Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Cancer is one of the leading causes of mortality and morbidity worldwide. It is characterized by unmanaged cell proliferation and growth, leading to tumour formation with the potential to metastasize to various organs of the human body. Currently, several common therapeutic approaches exist to treat malignancies, including chemotherapy, surgery, and radiotherapy, which can be used to prevent the progression of malignancies. However, these therapeutic approaches often face challenges due to their cytotoxic impacts and various side effects. Ergo is currently researching a new treatment that effectively reduces cancer progression with minimal side effects. Emerging evidence suggests that harnessing herbal sources, which are both accessible and safe, can be useful in improving various disorders, including cancer. Oridonin, a diterpenoid isolated from the traditional Chinese medicinal herb Rabdosia rubescens, has shown significant potential in cancer therapy. Moreover, numerous pharmacological and biological capacities have been attributed to this naturally active compound, such as anti-oxidative, anti-inflammatory, anti-bacterial, and anti-viral influences. This review summarizes the current knowledge on oridonin's mechanisms of action, particularly its effects on autophagy and apoptosis. While apoptosis is a well-established pathway for eliminating cancer cells through DNA fragmentation, autophagy plays a complex role, acting as both a cytoprotective and cell death mechanism depending on the context. We provide a comprehensive evaluation of the relevant studies, highlighting oridonin's potential in cancer control and identifying areas for further research.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096320596240913034833
2024-10-29
2025-12-19
Loading full text...

Full text loading...

References

  1. TahaS. MohamedW.R. ElhemelyM.A. El-GendyA.O. MohamedT. Tunable femtosecond laser suppresses the proliferation of breast cancer in vitro.J. Photochem. Photobiol. B202324011266510.1016/j.jphotobiol.2023.112665 36736031
    [Google Scholar]
  2. BernsteinE. Lev-AriS. ShapiraS. LeshnoA. SommerU. Al-ShamsiH. ShakedM. SegalO. GalazanL. Hay-LevyM. SrorM. Harlap-GatA. PeerM. MoshkowitzM. WolfI. LibermanE. ShenbergG. GurE. ElranH. MelingerG. MashiahJ. IsakovO. ZrifinE. GluckN. DekelR. KleinmanS. AviramG. BlacharA. KesslerA. GolanO. GevaR. YossepowitchO. NeugutA.I. ArberN. Data from a one-stop-shop comprehensive cancer screening center.J. Clin. Oncol.202341142503251010.1200/JCO.22.00938 36669135
    [Google Scholar]
  3. ChengZ. LiM. DeyR. ChenY. Nanomaterials for cancer therapy: current progress and perspectives.J. Hematol. Oncol.20211418510.1186/s13045‑021‑01096‑0 34059100
    [Google Scholar]
  4. de MartelC. GeorgesD. BrayF. FerlayJ. CliffordG.M. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis.Lancet Glob. Health202082e180e19010.1016/S2214‑109X(19)30488‑7 31862245
    [Google Scholar]
  5. CaoM. LiH. SunD. HeS. YanX. YangF. ZhangS. XiaC. LeiL. PengJ. ChenW. Current cancer burden in China: epidemiology, etiology, and prevention.Cancer Biol. Med.20221981121113810.20892/j.issn.2095‑3941.2022.0231 36069534
    [Google Scholar]
  6. HaoQ. VadgamaJ.V. WangP. CCL2/CCR2 signaling in cancer pathogenesis.Cell Commun. Signal.20201818210.1186/s12964‑020‑00589‑8 32471499
    [Google Scholar]
  7. FundW. Diet, Nutrition, Physical Activity and Cancer: A Global Perspective.Continuous Update Project Expert Report2018
    [Google Scholar]
  8. PraudD. RotaM. RehmJ. ShieldK. ZatońskiW. HashibeM. La VecchiaC. BoffettaP. Cancer incidence and mortality attributable to alcohol consumption.Int. J. Cancer201613861380138710.1002/ijc.29890 26455822
    [Google Scholar]
