Skip to content
2000
Volume 25, Issue 11
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Neuroblastoma (NB) is a well-known pediatric malignancy intertwined with neurodevelopment. Previously implicated in neuronal differentiation, Zinc Finger Protein 536 (ZNF536) has emerged as a promising prognostic and immune-related biomarker in our pan-cancer analysis.

Methods

Single-cell RNA transcriptome sequencing, bulk transcriptome analysis, and immunohistochemistry were used to assess ZNF536 expression and its association with prognosis. Cell proliferation, migration, invasion, and differentiation in ZNF536-knockdown NB cell lines were detected to evaluate the effect of ZNF536 on tumor cells. Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), a potential target of ZNF536, and its downstream PI3K/AKT signaling cascade were investigated using transcriptome sequencing, CUT&Tag, quantitative real-time PCR (qRT-PCR), and Western blotting. The role of ZNF536 in tumorigenesis and the potential regulation axis was evaluated using a BALB/c nude mouse xenograft tumor model.

Results

ZNF536 mRNA and protein expression were significantly higher in NB patients with poor prognosis. , ZNF536 knockdown curtailed proliferation, migration, and invasion of NB cells while fostering differentiation. ZNF536 regulated VEGFR2 expression, thus activating the PI3K-AKT pathway. , ZNF536 knockdown reduced tumor growth and proliferation the VEGFR2-PI3K-AKT pathway.

Conclusion

ZNF536 resulted as a novel prognostic biomarker in NB, promoting oncogenesis through VEGFR2-PI3K-AKT signaling axis modulation, suggesting its therapeutic potential in managing NB progression.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096332753240913104409
2024-10-15
2025-12-28
Loading full text...

Full text loading...

