Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Colorectal cancer (CRC) is currently the third most common malignancy worldwide, with an increasing mortality rate and treatment resistance. Due to the lack of effective biomarkers and therapeutic targets, the early diagnosis and treatment of colorectal cancer remain suboptimal. Circular RNAs (circRNAs) are a novel class of non-coding RNAs with covalent closed-loop structures that are well stabilized and conserved and are involved in multiple pathological conditions in humans. CircRNAs have been identified to be enriched and stable in exosomes. In addition, there is growing proof that exosomal circRNAs that have been identified as oncogenes or tumor suppressors regulate CRC growth, migration, and sensitivity to radiotherapy and chemotherapy. Exosomal circRNAs represent promising candidates as diagnostic biomarkers and anti-tumor targets. In this article, we explore recent studies on exosomal circRNAs in CRC and describe their biological functions in colorectal cancer development, illustrating their potential as biomarkers and targeted therapeutic capabilities.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096323472240710101854
2024-08-06
2025-10-23
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  2. ScheerA. AuerR. Surveillance after curative resection of colorectal cancer.Clin. Colon Rectal Surg.200922424225010.1055/s‑0029‑124246421037815
    [Google Scholar]
  3. SmithR.A. von EschenbachA.C. WenderR. LevinB. ByersT. RothenbergerD. BrooksD. CreasmanW. CohenC. RunowiczC. SaslowD. CokkinidesV. EyreH. American Cancer Society guidelines for the early detection of cancer: update of early detection guidelines for prostate, colorectal, and endometrial cancers. Also: update 2001--testing for early lung cancer detection.CA Cancer J. Clin.2001511387510.3322/canjclin.51.1.3811577479
    [Google Scholar]
  4. RiihimäkiM. HemminkiA. SundquistJ. HemminkiK. Patterns of metastasis in colon and rectal cancer.Sci. Rep.201662976510.1038/srep29765
    [Google Scholar]
  5. ZacharakisM. XynosI.D. LazarisA. SmaroT. KosmasC. DokouA. FelekourasE. AntoniouE. PolyzosA. SarantonisJ. SyriosJ. ZografosG. PapalambrosA. TsavarisN. Predictors of survival in stage IV metastatic colorectal cancer.Anticancer Res.201030265366020332485
    [Google Scholar]
  6. GarborgK. HolmeØ. LøbergM. KalagerM. AdamiH.O. BretthauerM. Current status of screening for colorectal cancer.Ann. Oncol.20132481963197210.1093/annonc/mdt15723619033
    [Google Scholar]
  7. AmrAmin Michael Buratovich, The anti-cancer charm of flavonoids: a cup-of-tea will do!Recent Patents Anticancer Drug Discov.20072210911710.2174/15748920778083241418221056
    [Google Scholar]
  8. CocquerelleC. MascrezB. HétuinD. BailleulB. Mis-splicing yields circular RNA molecules.FASEB J.19937115516010.1096/fasebj.7.1.76785597678559
    [Google Scholar]
  9. SalzmanJ. GawadC. WangP.L. LacayoN. BrownP.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types.PLoS One201272e3073310.1371/journal.pone.003073322319583
    [Google Scholar]
  10. WestholmJ.O. MiuraP. OlsonS. ShenkerS. JosephB. SanfilippoP. CelnikerS.E. GraveleyB.R. LaiE.C. Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation.Cell Rep.2014951966198010.1016/j.celrep.2014.10.06225544350
    [Google Scholar]
  11. IvanovA. MemczakS. WylerE. TortiF. PorathH.T. OrejuelaM.R. PiechottaM. LevanonE.Y. LandthalerM. DieterichC. RajewskyN. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals.Cell Rep.201510217017710.1016/j.celrep.2014.12.01925558066