  9. XiaC. ZhengR. ZengH. ZhouM. WangL. ZhangS. ZouX. SunK. YangZ. LiH. ParascandolaM. IslamiF. ChenW. Provincial-level cancer burden attributable to active and second-hand smoking in China.Tob. Control201928666967510.1136/tobaccocontrol‑2018‑054583 30322976
    [Google Scholar]
  10. KarpuzM. Silindir-GunayM. OzerA.Y. Current and Future Approaches for Effective Cancer Imaging and Treatment.Cancer Biother. Radiopharm.2018332395110.1089/cbr.2017.2378 29634415
    [Google Scholar]
  11. LeiY.Y. WangY.Q. HaoJ.G. LiuM.W. Pancreatic hepatoid carcinoma: A case report and literature review.World Academy of Sciences Journal2021354910.3892/wasj.2021.120
    [Google Scholar]
  12. Rezaei-TazangiF. Roghani-ShahrakiH. Khorsand GhaffariM. Abolhasani ZadehF. BoostanA. ArefNezhad, R.; Motedayyen, H. The therapeutic potential of common herbal and nano-based herbal formulations against ovarian cancer: New insight into the current evidence.Pharmaceuticals (Basel)20211412131510.3390/ph14121315 34959716
    [Google Scholar]
  13. HosseiniA. GhorbaniA. Cancer therapy with phytochemicals: evidence from clinical studies.Avicenna J. Phytomed.2015528497 25949949
    [Google Scholar]
  14. WangY. LvH. DaiC. WangX. YinY. ChenZ. Oridonin Dose-Dependently Modulates the Cell Senescence and Apoptosis of Gastric Cancer Cells.Evid. Based Complement. Alternat. Med.2021202111210.1155/2021/5023536 34795783
    [Google Scholar]
  15. LiG.Q. GaoS.X. WangF.H. KangL. TangZ.Y. MaX.D. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies.Biomed. Pharmacother.202316511501910.1016/j.biopha.2023.115019 37329709
    [Google Scholar]
  16. JiangJ.H. PiJ. JinH. CaiJ.Y. Oridonin‐induced mitochondria‐dependent apoptosis in esophageal cancer cells by inhibiting PI3K/AKT/mTOR and Ras/Raf pathways.J. Cell. Biochem.201912033736374610.1002/jcb.27654 30229997
    [Google Scholar]
  17. BaoR. ShuY. WuX. WengH. DingQ. CaoY. LiM. MuJ. WuW. DingQ. TanZ. LiuT. JiangL. HuY. GuJ. LiuY. Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway.BMC Cancer201414121710.1186/1471‑2407‑14‑217 24655726
    [Google Scholar]
  18. BuH.Q. LiuD.L. WeiW.T. ChenL. HuangH. LiY. CuiJ.H. Oridonin induces apoptosis in SW1990 pancreatic cancer cells via p53- and caspase-dependent induction of p38 MAPK.Oncol. Rep.201431297598210.3892/or.2013.2888 24297112
    [Google Scholar]
  19. LiS. ShiD. ZhangL. YangF. ChengG. Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl 2.Exp. Ther. Med.20181664859486410.3892/etm.2018.6803 30546402
    [Google Scholar]
  20. ZhouJ. LiY. ShiX. HaoS. ZhangF. GuoZ. GaoY. GuoH. LiuL. Oridonin inhibits tumor angiogenesis and induces vessel normalization in experimental colon cancer.J. Cancer202112113257326410.7150/jca.55929 33976735
    [Google Scholar]
  21. ShiM. LuX.J. ZhangJ. DiaoH. LiG. XuL. WangT. WeiJ. MengW. MaJ.L. YuH. WangY.G. Oridonin, a novel lysine acetyltransferases inhibitor, inhibits proliferation and induces apoptosis in gastric cancer cells through p53- and caspase-3-mediated mechanisms.Oncotarget2016716226232263110.18632/oncotarget.8033 26980707
    [Google Scholar]
  22. LiuW. WangX. WangL. MeiY. YunY. YaoX. ChenQ. ZhouJ. KouB. Oridonin represses epithelial-mesenchymal transition and angiogenesis of thyroid cancer via downregulating JAK2/STAT3 signaling.Int. J. Med. Sci.202219696597410.7150/ijms.70733 35813296
    [Google Scholar]
  23. CaoS. HuangY. ZhangQ. LuF. DonkorP.O. ZhuY. QiuF. KangN. Molecular mechanisms of apoptosis and autophagy elicited by combined treatment with oridonin and cetuximab in laryngeal squamous cell carcinoma.Apoptosis2019241-2334510.1007/s10495‑018‑1497‑0 30430397
    [Google Scholar]