References

  1. MarisJ.M. Recent advances in neuroblastoma.N. Engl. J. Med.2010362232202221110.1056/NEJMra0804577 20558371
    [Google Scholar]
  2. NewmanE.A. NuchternJ.G. Recent biologic and genetic advances in neuroblastoma: Implications for diagnostic, risk stratification, and treatment strategies.Semin. Pediatr. Surg.201625525726410.1053/j.sempedsurg.2016.09.007 27955728
    [Google Scholar]
  3. TsubotaS. KadomatsuK. Origin and initiation mechanisms of neuroblastoma.Cell Tissue Res.2018372221122110.1007/s00441‑018‑2796‑z 29445860
    [Google Scholar]
  4. SchulteJ.H. EggertA. Neuroblastoma.Crit. Rev. Oncog.2015203-424527010.1615/CritRevOncog.2015014033 26349419
    [Google Scholar]
  5. MahapatraS. ChallagundlaK.B. Neuroblastoma.StatPearls.StatPearls Publishing2024
    [Google Scholar]
  6. SokolE. DesaiA.V. ApplebaumM.A. Valteau-CouanetD. ParkJ.R. PearsonA.D.J. SchleiermacherG. IrwinM.S. HogartyM. NaranjoA. VolchenboumS. CohnS.L. LondonW.B. Age, diagnostic category, tumor grade, and mitosis-karyorrhexis index are independently prognostic in neuroblastoma: An INRG project.J. Clin. Oncol.202038171906191810.1200/JCO.19.03285 32315273
    [Google Scholar]
  7. BrodeurG.M. Spontaneous regression of neuroblastoma.Cell Tissue Res.2018372227728610.1007/s00441‑017‑2761‑2 29305654
    [Google Scholar]
  8. DavidoffA.M. Neuroblastoma.Semin. Pediatr. Surg.201221121410.1053/j.sempedsurg.2011.10.009 22248965
    [Google Scholar]
  9. SharmaR. MerJ. LionA. VikT.A. Clinical presentation, evaluation, and management of neuroblastoma.Pediatr. Rev.201839419420310.1542/pir.2017‑0087 29610427
    [Google Scholar]
  10. BastaN.O. HallidayG.C. MakinG. BirchJ. FeltbowerR. BownN. ElliottM. MorenoL. BaroneG. PearsonA.D.J. JamesP.W. TweddleD.A. McNallyR.J.Q. Factors associated with recurrence and survival length following relapse in patients with neuroblastoma.Br. J. Cancer201611591048105710.1038/bjc.2016.302 27701387
    [Google Scholar]
  11. CheungN.K.V. DyerM.A. Neuroblastoma: developmental biology, cancer genomics and immunotherapy.Nat. Rev. Cancer201313639741110.1038/nrc3526 23702928
    [Google Scholar]
  12. YuA.L. GilmanA.L. OzkaynakM.F. LondonW.B. KreissmanS.G. ChenH.X. SmithM. AndersonB. VillablancaJ.G. MatthayK.K. ShimadaH. GruppS.A. SeegerR. ReynoldsC.P. BuxtonA. ReisfeldR.A. GilliesS.D. CohnS.L. MarisJ.M. SondelP.M. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma.N. Engl. J. Med.2010363141324133410.1056/NEJMoa0911123 20879881
    [Google Scholar]
  13. Del BufaloF. De AngelisB. CaruanaI. Del BaldoG. De IorisM.A. SerraA. MastronuzziA. CefaloM.G. PagliaraD. AmicucciM. Li PiraG. LeoneG. BertainaV. SinibaldiM. Di CeccaS. GuercioM. AbbaszadehZ. IaffaldanoL. GunettiM. IacovelliS. BugianesiR. MacchiaS. AlgeriM. MerliP. GalavernaF. AbbasR. GarganeseM.C. VillaniM.F. ColafatiG.S. BonettiF. RabusinM. PerruccioK. FolsiV. QuintarelliC. LocatelliF. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma.N. Engl. J. Med.2023388141284129510.1056/NEJMoa2210859 37018492
    [Google Scholar]
  14. HeczeyA. XuX. CourtneyA.N. TianG. BarraganG.A. GuoL. AmadorC.M. GhatwaiN. RathiP. WoodM.S. LiY. ZhangC. DembergT. Di PierroE.J. SherA.C. ZhangH. MehtaB. ThakkarS.G. GrilleyB. WangT. WeissB.D. MontalbanoA. SubramaniamM. XuC. SacharC. WellsD.K. DottiG. MetelitsaL.S. Anti-GD2 CAR-NKT cells in relapsed or refractory neuroblastoma: updated phase 1 trial interim results.Nat. Med.20232961379138810.1038/s41591‑023‑02363‑y 37188782
    [Google Scholar]
  15. ZhangJ. WebsterS. DuffinB. BernsteinM.N. SteillJ. SwansonS. ForsbergM.H. BolinJ. BrownM.E. MajumderA. CapitiniC.M. StewartR. ThomsonJ.A. SlukvinI.I. Generation of anti-GD2 CAR macrophages from human pluripotent stem cells for cancer immunotherapies.Stem Cell Reports202318258559610.1016/j.stemcr.2022.12.012 36638788