    [Google Scholar]
  12. SalzmanJ. ChenR.E. OlsenM.N. WangP.L. BrownP.O. Cell-type specific features of circular RNA expression.PLoS Genet.201399e100377710.1371/journal.pgen.100377724039610
    [Google Scholar]
  13. XiaS. FengJ. LeiL. HuJ. XiaL. WangJ. XiangY. LiuL. ZhongS. HanL. HeC. Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes.Brief. Bioinform.201718698499227543790
    [Google Scholar]
  14. JeckW.R. SorrentinoJ.A. WangK. SlevinM.K. BurdC.E. LiuJ. MarzluffW.F. SharplessN.E. Circular RNAs are abundant, conserved, and associated with ALU repeats.RNA201319214115710.1261/rna.035667.11223249747
    [Google Scholar]
  15. MemczakS. JensM. ElefsiniotiA. TortiF. KruegerJ. RybakA. MaierL. MackowiakS.D. GregersenL.H. MunschauerM. LoewerA. ZieboldU. LandthalerM. KocksC. le NobleF. RajewskyN. Circular RNAs are a large class of animal RNAs with regulatory potency.Nature2013495744133333810.1038/nature1192823446348
    [Google Scholar]
  16. LiX. YangL. ChenL.L. The biogenesis, functions, and challenges of circular RNAs.Mol. Cell201871342844210.1016/j.molcel.2018.06.03430057200
    [Google Scholar]
  17. LiX.N. WangZ.J. YeC.X. ZhaoB.C. LiZ.L. YangY. RNA sequencing reveals the expression profiles of circRNA and indicates that circDDX17 acts as a tumor suppressor in colorectal cancer.J. Exp. Clin. Cancer Res.201837132510.1186/s13046‑018‑1006‑x30591054
    [Google Scholar]
  18. ThéryC. ZitvogelL. AmigorenaS. Exosomes: composition, biogenesis and function.Nat. Rev. Immunol.20022856957910.1038/nri85512154376
    [Google Scholar]
  19. CheshomiH. MatinM.M. Exosomes and their importance in metastasis, diagnosis, and therapy of colorectal cancer.J. Cell. Biochem.201912022671268610.1002/jcb.2758230246315
    [Google Scholar]
  20. XuR. GreeningD.W. ZhuH.J. TakahashiN. SimpsonR.J. Extracellular vesicle isolation and characterization: toward clinical application.J. Clin. Invest.201612641152116210.1172/JCI8112927035807
    [Google Scholar]
  21. XieY. DangW. ZhangS. YueW. YangL. ZhaiX. YanQ. LuJ. The role of exosomal noncoding RNAs in cancer.Mol. Cancer20191813710.1186/s12943‑019‑0984‑430849983
    [Google Scholar]
  22. ZhangX. YuanX. ShiH. WuL. QianH. XuW. Exosomes in cancer: small particle, big player.J. Hematol. Oncol.2015818310.1186/s13045‑015‑0181‑x26156517
    [Google Scholar]
  23. TaylorD.D. Gercel-TaylorC. Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments.Semin. Immunopathol.201133544145410.1007/s00281‑010‑0234‑821688197
    [Google Scholar]
  24. ChargaffE. WestR. The biological significance of the thromboplastic protein of blood.J. Biol. Chem.1946166118919710.1016/S0021‑9258(17)34997‑920273687
    [Google Scholar]
  25. WolfP. The nature and significance of platelet products in human plasma.Br. J. Haematol.196713326928810.1111/j.1365‑2141.1967.tb08741.x6025241
    [Google Scholar]
  26. AzmiA.S. BaoB. SarkarF.H. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review.Cancer Metastasis Rev.2013323-462364210.1007/s10555‑013‑9441‑923709120
    [Google Scholar]
  27. HardingC.V. HeuserJ.E. StahlP.D. Exosomes: Looking back three decades and into the future.J. Cell Biol.2013200436737110.1083/jcb.20121211323420870
    [Google Scholar]
  28. GyörgyB. SzabóT.G. PásztóiM. PálZ. MisjákP. AradiB. LászlóV. PállingerÉ. PapE. KittelÁ. NagyG. FalusA. BuzásE.I. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles.Cell. Mol. Life Sci.201168162667268810.1007/s00018‑011‑0689‑321560073
    [Google Scholar]