  24. KlionskyD.J. PetroniG. AmaravadiR.K. BaehreckeE.H. BallabioA. BoyaP. Bravo-San PedroJ.M. CadwellK. CecconiF. ChoiA.M.K. ChoiM.E. ChuC.T. CodognoP. ColomboM.I. CuervoA.M. DereticV. DikicI. ElazarZ. EskelinenE.L. FimiaG.M. GewirtzD.A. GreenD.R. HansenM. JäätteläM. JohansenT. JuhászG. KarantzaV. KraftC. KroemerG. KtistakisN.T. KumarS. Lopez-OtinC. MacleodK.F. MadeoF. MartinezJ. MeléndezA. MizushimaN. MünzC. PenningerJ.M. PereraR.M. PiacentiniM. ReggioriF. RubinszteinD.C. RyanK.M. SadoshimaJ. SantambrogioL. ScorranoL. SimonH.U. SimonA.K. SimonsenA. StolzA. TavernarakisN. ToozeS.A. YoshimoriT. YuanJ. YueZ. ZhongQ. GalluzziL. PietrocolaF. Autophagy in major human diseases.EMBO J.20214019e10886310.15252/embj.2021108863 34459017
    [Google Scholar]
  25. LiX. HeS. MaB. Autophagy and autophagy-related proteins in cancer.Mol. Cancer20201911210.1186/s12943‑020‑1138‑4 31969156
    [Google Scholar]
  26. XiH. WangS. WangB. HongX. LiuX. LiM. ShenR. DongQ. The role of interaction between autophagy and apoptosis in tumorigenesis (Review).Oncol. Rep.202248620810.3892/or.2022.8423 36222296
    [Google Scholar]
  27. OjhaR. BhattacharyyaS. SinghS.K. Autophagy in cancer stem cells: a potential link between chemoresistance, recurrence, and metastasis.Biores. Open Access2015419710810.1089/biores.2014.0035 26309786
    [Google Scholar]
  28. SmithA.G. MacleodK.F. Autophagy, cancer stem cells and drug resistance.J. Pathol.2019247570871810.1002/path.5222 30570140
    [Google Scholar]
  29. Bartolák-SukiE. ImsirovicJ. NishiboriY. KrishnanR. SukiB. Regulation of mitochondrial structure and dynamics by the cytoskeleton and mechanical factors.Int. J. Mol. Sci.2017188181210.3390/ijms18081812 28825689
    [Google Scholar]
  30. TalukdarS. PradhanA.K. BhoopathiP. ShenX.N. AugustL.A. WindleJ.J. SarkarD. FurnariF.B. CaveneeW.K. DasS.K. EmdadL. FisherP.B. MDA-9/Syntenin regulates protective autophagy in anoikis-resistant glioma stem cells.Proc. Natl. Acad. Sci. USA2018115225768577310.1073/pnas.1721650115 29760085
    [Google Scholar]
  31. ChenJ.L. DavidJ. Cook-SpaethD. CaseyS. CohenD. SelvendiranK. Bekaii-SaabT. HaysJ.L. Autophagy induction results in enhanced anoikis resistance in models of peritoneal disease.Mol. Cancer Res.2017151263410.1158/1541‑7786.MCR‑16‑0200‑T 27807188
    [Google Scholar]
  32. WilemanT. Autophagy as a defence against intracellular pathogens.Essays Biochem.20135515316310.1042/bse0550153 24070478
    [Google Scholar]
  33. LevineB. KroemerG. Biological functions of autophagy genes: a disease perspective.Cell20191761-2114210.1016/j.cell.2018.09.048 30633901
    [Google Scholar]
  34. ZhouW.H. TangF. XuJ. WuX. YangS.B. FengZ.Y. DingY.G. WanX.B. GuanZ. LiH.G. LinD.J. ShaoC.K. LiuQ. Low expression of Beclin 1, associated with high Bcl-xL, predicts a malignant phenotype and poor prognosis of gastric cancer.Autophagy20128338940010.4161/auto.18641 22240664
    [Google Scholar]
  35. LiuK-Y. MoY. SunY-Y. Autophagy and inflammation in ischemic stroke.Neural Regen. Res.20201581388139610.4103/1673‑5374.274331 31997797
    [Google Scholar]
  36. ZhouF. GaoH. ShangL. LiJ. ZhangM. SunY. siRNA targeting HIF-1α inhibits the proliferation and invasion of oral squamous cell carcinoma cells via the mTOR/S6K1/autophagy signaling pathway.Mol. Med. Rep.20181814151421
    [Google Scholar]
  37. YilmazI. AkalanH. Sirin YasarD. KaraarslanN. ÖzbekH. AteşO. Is favipiravir a potential therapeutic agent in the treatment of intervertebral disc degeneration by suppressing autophagy and apoptosis?Turk Neurosurg.202232468068710.5137/1019‑5149.JTN.38252‑22.3 35652184
    [Google Scholar]
  38. LiuX. XuJ. ZhouJ. ShenQ. Oridonin and its derivatives for cancer treatment and overcoming therapeutic resistance.Genes Dis.20218444846210.1016/j.gendis.2020.06.010 34179309
    [Google Scholar]
  39. YaoJ. LiuL. SunQ. ShenX. Direct cellular targets and anticancer mechanisms of the natural product oridonin.MedComm Future Medicine202321
    [Google Scholar]