    [Google Scholar]
  16. Al-GhabkariA. NarendranA. In vitro Characterization of a Potent p53-MDM2 Inhibitor, RG7112 in Neuroblastoma Cancer Cell Lines.Cancer Biother. Radiopharm.201934425225710.1089/cbr.2018.2732 30724592
    [Google Scholar]
  17. KushnerB.H. CheungN.K.V. ModakS. BecherO.J. BasuE.M. RobertsS.S. KramerK. DunkelI.J. A phase I/Ib trial targeting the Pi3k/Akt pathway using perifosine: L ong‐term progression‐free survival of patients with resistant neuroblastoma.Int. J. Cancer2017140248048410.1002/ijc.30440 27649927
    [Google Scholar]
  18. GoldsmithK.C. ParkJ.R. KayserK. MalvarJ. ChiY.Y. GroshenS.G. VillablancaJ.G. KrytskaK. LaiL.M. AcharyaP.T. GoodarzianF. PawelB. ShimadaH. GhazarianS. StatesL. MarshallL. CheslerL. GrangerM. DesaiA.V. ModyR. MorgensternD.A. ShustermanS. MacyM.E. PintoN. SchleiermacherG. VoK. ThurmH.C. ChenJ. LiyanageM. PeltzG. MatthayK.K. BerkoE.R. MarisJ.M. MarachelianA. MosséY.P. Lorlatinib with or without chemotherapy in ALK-driven refractory/relapsed neuroblastoma: phase 1 trial results.Nat. Med.20232951092110210.1038/s41591‑023‑02297‑5 37012551
    [Google Scholar]
  19. PeirceS.K. FindleyH.W. PrinceC. DasguptaA. CooperT. DurdenD.L. The PI-3 kinase-Akt-MDM2-survivin signaling axis in high-risk neuroblastoma: a target for PI-3 kinase inhibitor intervention.Cancer Chemother. Pharmacol.201168232533510.1007/s00280‑010‑1486‑7 20972874
    [Google Scholar]
  20. BergaggioE. TaiW.T. AroldiA. MeccaC. LandoniE. NüeschM. MotaI. MetovicJ. MolinaroL. MaL. AlvaradoD. AmbrogioC. VoenaC. BlascoR.B. LiT. KleinD. IrvineD.J. PapottiM. SavoldoB. DottiG. ChiarleR. ALK inhibitors increase ALK expression and sensitize neuroblastoma cells to ALK.CAR-T cells.Cancer Cell2023411221002116.e1010.1016/j.ccell.2023.11.004 38039964
    [Google Scholar]
  21. PerweinT. LacknerH. SovinzP. BeneschM. SchmidtS. SchwingerW. UrbanC. Survival and late effects in children with stage 4 neuroblastoma.Pediatr. Blood Cancer201157462963510.1002/pbc.23036 21319289
    [Google Scholar]
  22. TsubotaS. KadomatsuK. Origin and mechanism of neuroblastoma.Oncoscience201747-8707210.18632/oncoscience.360 28966937
    [Google Scholar]
  23. DongR. YangR. ZhanY. LaiH.D. YeC.J. YaoX.Y. LuoW.Q. ChengX.M. MiaoJ.J. WangJ.F. LiuB.H. LiuX.Q. XieL.L. LiY. ZhangM. ChenL. SongW.C. QianW. GaoW.Q. TangY.H. ShenC.Y. JiangW. ChenG. YaoW. DongK.R. XiaoX.M. ZhengS. LiK. WangJ. Single-Cell Characterization of Malignant Phenotypes and Developmental Trajectories of Adrenal Neuroblastoma.Cancer Cell2020385716733.e610.1016/j.ccell.2020.08.014 32946775
    [Google Scholar]
  24. QinZ. RenF. XuX. RenY. LiH. WangY. ZhaiY. ChangZ. ZNF536, a novel zinc finger protein specifically expressed in the brain, negatively regulates neuron differentiation by repressing retinoic acid-induced gene transcription.Mol. Cell. Biol.200929133633364310.1128/MCB.00362‑09 19398580
    [Google Scholar]
  25. FangY. WangS.J. WuQ. Comprehensive Analysis of Biologic and Prognostic Implication for ZNF536 in Pan-Cancer.Eurasian Journal of Medicine and Oncology20237214315910.14744/ejmo.2023.29445
    [Google Scholar]
  26. ChengT. YingM. Antitumor Effect of Saikosaponin A on Human Neuroblastoma Cells.BioMed Res. Int.2021202111210.1155/2021/5845554 34513994
    [Google Scholar]
  27. LiJ. WangX. LiZ. LiM. ZhengX. ZhengD. WangY. XiM. SULF1 Activates the VEGFR2/PI3K/AKT Pathway to Promote the Development of Cervical Cancer.Curr. Cancer Drug Targets202310.2174/1568009623666230804161607 37539927
    [Google Scholar]
  28. SongF. HuB. ChengJ.W. SunY.F. ZhouK.Q. WangP.X. GuoW. ZhouJ. FanJ. ChenZ. YangX.R. Anlotinib suppresses tumor progression via blocking the VEGFR2/PI3K/AKT cascade in intrahepatic cholangiocarcinoma.Cell Death Dis.202011757310.1038/s41419‑020‑02749‑7 32709873