  29. CamussiG. DeregibusM.C. BrunoS. GrangeC. FonsatoV. TettaC. Exosome/microvesicle-mediated epigenetic reprogramming of cells.Am. J. Cancer Res.2011119811021969178
    [Google Scholar]
  30. MathivananS. JiH. SimpsonR.J. Exosomes: Extracellular organelles important in intercellular communication.J. Proteomics201073101907192010.1016/j.jprot.2010.06.00620601276
    [Google Scholar]
  31. D’AstiE. GarnierD. LeeT.H. MonterminiL. MeehanB. RakJ. Oncogenic extracellular vesicles in brain tumor progression.Front. Physiol.2012329410.3389/fphys.2012.0029422934045
    [Google Scholar]
  32. TenchovR. SassoJ.M. WangX. LiawW.S. ChenC.A. ZhouQ.A. Exosomes—nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics.ACS Nano20221611178021784610.1021/acsnano.2c0877436354238
    [Google Scholar]
  33. KalluriR. LeBleuV.S. The biology, function, and biomedical applications of exosomes.Science20203676478eaau697710.1126/science.aau697732029601
    [Google Scholar]
  34. SunF. SunY. WuF. XuW. QianH. Mesenchymal stem cell-derived extracellular vesicles: A potential therapy for diabetes mellitus and diabetic complications.Pharmaceutics20221410220810.3390/pharmaceutics1410220836297643
    [Google Scholar]
  35. LiuJ. RenL. LiS. LiW. ZhengX. YangY. FuW. YiJ. WangJ. DuG. The biology, function, and applications of exosomes in cancer.Acta Pharm. Sin. B20211192783279710.1016/j.apsb.2021.01.00134589397
    [Google Scholar]
  36. HanQ.F. LiW.J. HuK.S. GaoJ. ZhaiW.L. YangJ.H. ZhangS.J. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer.Mol. Cancer202221120710.1186/s12943‑022‑01671‑036320056
    [Google Scholar]
  37. ZhangX. ZhangH. GuJ. ZhangJ. ShiH. QianH. WangD. XuW. PanJ. SantosH.A. Engineered extracellular vesicles for cancer therapy.Adv. Mater.20213314200570910.1002/adma.20200570933644908
    [Google Scholar]
  38. TallonC. HollingerK.R. PalA. BellB.J. RaisR. TsukamotoT. WitwerK.W. HaugheyN.J. SlusherB.S. Nipping disease in the bud: nSMase2 inhibitors as therapeutics in extracellular vesicle-mediated diseases.Drug Discov. Today20212671656166810.1016/j.drudis.2021.03.02533798648
    [Google Scholar]
  39. MathivananS. FahnerC.J. ReidG.E. SimpsonR.J. ExoCarta 2012: database of exosomal proteins, RNA and lipids.Nucleic Acids Res.201240D1D1241D124410.1093/nar/gkr82821989406
    [Google Scholar]
  40. ChenZ. ChenH. YangL. LiX. WangZ. CircPLCE1 facilitates the malignant progression of colorectal cancer by repressing the SRSF2‐dependent PLCE1 pre‐RNA splicing.J. Cell. Mol. Med.202125157244725610.1111/jcmm.1675334173324
    [Google Scholar]
  41. GuoZ. CaoQ. ZhaoZ. SongC. Biogenesis, Features, Functions, and Disease Relationships of a Specific Circular RNA: CDR1as.Aging Dis.20201141009102010.14336/AD.2019.092032765960
    [Google Scholar]
  42. GuoJ.U. AgarwalV. GuoH. BartelD.P. Expanded identification and characterization of mammalian circular RNAs.Genome Biol.201415740910.1186/s13059‑014‑0409‑z25070500
    [Google Scholar]
  43. KellyS. GreenmanC. CookP.R. PapantonisA. Exon skipping is correlated with exon circularization.J. Mol. Biol.2015427152414241710.1016/j.jmb.2015.02.01825728652
    [Google Scholar]
  44. ZhangX.O. WangH.B. ZhangY. LuX. ChenL.L. YangL. Complementary sequence-mediated exon circularization.Cell2014159113414710.1016/j.cell.2014.09.00125242744
    [Google Scholar]
  45. ConnS.J. PillmanK.A. ToubiaJ. ConnV.M. SalmanidisM. PhillipsC.A. RoslanS. SchreiberA.W. GregoryP.A. GoodallG.J. The RNA binding protein quaking regulates formation of circRNAs.Cell201516061125113410.1016/j.cell.2015.02.01425768908
