Scholar]
  23. SharmaP. MehtaM. DhanjalD.S. KaurS. GuptaG. SinghH. ThangaveluL. RajeshkumarS. TambuwalaM. BakshiH.A. ChellappanD.K. DuaK. SatijaS. Emerging trends in the novel drug delivery approaches for the treatment of lung cancer.Chem. Biol. Interact.201930910872010.1016/j.cbi.2019.06.033 31226287
    [Google Scholar]
  24. KumarM. HillesA.R. AlmurisiS.H. BhatiaA. MahmoodS. Micro and nano-carriers-based pulmonary drug delivery system: Their current updates, challenges, and limitations - A review.JCIS Open20231210009510.1016/j.jciso.2023.100095
    [Google Scholar]
  25. NikjooD. van der ZwaanI. BrüllsM. TehlerU. FrenningG. Hyaluronic acid hydrogels for controlled pulmonary drug delivery—a particle engineering approach.Pharmaceutics20211311187810.3390/pharmaceutics13111878 34834293
    [Google Scholar]
  26. BorghardtJ.M. KloftC. SharmaA. Inhaled therapy in respiratory disease: The complex interplay of pulmonary kinetic processes.Can. Respir. J.2018201811110.1155/2018/2732017 30018677
    [Google Scholar]
  27. PulivendalaG. BaleS. GoduguC. Inhalation of sustained release microparticles for the targeted treatment of respiratory diseases.Drug Deliv. Transl. Res.202010233935310.1007/s13346‑019‑00690‑7 31872342
    [Google Scholar]
  28. ThakurA.K. ChellappanD.K. DuaK. MehtaM. SatijaS. SinghI. Patented therapeutic drug delivery strategies for targeting pulmonary diseases.Expert Opin. Ther. Pat.202030533935310.1080/13543776.2020.1741547
    [Google Scholar]
  29. LiuQ. GuanJ. QinL. ZhangX. MaoS. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery.Drug Discov. Today202025115015910.1016/j.drudis.2019.09.023 31600580
    [Google Scholar]
  30. García-FernándezA. SancenónF. Martínez-MáñezR. Mesoporous silica nanoparticles for pulmonary drug delivery.Adv. Drug Deliv. Rev.202117711395310.1016/j.addr.2021.113953 34474094
    [Google Scholar]
  31. NelsonH.S. Inhalation devices, delivery systems, and patient technique.Ann. Allergy Asthma Immunol.2016117660661210.1016/j.anai.2016.05.006 27979017
    [Google Scholar]
  32. Hassanpour AghdamM. GhanbarzadehS. JavadzadehY. HamishehkarH. Aggregated nanotransfersomal dry powder inhalation of itraconazole for pulmonary drug delivery.Adv. Pharm. Bull.201661576410.15171/apb.2016.009 27123418
    [Google Scholar]
  33. ScichiloneN. BenfanteA. BocchinoM. BraidoF. PaggiaroP. PapiA. SantusP. SanduzziA. Which factors affect the choice of the inhaler in chronic obstructive respiratory diseases?Pulm. Pharmacol. Ther.201531636710.1016/j.pupt.2015.02.006 25724817
    [Google Scholar]
  34. Al KhatibA.O. El-TananiM. Al-ObaidiH. Inhaled medicines for targeting non-small cell lung cancer.Pharmaceutics20231512277710.3390/pharmaceutics15122777 38140117
    [Google Scholar]
  35. JinQ. ZhuW. ZhuJ. ZhuJ. ShenJ. LiuZ. YangY. ChenQ. Nanoparticle‐mediated delivery of inhaled immunotherapeutics for treating lung metastasis.Adv. Mater.2021337200755710.1002/adma.202007557 33448035
    [Google Scholar]
  36. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomed.20151097599910.2147/IJN.S68861
    [Google Scholar]
  37. GanesanP. RamalingamP. KarthivashanG. KoY.T. ChoiD.K. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases.Int. J. Nanomed2018131569158310.2147/IJN.S155593
    [Google Scholar]
  38. PridgenE.M. AlexisF. FarokhzadO.C. Polymeric nanoparticle drug delivery technologies for oral delivery applications.Expert Opinion Drug Del.2015121459147310.1517/17425247.2015.1018175
    [Google Scholar]
  39. Pérez-FerreiroM. AbelairasM. CriadoA. GómezA. MosqueraI.J. DendrimersJ. Exploring their wide structural variety and applications.Polymers2023152110.3390/polym15224369
    [Google Scholar]
  40. JinG.W. RejinoldN.S. ChoyJ.H. Multifunctional polymeric micelles for cancer therapy.Polymers20221422