  40. WangT. XuZ. Natural Compounds with Aldose Reductase (AR) Inhibition: A Class of Medicative Agents for Fatty Liver Disease.Comb. Chem. High Throughput Screen.202326111929194410.2174/1386207326666230119101011 36655533
    [Google Scholar]
  41. LinS. DaiS. LinJ. LiangX. WangW. Huang, W Oridonin Relieves Angiotensin II-Induced Cardiac Remodeling via Inhibiting GSDMD-Mediated Inflammation.Cardiovasc. Ther.202220223167959
    [Google Scholar]
  42. YuanZ. OuyangP. GuK. RehmanT. ZhangT. YinZ. FuH. LinJ. HeC. ShuG. LiangX. YuanZ. SongX. LiL. ZouY. YinL. The antibacterial mechanism of oridonin against methicillin-resistant Staphylococcus aureus (MRSA).Pharm. Biol.201957171071610.1080/13880209.2019.1674342 31622118
    [Google Scholar]
  43. ZhongB. PengW. DuS. ChenB. FengY. HuX. LaiQ. LiuS. ZhouZ.W. FangP. WuY. GaoF. ZhouH. SunL. Oridonin Inhibits SARS‐CoV‐2 by Targeting Its 3C‐Like Protease.Small Sci.202226210012410.1002/smsc.202100124 35600064
    [Google Scholar]
  44. Antimicrobial activity of oridonin.Food Sci. Technol. (Campinas)2023
    [Google Scholar]
  45. SunY. JiangX. LuY. ZhuJ. YuL. MaB. ZhangQ. Oridonin prevents epithelial-mesenchymal transition and TGF-β1-induced epithelial-mesenchymal transition by inhibiting TGF-β1/Smad2/3 in osteosarcoma.Chem. Biol. Interact.2018296576410.1016/j.cbi.2018.09.013 30243739
    [Google Scholar]
  46. CheX. ZhanJ. ZhaoF. ZhongZ. ChenM. HanR. WangY. Oridonin Promotes Apoptosis and Restrains the Viability and Migration of Bladder Cancer by Impeding TRPM7 Expression via the ERK and AKT Signaling Pathways.BioMed Res. Int.202120211910.1155/2021/4340950 34285910
    [Google Scholar]
  47. DuanD. WangX. FengX. PanD. WangL. WangY. Oridonin Induces Oxidative Stress-mediated Cancer Cells Apoptosis via Targeting Thioredoxin Reductase.Curr. Pharm. Biotechnol.202223141647165710.2174/1389201023666211217151955 34923938
    [Google Scholar]
  48. LuY. SunY. ZhuJ. YuL. JiangX. ZhangJ. DongX. MaB. ZhangQ. Oridonin exerts anticancer effect on osteosarcoma by activating PPAR-γ and inhibiting Nrf2 pathway.Cell Death Dis.2018911510.1038/s41419‑017‑0031‑6 29323103
    [Google Scholar]
  49. XiaS. ZhangX. LiC. GuanH. Oridonin inhibits breast cancer growth and metastasis through blocking the Notch signaling.Saudi Pharm. J.201725463864310.1016/j.jsps.2017.04.037 28579904
    [Google Scholar]
  50. YangJ. RenX. ZhangL. LiY. ChengB. XiaJ. Oridonin inhibits oral cancer growth and PI3K/Akt signaling pathway.Biomed. Pharmacother.201810022623210.1016/j.biopha.2018.02.011 29432993
    [Google Scholar]
  51. WangY.Y. LvY.F. LuL. CaiL. Oridonin inhibits mTOR signaling and the growth of lung cancer tumors.Anticancer Drugs201425101192120010.1097/CAD.0000000000000154 25075795
    [Google Scholar]
  52. GuH. GwonM.G. KimJ.H. LeemJ. LeeS.J. Oridonin Attenuates Cisplatin-Induced Acute Kidney Injury via Inhibiting Oxidative Stress, Apoptosis, and Inflammation in Mice.BioMed Res. Int.2022202211010.1155/2022/3002962 35469348
    [Google Scholar]
  53. HuangJ.H. LanC.C. HsuY.T. TsaiC.L. TzengI.S. WangP. KuoC.Y. HsiehP.C. Oridonin attenuates lipopolysaccharide-induced ROS accumulation and inflammation in HK-2 cells.Evid. Based Complement. Alternat. Med.202020201972452010.1155/2020/9724520 32184902
    [Google Scholar]
  54. HeH. JiangH. ChenY. YeJ. WangA. WangC. LiuQ. LiangG. DengX. JiangW. ZhouR. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity.Nat. Commun.201891255010.1038/s41467‑018‑04947‑6 29959312
    [Google Scholar]
  55. MaQ. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction.Pharmacol. Rev.202375348752010.1124/pharmrev.122.000629 36669831
    [Google Scholar]
  56. ShahA. Novel Coronavirus-Induced NLRP3 Inflammasome Activation: A Potential Drug Target in the Treatment of COVID-19.Front. Immunol.202011102110.3389/fimmu.2020.01021 32574259