    [Google Scholar]
  46. ErrichelliL. Dini ModiglianiS. LaneveP. ColantoniA. LegniniI. CapautoD. RosaA. De SantisR. ScarfòR. PeruzziG. LuL. CaffarelliE. ShneiderN.A. MorlandoM. BozzoniI. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons.Nat. Commun.2017811474110.1038/ncomms1474128358055
    [Google Scholar]
  47. EgerN. SchoppeL. SchusterS. LaufsU. BoeckelJ.N. Circular RNA Splicing.Adv. Exp. Med. Biol.20181087415210.1007/978‑981‑13‑1426‑1_430259356
    [Google Scholar]
  48. ZhangY. ZhangX.O. ChenT. XiangJ.F. YinQ.F. XingY.H. ZhuS. YangL. ChenL.L. Circular intronic long noncoding RNAs.Mol. Cell201351679280610.1016/j.molcel.2013.08.01724035497
    [Google Scholar]
  49. EnukaY. LauriolaM. FeldmanM.E. Sas-ChenA. UlitskyI. YardenY. Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor.Nucleic Acids Res.20164431370138310.1093/nar/gkv136726657629
    [Google Scholar]
  50. VenøM.T. HansenT.B. VenøS.T. ClausenB.H. GrebingM. FinsenB. HolmI.E. KjemsJ. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development.Genome Biol.201516124510.1186/s13059‑015‑0801‑326541409
    [Google Scholar]
  51. Rybak-WolfA. StottmeisterC. GlažarP. JensM. PinoN. GiustiS. HananM. BehmM. BartokO. Ashwal-FlussR. HerzogM. SchreyerL. PapavasileiouP. IvanovA. ÖhmanM. RefojoD. KadenerS. RajewskyN. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed.Mol. Cell201558587088510.1016/j.molcel.2015.03.02725921068
    [Google Scholar]
  52. KristensenL.S. AndersenM.S. StagstedL.V.W. EbbesenK.K. HansenT.B. KjemsJ. The biogenesis, biology and characterization of circular RNAs.Nat. Rev. Genet.2019201167569110.1038/s41576‑019‑0158‑731395983
    [Google Scholar]
  53. LiY. HuJ. WangM. YuanY. ZhouF. ZhaoH. QiuT. LiangL. Exosomal circPABPC1 promotes colorectal cancer liver metastases by regulating HMGA2 in the nucleus and BMP4/ADAM19 in the cytoplasm.Cell Death Discov.20228133510.1038/s41420‑022‑01124‑z35871166
    [Google Scholar]
  54. ShangA. GuC. WangW. WangX. SunJ. ZengB. ChenC. ChangW. PingY. JiP. WuJ. QuanW. YaoY. ZhouY. SunZ. LiD. Exosomal circPACRGL promotes progression of colorectal cancer via the miR-142-3p/miR-506-3p- TGF-β1 axis.Mol. Cancer202019111710.1186/s12943‑020‑01235‑032713345
    [Google Scholar]
  55. DudekulaD.B. PandaA.C. GrammatikakisI. DeS. AbdelmohsenK. GorospeM. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs.RNA Biol.2016131344210.1080/15476286.2015.112806526669964
    [Google Scholar]
  56. ChenR.X. ChenX. XiaL.P. ZhangJ.X. PanZ.Z. MaX.D. HanK. ChenJ.W. JuddeJ.G. DeasO. WangF. MaN.F. GuanX. YunJ.P. WangF.W. XuR.H.; Dan Xie, N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis.Nat. Commun.2019101469510.1038/s41467‑019‑12651‑231619685
    [Google Scholar]
  57. ZengY. DuW.W. WuY. YangZ. AwanF.M. LiX. YangW. ZhangC. YangQ. YeeA. ChenY. YangF. SunH. HuangR. YeeA.J. LiR.K. WuZ. BackxP.H. YangB.B. A Circular RNA Binds To and Activates AKT Phosphorylation and Nuclear Localization Reducing Apoptosis and Enhancing Cardiac Repair.Theranostics20177163842385510.7150/thno.1976429109781
    [Google Scholar]
  58. HanK. WangF.W. CaoC.H. LingH. ChenJ.W. ChenR.X. FengZ.H. LuoJ. JinX.H. DuanJ.L. LiS.M. MaN.F. YunJ.P. GuanX.Y. PanZ.Z. LanP. XuR.H. XieD. CircLONP2 enhances colorectal carcinoma invasion and metastasis through modulating the maturation and exosomal dissemination of microRNA-17.Mol. Cancer20201916010.1186/s12943‑020‑01184‑832188489
    [Google Scholar]