    [Google Scholar]
  41. ShaimoldinaA. SergazinaA. MyrzagaliS. NazarbekG. OmarovaZ. MirzaO. FanH. AminA. ZhouW. XieY. Carbon nanoparticles neutralize carbon dioxide (CO 2) in cytotoxicity: Potent carbon emission induced resistance to anticancer nanomedicine and antibiotics.Ecotoxicol. Environ. Saf.202427311602410.1016/j.ecoenv.2024.116024 38394753
    [Google Scholar]
  42. El-kharragR. AminA. GreishY.E. Low temperature synthesis of monolithic mesoporous magnetite nanoparticles.Ceram. Int.201238162763410.1016/j.ceramint.2011.07.052
    [Google Scholar]
  43. El-kharragR. Abdel HalimS.S. AminA. GreishY.E. Synthesis and characterization of chitosan-coated magnetite nanoparticles using a modified wet method for drug delivery applications.Int. J. Polym. Mater.2019681-3738210.1080/00914037.2018.1525725
    [Google Scholar]
  44. IbrahimS. BaigB. HisaindeeS. DarwishH. Abdel-GhanyA. El-MaghrabyH. AminA. GreishY. Development and evaluation of crocetin-functionalized pegylated magnetite nanoparticles for hepatocellular carcinoma.Molecules2023287288210.3390/molecules28072882 37049645
    [Google Scholar]
  45. ElmehrathS. NguyenH.L. KaramS.M. AminA. GreishY.E. BioMOF-based anti-cancer drug delivery systems.Nanomaterials2023135
    [Google Scholar]
  46. BenassiE. FanH. SunQ. DukenbayevK. WangQ. ShaimoldinaA. TassanbiyevaA. NurtayL. NurkeshA. KutzhanovaA. MuC. DautovA. RazbekovaM. KabyldaA. YangQ. LiZ. AminA. LiX. XieY. Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: The case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine.Nanoscale Adv.2021382222223510.1039/D0NA00958J 36133773
    [Google Scholar]
  47. NazarbekG. KutzhanovaA. NurtayL. MuC. KazybayB. LiX. MaC. AminA. XieY. Nano-evolution and protein-based enzymatic evolution predicts novel types of natural product nanozymes of traditional Chinese medicine: Cases of herbzymes of Taishan-Huangjing (Rhizoma polygonati) and Goji (Lycium chinense).Nanoscale Adv.20213236728673810.1039/D1NA00475A 36132653
    [Google Scholar]
  48. RaiS. PandeyV. RaiG. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art.Nano Rev. Exp.201781132570810.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  49. BalataG.F. FaisalM.M. ElghamryH.A. SabryS.A. Preparation and characterization of ivabradine hcl transfersomes for enhanced transdermal delivery.J. Drug Deliv. Sci. Technol.20206010192110.1016/j.jddst.2020.101921
    [Google Scholar]
  50. ApostolouM. AssiS. FatokunA.A. KhanI. The effects of solid and liquid lipids on the physicochemical properties of nanostructured lipid carriers.J. Pharm. Sci.202111082859287210.1016/j.xphs.2021.04.012 33901564
    [Google Scholar]
  51. KhanI. NeedhamR. YousafS. HouacineC. IslamY. BnyanR. SadozaiS.K. ElrayessM.A. ElhissiA. Impact of phospholipids, surfactants and cholesterol selection on the performance of transfersomes vesicles using medical nebulizers for pulmonary drug delivery.J. Drug Deliv. Sci. Technol.20216610282210.1016/j.jddst.2021.102822
    [Google Scholar]
  52. ChauhanN. An updated review on transfersomes: A novel vesicular system for transdermal drug delivery.Uni. J. Pharmaceu. Res.201724495210.22270/ujpr.v2i4.RW2
    [Google Scholar]
  53. OpathaS.A. TitapiwatanakunV. ChutoprapatR. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery.Pharmaceutics202012123
    [Google Scholar]
  54. SharmaU. VPJNK. A review on novel vesicular drug delivery system.Transfersomes. Int. J. Pharma. Life Sci.2020110768126824
    [Google Scholar]
  55. ChaurasiyaP. GanjuE. UpmanyuN. RayS.K. JainP. Transfersomes: a novel technique for transdermal drug delivery.J. Drug Deliv. Ther.20199127928510.22270/jddt.v9i1.2198
    [Google Scholar]
  56. YadavA. NSRVMR. Transfersome for treatment of herpes zooster of antiviral drugs.World J. Pharm. Res.201989845869