    [Google Scholar]
  57. RatajczakM.Z. KuciaM. SARS-CoV-2 infection and overactivation of Nlrp3 inflammasome as a trigger of cytokine “storm” and risk factor for damage of hematopoietic stem cells.Leukemia20203471726172910.1038/s41375‑020‑0887‑9 32483300
    [Google Scholar]
  58. ZhaoX.J. ZhuH.Y. WangX.L. LuX.W. PanC.L. XuL. LiuX. XuN. ZhangZ.Y. Oridonin ameliorates traumatic brain injury-induced neurological damage by improving mitochondrial function and antioxidant capacity and suppressing neuroinflammation through the Nrf2 pathway.J. Neurotrauma2022397-853054310.1089/neu.2021.0466 35102762
    [Google Scholar]
  59. ZhangJ. ZhouY. SunY. YanH. HanW. WangX. WangK. WeiB. XuX. Beneficial effects of Oridonin on myocardial ischemia/reperfusion injury: Insight gained by metabolomic approaches.Eur. J. Pharmacol.201986117258710.1016/j.ejphar.2019.172587 31377155
    [Google Scholar]
  60. WangX. GaoM. WangZ. CuiW. ZhangJ. ZhangW. XiaY. WeiB. TangY. XuX. Hepatoprotective effects of oridonin against bisphenol A induced liver injury in rats via inhibiting the activity of xanthione oxidase.Sci. Total Environ.202177014530110.1016/j.scitotenv.2021.145301 33515877
    [Google Scholar]
  61. LiuD.L. BuH.Q. WangW.L. LuoH. ChengB.N. Oridonin enhances the anti-tumor activity of gemcitabine towards pancreatic cancer by stimulating Bax- and Smac-dependent apoptosis.Transl. Cancer Res.2020974148416110.21037/tcr‑19‑3000 35117784
    [Google Scholar]
  62. LouS. XuJ. WangB. LiS. RenJ. HuZ. XuB. LuoF. Downregulation of lncRNA AFAP1-AS1 by oridonin inhibits the epithelial-to-mesenchymal transition and proliferation of pancreatic cancer cells.Acta Biochim. Biophys. Sin. (Shanghai)201951881482510.1093/abbs/gmz071 31314060
    [Google Scholar]
  63. ZhaoX. ZhangQ. WangY. LiS. YuX. WangB. WangX. Oridonin induces autophagy-mediated cell death in pancreatic cancer by activating the c-Jun N-terminal kinase pathway and inhibiting phosphoinositide 3-kinase signaling.Ann. Transl. Med.2021913108410.21037/atm‑21‑2630 34422996
    [Google Scholar]
  64. QiX. ZhangD. XuX. FengF. RenG. ChuQ. ZhangQ. TianK. Oridonin nanosuspension was more effective than free oridonin on G2/M cell cycle arrest and apoptosis in the human pancreatic cancer PANC-1 cell line.Int. J. Nanomedicine2012717931804 22619528
    [Google Scholar]
  65. TahaM.M.E. MobarkiA.A. MadkhaliA.M. FarasaniA. ShaheenE.S. HamaliH.A. Hyphaene thebaica mart. extract attenuates oxidative stress and Bax-and Bcl-2-mediated apoptosis in ethanol-induced gastric ulcers in rats.Pharmacogn. Mag.20221880969975
    [Google Scholar]
  66. GalluzziL. MyintM. Cell death and senescence.J. Transl. Med.202321142510.1186/s12967‑023‑04297‑y 37386590
    [Google Scholar]
  67. LiY. WangY. WangS. GaoY. ZhangX. LuC. Oridonin phosphate-induced autophagy effectively enhances cell apoptosis of human breast cancer cells.Med. Oncol.201532136510.1007/s12032‑014‑0365‑1 25491140
    [Google Scholar]
  68. LiC. WangQ. ShenS. WeiX. LiG. Oridonin inhibits VEGF-A-associated angiogenesis and epithelial mesenchymal transition of breast cancer in-vitro and in-vivo.Oncol. Lett.20181622289229810.3892/ol.2018.8943 30008931
    [Google Scholar]
  69. CuiQ. TashiroS. OnoderaS. MinamiM. IkejimaT. Autophagy preceded apoptosis in oridonin-treated human breast cancer MCF-7 cells.Biol. Pharm. Bull.200730585986410.1248/bpb.30.859 17473426
    [Google Scholar]
  70. WangS. ZhongZ. WanJ. TanW. WuG. ChenM. WangY. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells.Am. J. Chin. Med.201341117719610.1142/S0192415X13500134 23336515
    [Google Scholar]
  71. SamarghandianS. Azimi‐NezhadM. BorjiA. FarkhondehT. Effect of crocin on aged rat kidney through inhibition of oxidative stress and proinflammatory state. Phytotherapy research. 2016 Aug;30813451353