  59. PanZ. ZhengJ. ZhangJ. LinJ. LaiJ. LyuZ. FengH. WangJ. WuD. LiY. A Novel Protein Encoded by Exosomal CircATG4B Induces Oxaliplatin Resistance in Colorectal Cancer by Promoting Autophagy.Adv. Sci. (Weinh.)2022935220451310.1002/advs.20220451336285810
    [Google Scholar]
  60. PofaliP. MondalA. LondheV. Exosome as a Natural Gene Delivery Vector for Cancer Treatment.Curr. Cancer Drug Targets2020201182183010.2174/156800962066620092415414932972340
    [Google Scholar]
  61. SyedaS. RawatK. ShrivastavaA. Pharmacological Inhibition of Exosome Machinery: An Emerging Prospect in Cancer Therapeutics.Curr. Cancer Drug Targets202222756057610.2174/156800962266622040109331635366773
    [Google Scholar]
  62. WangX. ZhangH. YangH. BaiM. NingT. LiS. LiJ. DengT. YingG. BaY. Cell-derived Exosomes as Promising Carriers for Drug Delivery and Targeted Therapy.Curr. Cancer Drug Targets201818434735410.2174/156800961766617071012031128699500
    [Google Scholar]
  63. LiY. ZhengQ. BaoC. LiS. GuoW. ZhaoJ. ChenD. GuJ. HeX. HuangS. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis.Cell Res.201525898198410.1038/cr.2015.8226138677
    [Google Scholar]
  64. ShiX. WangB. FengX. XuY. LuK. SunM. circRNAs and exosomes: a mysterious frontier for human cancer.Mol. Ther. Nucleic Acids20201938439210.1016/j.omtn.2019.11.02331887549
    [Google Scholar]
  65. ZaràM. AmadioP. CampodonicoJ. SandriniL. BarbieriS.S. Exosomes in cardiovascular diseases.Diagnostics (Basel)2020101194310.3390/diagnostics1011094333198302
    [Google Scholar]
  66. DouY. ChaD.J. FranklinJ.L. HigginbothamJ.N. JeppesenD.K. WeaverA.M. PrasadN. LevyS. CoffeyR.J. PattonJ.G. ZhangB. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes.Sci. Rep.2016613798210.1038/srep3798227892494
    [Google Scholar]
  67. BeckerA. ThakurB.K. WeissJ.M. KimH.S. PeinadoH. LydenD. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis.Cancer Cell201630683684810.1016/j.ccell.2016.10.00927960084
    [Google Scholar]
  68. ZhangL. ZhangS. YaoJ. LoweryF.J. ZhangQ. HuangW.C. LiP. LiM. WangX. ZhangC. WangH. EllisK. CheerathodiM. McCartyJ.H. PalmieriD. SaunusJ. LakhaniS. HuangS. SahinA.A. AldapeK.D. SteegP.S. YuD. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth.Nature2015527757610010410.1038/nature1537626479035
    [Google Scholar]
  69. YuL. ZhangF. WangY. Circ_0005615 Regulates the Progression of Colorectal Cancer Through the miR-873-5p/FOSL2 Signaling Pathway.Biochem. Genet.20236152020204110.1007/s10528‑023‑10355‑336920708
    [Google Scholar]
  70. YuQ. ZhangY. TianY. PengA. CuiX. DingB. YangL. LiuY. JuY. GaoC. Exosomal Circ_FMN2 Derived from the Serum of Colorectal Cancer Patients Promotes Cancer Progression by miR-338-3p/MSI1 Axis.Appl. Biochem. Biotechnol.2023195127322733710.1007/s12010‑023‑04456‑336995659
    [Google Scholar]
  71. YangH. ZhangH. YangY. WangX. DengT. LiuR. NingT. BaiM. LiH. ZhuK. LiJ. FanQ. YingG. BaY. Hypoxia induced exosomal circRNA promotes metastasis of Colorectal Cancer via targeting GEF-H1/RhoA axis.Theranostics202010188211822610.7150/thno.4441932724467
    [Google Scholar]
  72. YangK. ZhangJ. BaoC. Exosomal circEIF3K from cancer-associated fibroblast promotes colorectal cancer (CRC) progression via miR-214/PD-L1 axis.BMC Cancer202121193310.1186/s12885‑021‑08669‑934412616
    [Google Scholar]
  73. FanL. LiW. JiangH. Circ_0000395 Promoted CRC Progression via Elevating MYH9 Expression by Sequestering miR-432-5p.Biochem. Genet.202361111613710.1007/s10528‑022‑10245‑035759156
    [Google Scholar]