    [Google Scholar]
  57. ChaurasiaL. SinghS. AroraK. SaxenaC. Transferosome: A suitabledelivery system for percutaneous administration.Curr. Res. Pharmaceu. Sci.20199111110.24092/CRPS.2019.090101
    [Google Scholar]
  58. TiwariG. TiwariR. SinghR. RaiA.K. Ultra-deformable liposomes as flexible nanovesicular carrier to penetrate versatile drugs transdermally.Nanosci. Nanotechnol.2020101122010.2174/2210681208666180820145327
    [Google Scholar]
  59. JainA.K. Transfersomes: Ultradeformable vesicles for transdermal drug delivery Asian J.Biomat. Res.2017129855
    [Google Scholar]
  60. KumarA. TRANSFEROSOME: A recent approach for transdermal drug delivery.J. Drug Deliv. Ther.20188510010410.22270/jddt.v8i5‑s.1981
    [Google Scholar]
  61. PawarA.Y. Transfersome: A novel technique which improves transdermal permeability.Asian J. Pharm.2016104425436
    [Google Scholar]
  62. SolankiD. TRANSFEROSOMES- A review.World J. Pharm. Pharm. Sci.2016510435449
    [Google Scholar]
  63. SarmahP.J. Transfersomes based transdermal drug delivery: An overview.Int. J. Adv. Pharmaceu. Res.201341219
    [Google Scholar]
  64. KodiS.R. ReddyM.S. Transferosomes: A novel topical approach.J. Drug Deliv. Ther.202313212613110.22270/jddt.v13i2.5952
    [Google Scholar]
  65. KumarR.S. PradhanM. Transferosomes: Vesicular carrier for both hydrophilic and lipophilic drugs.J. Pharm. Res. Int.2022342710612010.9734/jpri/2022/v34i27B36013
    [Google Scholar]
  66. PreprintE. AzmanaM. AzmirM. ArifinB. MahmoodS. AzmanaM. A review on transfersomes: Promising carrier for transdermal drug delivery current science and technology.Preprint2022
    [Google Scholar]
  67. LokhandeS.J.M. Transferosomes: A novel approach to drug delivery.Int. J. Pharma Sci.202319279287
    [Google Scholar]
  68. WuP.S. LiY.S. KuoY.C. TsaiS.J.J. LinC.C. Preparation and evaluation of novel transfersomes combined with the natural antioxidant resveratrol.Molecules201924360010.3390/molecules24030600 30743989
    [Google Scholar]
  69. AgarwalS. KumarR. AmmarY. AtharW. AkhtarA. Lung cancer therapy using naturally occurring products and nanotechnology.Innov. J. Med. Sci20221010.22159/ijms.2022v10i4.44993
    [Google Scholar]
  70. ChauhanP. TyagiB.K. Herbal novel drug delivery systems and transfersomes.J. Drug Deliv. Ther.20188310.22270/jddt.v8i3.1772
    [Google Scholar]
  71. ChoudhuryA.K. TRANSFEROSOMES: An advanced novel technique for transdermal drug delivery.World J. Pharm. Pharm. Sci.2023124127140
    [Google Scholar]
  72. JosephT.M. LukeP.M. Transferosomes: Novel delivery system for increasing the skin permeation of drugs.Int. J. Med. Pharmaceu Sci.2022102011010.31782/IJMPS.2020.10202
    [Google Scholar]
  73. BhokareB. Transfersomes: A novel drug delivery system.Int. J. Res. Eng. Appl. Sci.201776189198
    [Google Scholar]
  74. AlipourS. MontaseriH. TafaghodiM. Preparation and characterization of biodegradable paclitaxel loaded alginate microparticles for pulmonary delivery.Colloids Surf. B Biointerfaces201081252152910.1016/j.colsurfb.2010.07.050 20732796
    [Google Scholar]
  75. KhanI. ApostolouM. BnyanR. HouacineC. ElhissiA. YousafS.S. Paclitaxel-loaded micro or nano transfersome formulation into novel tablets for pulmonary drug delivery via nebulization.Int. J. Pharm.202057511891910.1016/j.ijpharm.2019.118919 31816351
    [Google Scholar]
  76. SharmaA. ShambhwaniD. PandeyS. SinghJ. LalhlenmawiaH. KumarasamyM. Advances in lung cancer treatment using nanomedicines.ACS Omega20238104110.1021/acsomega.2c04078
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096329205240905053934
Loading
/content/journals/ccdt/10.2174/0115680096329205240905053934
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test