    [Google Scholar]
  72. PahlH.L. Activators and target genes of Rel/NF-κB transcription factors.Oncogene199918496853686610.1038/sj.onc.1203239 10602461
    [Google Scholar]
  73. DuttaJ. FanY. GuptaN. FanG. GélinasC. Current insights into the regulation of programmed cell death by NF-κB.Oncogene200625516800681610.1038/sj.onc.1209938 17072329
    [Google Scholar]
  74. GurramP.C. SatarkerS. NassarA. MudgalJ. NampoothiriM. Virtual structure-based docking and molecular dynamics of FDA-approved drugs for the identification of potential IKKB inhibitors possessing dopaminergic activity in Alzheimer’s disease.Chem. Zvesti20237741971198810.1007/s11696‑022‑02598‑y
    [Google Scholar]
  75. LiX. LiX. WangJ. YeZ. LiJ.C. Oridonin up-regulates expression of P21 and induces autophagy and apoptosis in human prostate cancer cells.Int. J. Biol. Sci.20128690191210.7150/ijbs.4554 22745580
    [Google Scholar]
  76. LuJ. ChenX. QuS. YaoB. XuY. WuJ. JinY. MaC. Oridonin induces G2/M cell cycle arrest and apoptosis via the PI3K/Akt signaling pathway in hormone-independent prostate cancer cells.Oncol. Lett.20171342838284610.3892/ol.2017.5751 28454475
    [Google Scholar]
  77. ChengX. SunY. HighkinM. VemalapallyN. JinX. ZhouB. PriorJ.L. TiptonA.R. LiS. IliukA. AchilefuS. HagemannI.S. EdwardsJ.R. BoseR. Breast cancer mutations HER2 V777L and PIK3CA H1047R activate the p21-CDK4/6-Cyclin D1 axis driving tumorigenesis and drug resistance.Cancer Res.202383172839285710.1158/0008‑5472.CAN‑22‑3558
    [Google Scholar]
  78. KohandelZ. FarkhondehT. AschnerM. SamarghandianS. Nrf2 a molecular therapeutic target for Astaxanthin.Biomedicine & Pharmacotherapy. 2021 May 1137111374
    [Google Scholar]
  79. FerozW. SheikhA.M.A. Exploring the multiple roles of guardian of the genome: P53.Egypt. J. Med. Hum. Genet.20202114910.1186/s43042‑020‑00089‑x
    [Google Scholar]
  80. YaoZ. XieF. LiM. LiangZ. XuW. YangJ. LiuC. LiH. ZhouH. QuL.H. Oridonin induces autophagy via inhibition of glucose metabolism in p53-mutated colorectal cancer cells.Cell Death Dis.201782e263310.1038/cddis.2017.35 28230866
    [Google Scholar]
  81. WuQ.X. YuanS.X. RenC.M. YuY. SunW.J. HeB.C. WuK. Oridonin upregulates PTEN through activating p38 MAPK and inhibits proliferation in human colon cancer cells.Oncol. Rep.20163563341334810.3892/or.2016.4735 27108927
    [Google Scholar]
  82. OronskyB. OronskyN. FangerG. ParkerC. CaroenS. LybeckM. ScicinskiJ. Follow the ATP: tumor energy production: a perspective.Anticancer. Agents Med. Chem.20141491187119810.2174/1871520614666140804224637 25102360
    [Google Scholar]
  83. GaoF.H. LiuF. WeiW. LiuL.B. XuM.H. GuoZ.Y. LiW. JiangB. WuY.L. Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells.Int. J. Mol. Med.201229464965510.3892/ijmm.2012.895 22294162
    [Google Scholar]
  84. BuH. LiuD. ZhangG. ChenL. SongZ. AMPK/mTOR/ULK1 axis-mediated pathway participates in apoptosis and autophagy induction by oridonin in colon cancer DLD-1 cells.OncoTargets Ther.2020138533854510.2147/OTT.S262022 32904616
    [Google Scholar]
  85. AlersS. LöfflerA.S. WesselborgS. StorkB. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks.Mol. Cell. Biol.201232121110.1128/MCB.06159‑11 22025673
    [Google Scholar]
  86. MaoK. KlionskyD.J. AMPK activates autophagy by phosphorylating ULK1.Circ. Res.2011108778778810.1161/RES.0b013e3182194c29 21454792
    [Google Scholar]
  87. ZhangD. ZhouQ. HuangD. HeL. ZhangH. HuB. PengH. RenD. ROS/JNK/c-Jun axis is involved in oridonin-induced caspase-dependent apoptosis in human colorectal cancer cells.Biochem. Biophys. Res. Commun.2019513359460110.1016/j.bbrc.2019.04.011 30981511
    [Google Scholar]