    [Google Scholar]
  29. ZafarA. WangW. LiuG. WangX. XianW. McKeonF. FosterJ. ZhouJ. ZhangR. Molecular targeting therapies for neuroblastoma: Progress and challenges.Med. Res. Rev.2021412961102110.1002/med.21750 33155698
    [Google Scholar]
  30. WangX. BoveA.M. SimoneG. MaB. Molecular Bases of VEGFR-2-Mediated Physiological Function and Pathological Role.Front. Cell Dev. Biol.2020859928110.3389/fcell.2020.599281 33304904
    [Google Scholar]
  31. WangH. WangX. XuL. Chromosome 1p36 candidate gene ZNF436 predicts the prognosis of neuroblastoma: a bioinformatic analysis.Ital. J. Pediatr.202349114510.1186/s13052‑023‑01549‑x 37904225
    [Google Scholar]
  32. PieraccioliM. NicolaiS. PitolliC. AgostiniM. AntonovA. MalewiczM. KnightR.A. RaschellàG. MelinoG. ZNF281 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma.Proc. Natl. Acad. Sci. USA2018115287356736110.1073/pnas.1801435115 29941555
    [Google Scholar]
  33. SarteletH. RougemontA.L. FabreM. CastaingM. DuvalM. FetniR. MichielsS. BeaunoyerM. VassalG. Activation of the phosphatidylinositol 3′-kinase/AKT pathway in neuroblastoma and its regulation by thioredoxin 1.Hum. Pathol.201142111727173910.1016/j.humpath.2011.01.019 21641013
    [Google Scholar]
  34. QiaoJ. LeeS. PaulP. QiaoL. TaylorC.J. SchlegelC. ColonN.C. ChungD.H. Akt2 regulates metastatic potential in neuroblastoma.PLoS One201382e5638210.1371/journal.pone.0056382 23468863
    [Google Scholar]
  35. ZaghloulN. HernandezS.L. BaeJ.O. HuangJ. FisherJ.C. LeeA. Kadenhe-ChiwesheA. KandelJ.J. YamashiroD.J. Vascular endothelial growth factor blockade rapidly elicits alternative proangiogenic pathways in neuroblastoma.Int. J. Oncol.2009342401407 19148474
    [Google Scholar]
  36. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  37. PonzoniM. BachettiT. CorriasM.V. BrignoleC. PastorinoF. CalarcoE. BensaV. GiustoE. CeccheriniI. PerriP. Recent advances in the developmental origin of neuroblastoma: an overview.J. Exp. Clin. Cancer Res.20224119210.1186/s13046‑022‑02281‑w 35277192
    [Google Scholar]
  38. FurlanA. AdameykoI. Schwann cell precursor: a neural crest cell in disguise?Dev. Biol.2018444Suppl. 1S25S3510.1016/j.ydbio.2018.02.008 29454705
    [Google Scholar]
  39. SolovievaT. BronnerM. Schwann cell precursors: Where they come from and where they go.Cells & Development202116620368610.1016/j.cdev.2021.203686 33994354
    [Google Scholar]
  40. ZhaoJ. WenD. ZhangS. JiangH. DiX. The role of zinc finger proteins in malignant tumors.FASEB J.2023379e2315710.1096/fj.202300801R 37615242
    [Google Scholar]
  41. LiX. HanM. ZhangH. LiuF. PanY. ZhuJ. LiaoZ. ChenX. ZhangB. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma.Biomark. Res.2022101210.1186/s40364‑021‑00345‑1 35000617
    [Google Scholar]
  42. CassandriM. SmirnovA. NovelliF. PitolliC. AgostiniM. MalewiczM. MelinoG. RaschellàG. Zinc-finger proteins in health and disease.Cell Death Discov.2017311707110.1038/cddiscovery.2017.71 29152378
    [Google Scholar]
  43. IchikawaD.M. AbdinO. AlerasoolN. KogenaruM. MuellerA.L. WenH. GigantiD.O. GoldbergG.W. AdamsS. SpencerJ.M. RazaviR. NimS. ZhengH. GioncoC. ClarkF.T. StrokachA. HughesT.R. LionnetT. TaipaleM. KimP.M. NoyesM.B. A universal deep-learning model for zinc finger design enables transcription factor reprogramming.Nat. Biotechnol.20234181117112910.1038/s41587‑022‑01624‑4 36702896
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096332753240913104409
Loading
/content/journals/ccdt/10.2174/0115680096332753240913104409
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Neuroblastoma; pediatric oncology; PI3K-AKT signaling; prognostic biomarker; VEGFR2; ZNF536
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test