  88. KwanH.Y. YangZ. FongW.F. HuY.M. YuZ.L. HsiaoW.L.W. The anticancer effect of oridonin is mediated by fatty acid synthase suppression in human colorectal cancer cells.J. Gastroenterol.201348218219210.1007/s00535‑012‑0612‑1 22722903
    [Google Scholar]
  89. RenC.M. LiY. ChenQ.Z. ZengY.H. ShaoY. WuQ.X. YuanS.X. YangJ.Q. YuY. WuK. HeB.C. SunW.J. Oridonin inhibits the proliferation of human colon cancer cells by upregulating BMP7 to activate p38 MAPK.Oncol. Rep.20163552691269810.3892/or.2016.4654 26986967
    [Google Scholar]
  90. BiE. LiuD. LiY. MaoX. WangA. WangJ. Oridonin induces growth inhibition and apoptosis in human gastric carcinoma cells by enhancement of p53 expression and function.Braz. J. Med. Biol. Res.20185112e759910.1590/1414‑431x20187599 30462771
    [Google Scholar]
  91. HeX.J. WangH.J. XiaY.J. YeZ.Y. TaoH.Q. [Empirical study of oridonin-induced gastric cancer cells MKN45 apoptosis].Zhonghua Wei Chang Wai Ke Za Zhi2009126607610 19921575
    [Google Scholar]
  92. SunK.W. MaY-Y. GuanT-P. XiaY-J. ShaoC-M. ChenL-G. RenY.J. YaoH.B. YangQ. HeX.J. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway.World J. Gastroenterol.201218487166717410.3748/wjg.v18.i48.7166 23326121
    [Google Scholar]
  93. GaoS. TanH. ZhuN. GaoH. LvC. GangJ. JiY. Oridonin induces apoptosis through the mitochondrial pathway in human gastric cancer SGC-7901 cells.Int. J. Oncol.20164862453246010.3892/ijo.2016.3479 27082253
    [Google Scholar]
  94. PinkoskiM.J. WaterhouseN.J. HeibeinJ.A. WolfB.B. KuwanaT. GoldsteinJ.C. NewmeyerD.D. BleackleyR.C. GreenD.R. Granzyme B-mediated apoptosis proceeds predominantly through a Bcl-2-inhibitable mitochondrial pathway.J. Biol. Chem.200127615120601206710.1074/jbc.M009038200 11278459
    [Google Scholar]
  95. ParkH. JeongY.J. HanN.K. KimJ.S. LeeH.J. Oridonin enhances radiation-induced cell death by promoting DNA damage in non-small cell lung cancer cells. International.Int. J. Mol. Sci.2018198237810.3390/ijms19082378 30104472
    [Google Scholar]
  96. YangH. GaoY. FanX. LiuX. PengL. CiX. Oridonin sensitizes cisplatin-induced apoptosis via AMPK/Akt/mTOR-dependent autophagosome accumulation in A549 cells.Front. Oncol.2019976910.3389/fonc.2019.00769 31475112
    [Google Scholar]
  97. ZhangX. XingM. MaY. ZhangZ. QiuC. WangX. ZhaoZ. JiZ. ZhangJ.Y. Oridonin induces apoptosis in esophageal squamous cell carcinoma by inhibiting cytoskeletal protein LASP1 and PDLIM1.Molecules202328280510.3390/molecules28020805 36677861
    [Google Scholar]
  98. LiJ. WuY. WangD. ZouL. FuC. ZhangJ. LeungG.P.H. Oridonin synergistically enhances the anti-tumor efficacy of doxorubicin against aggressive breast cancer via pro-apoptotic and anti-angiogenic effects.Pharmacol. Res.201914610431310.1016/j.phrs.2019.104313 31202781
    [Google Scholar]
  99. ZhengW. ZhouC.Y. ZhuX.Q. WangX.J. LiZ.Y. ChenX.C. ChenF. CheX.Y. XieX. Oridonin enhances the cytotoxicity of 5-FU in renal carcinoma cells by inducting necroptotic death.Biomed. Pharmacother.201810617518210.1016/j.biopha.2018.06.111 29958141
    [Google Scholar]
  100. YangI.H. ShinJ.A. LeeK.E. KimJ. ChoN.P. ChoS.D. Oridonin induces apoptosis in human oral cancer cells via phosphorylation of histone H2 AX.Eur. J. Oral Sci.2017125643844310.1111/eos.12387 29083074
    [Google Scholar]
  101. GuiZ. LuoF. YangY. ShenC. LiS. XuJ. Oridonin inhibition and miR-200b-3p/ZEB1 axis in human pancreatic cancer.Int. J. Oncol.201750111112010.3892/ijo.2016.3772 27878247
    [Google Scholar]
  102. LiuQ.Q. ChenK. YeQ. JiangX.H. SunY.W. Oridonin inhibits pancreatic cancer cell migration and epithelial-mesenchymal transition by suppressing Wnt/β-catenin signaling pathway.Cancer Cell Int.20161615710.1186/s12935‑016‑0336‑z 27453691
    [Google Scholar]
  103. QingK. JinZ. FuW. WangW. LiuZ. LiX. XuZ. LiJ. Synergistic effect of oridonin and a PI3K/mTOR inhibitor on the non-germinal center B cell-like subtype of diffuse large B cell lymphoma.J. Hematol. Oncol.2016917210.1186/s13045‑016‑0303‑0 27554093
    [Google Scholar]
  104. SamarghandianS FarkhondehT SaminiF. A review on possible therapeutic effect of Nigella sativa and thymoquinone in neurodegenerative diseases. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2018 Aug 1;176412420
    [Google Scholar]
  105. MaS. TanW. DuB. LiuW. LiW. CheD. ZhangG. Oridonin effectively reverses cisplatin drug resistance in human ovarian cancer cells via induction of cell apoptosis and inhibition of matrix metalloproteinase expression.Mol. Med. Rep.20161343342334810.3892/mmr.2016.4897 26935490
    [Google Scholar]
  106. XiaR. ChenS.X. QinQ. ChenY. ZhangW.W. ZhuR.R. DengA.M. Oridonin suppresses proliferation of human ovarian cancer cells via blockage of mTOR signaling.Asian Pac. J. Cancer Prev.201617266767110.7314/APJCP.2016.17.2.667 26925661
    [Google Scholar]
  107. KangN. ZhangJ.H. QiuF. TashiroS. OnoderaS. IkejimaT. Inhibition of EGFR signaling augments oridonin-induced apoptosis in human laryngeal cancer cells via enhancing oxidative stress coincident with activation of both the intrinsic and extrinsic apoptotic pathways.Cancer Lett.2010294214715810.1016/j.canlet.2010.01.032 20202741
    [Google Scholar]
  108. MingM. SunF.Y. ZhangW.T. LiuJ.K. Therapeutic effect of oridonin on mice with prostate cancer.Asian Pac. J. Trop. Med.20169218418710.1016/j.apjtm.2016.01.007 26919953
    [Google Scholar]
  109. KazantsevaL. BecerraJ. Santos-RuizL. Oridonin enhances antitumor effects of doxorubicin in human osteosarcoma cells.Pharmacol. Rep.202274124825610.1007/s43440‑021‑00324‑1 34427908
    [Google Scholar]
  110. JinS. ShenJ. WangJ. HuangG. ZhouJ.G. Oridonin induced apoptosis through Akt and MAPKs signaling pathways in human osteosarcoma cells.Cancer Biol. Ther.20076226126810.4161/cbt.6.2.3621 17218775
    [Google Scholar]
  111. ChengY. QiuF. IkejimaT. Molecular mechanisms of oridonin-induced apoptosis and autophagy in murine fibrosarcoma L929 cells.Autophagy20095343043110.4161/auto.5.3.7896 19202353
    [Google Scholar]
  112. GaoS. TanH. LiD. Oridonin suppresses gastric cancer SGC ‐7901 cell proliferation by targeting the TNF ‐alpha/androgen receptor/TGF ‐beta signalling pathway axis.J. Cell. Mol. Med.202327182661267410.1111/jcmm.17841
    [Google Scholar]
  113. HeZ. XiaoX. LiS. GuoY. HuangQ. ShiX. WangX. LiuY. Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells.Oncol. Lett.20171422499250410.3892/ol.2017.6421 28781688
    [Google Scholar]
  114. HuangH. WengH. DongB. ZhaoP. ZhouH. QuL. Oridonin triggers chaperone-mediated proteasomal degradation of BCR-ABL in leukemia.Sci. Rep.2017714152510.1038/srep41525 28128329
    [Google Scholar]
  115. XiaoX. HeZ. CaoW. CaiF. ZhangL. HuangQ. FanC. DuanC. WangX. WangJ. LiuY. Oridonin inhibits gefitinib-resistant lung cancer cells by suppressing EGFR/ERK/MMP-12 and CIP2A/Akt signaling pathways.Int. J. Oncol.20164862608261810.3892/ijo.2016.3488 27082429
    [Google Scholar]
  116. HwangT.L. ChangC.H. Oridonin enhances cytotoxic activity of natural killer cells against lung cancer.Int. Immunopharmacol.202312211066910.1016/j.intimp.2023.110669 37480753
    [Google Scholar]
  117. ZhangH.P. LiG.Q. GuoW.Z. ChenG.H. TangH.W. YanB. LiJ. ZhangJ.K. WenP.H. WangZ.H. LvJ.F. ZhangS.J. Oridonin synergistically enhances JQ1-triggered apoptosis in hepatocellular cancer cells through mitochondrial pathway.Oncotarget201786310683310684310.18632/oncotarget.21880 29290992
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096320596240913034833
Loading
/content/journals/ccdt/10.2174/0115680096320596240913034833
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; Autophagy; cancer; cancer therapy; cytotoxic; oridonin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test