  74. ZhangY. GuoJ. ZhangL. LiY. ShengK. ZhangY. LiuL. GongW. GuoK. CircASPH Enhances Exosomal STING to Facilitate M2 Macrophage Polarization in Colorectal Cancer.Inflamm. Bowel Dis.202329121941195610.1093/ibd/izad11337624989
    [Google Scholar]
  75. JiangZ. HuH. HuW. HouZ. LiuW. YuZ. LiangZ. ChenS. Circ-RNF121 regulates tumor progression and glucose metabolism by miR-1224-5p/FOXM1 axis in colorectal cancer.Cancer Cell Int.202121159610.1186/s12935‑021‑02290‑334742305
    [Google Scholar]
  76. GaoL. TangX. HeQ. SunG. WangC. QuH. Exosome-transmitted circCOG2 promotes colorectal cancer progression via miR-1305/TGF-β2/SMAD3 pathway.Cell Death Discov.20217128110.1038/s41420‑021‑00680‑034635639
    [Google Scholar]
  77. MiaoZ. ZhaoX. LiuX. Exosomal circCOL1A2 from cancer cells accelerates colorectal cancer progression via regulating miR-665/LASP1 signal axis.Eur. J. Pharmacol.202395017572210.1016/j.ejphar.2023.17572237059374
    [Google Scholar]
  78. ChenC. YuH. HanF. LaiX. YeK. LeiS. MaiM. LaiM. ZhangH. Tumor-suppressive circRHOBTB3 is excreted out of cells via exosome to sustain colorectal cancer cell fitness.Mol. Cancer20222114610.1186/s12943‑022‑01511‑135148775
    [Google Scholar]
  79. ZhengR. ZhangK. TanS. GaoF. ZhangY. XuW. WangH. GuD. ZhuL. LiS. ChuH. ZhangZ. LiuL. DuM. WangM. Exosomal circLPAR1 functions in colorectal cancer diagnosis and tumorigenesis through suppressing BRD4 via METTL3–eIF3h interaction.Mol. Cancer20222114910.1186/s12943‑021‑01471‑y35164758
    [Google Scholar]
  80. JiangZ. HouZ. LiL. LiuW. YuZ. ChenS. Exosomal circEPB41L2 serves as a sponge for miR‐21‐5p and miR‐942‐5p to suppress colorectal cancer progression by regulating the PTEN/AKT signalling pathway.Eur. J. Clin. Invest.2021519e1358110.1111/eci.1358134022068
    [Google Scholar]
  81. HuangM. LinY. WangC. DengL. ChenM. AssarafY.G. ChenZ.S. YeW. ZhangD. New insights into antiangiogenic therapy resistance in cancer: Mechanisms and therapeutic aspects.Drug Resist. Updat.20226410084910.1016/j.drup.2022.10084935842983
    [Google Scholar]
  82. DasA. AshD. FoudaA.Y. SudhaharV. KimY.M. HouY. HudsonF.Z. StansfieldB.K. CaldwellR.B. McMenaminM. LittlejohnR. SuH. ReganM.R. MerrillB.J. PooleL.B. KaplanJ.H. FukaiT. Ushio-FukaiM. Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis.Nat. Cell Biol.2022241355010.1038/s41556‑021‑00822‑735027734
    [Google Scholar]
  83. LeeJ.W. HurJ. KwonY.W. ChaeC.W. ChoiJ.I. HwangI. YunJ.Y. KangJ.A. ChoiY.E. KimY.H. LeeS.E. LeeC. JoD.H. SeokH. ChoB.S. BaekS.H. KimH.S. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state.J. Hematol. Oncol.202114114810.1186/s13045‑021‑01147‑634530889
    [Google Scholar]
  84. BaeE. HuangP. Müller-GrevenG. HambardzumyanD. SloanA.E. NowackiA.S. MarkoN. CarlinC.R. GladsonC.L. Integrin α3β1 promotes vessel formation of glioblastoma-associated endothelial cells through calcium-mediated macropinocytosis and lysosomal exocytosis.Nat. Commun.2022131426810.1038/s41467‑022‑31981‑235879332
    [Google Scholar]
  85. JaykumarA.B. PlumberS. BarryD.M. BinnsD. WichaiditC. GrzemskaM. EarnestS. GoldsmithE.J. CleaverO. CobbM.H. WNK1 collaborates with TGF-β in endothelial cell junction turnover and angiogenesis.Proc. Natl. Acad. Sci. USA202211930e220374311910.1073/pnas.220374311935867836
    [Google Scholar]
  86. GoelH.L. MercurioA.M. VEGF targets the tumour cell.Nat. Rev. Cancer2013131287188210.1038/nrc362724263190
    [Google Scholar]
  87. ApteR.S. ChenD.S. FerraraN. VEGF in Signaling and Disease: Beyond Discovery and Development.Cell201917661248126410.1016/j.cell.2019.01.02130849371
    [Google Scholar]
  88. ArpinoV. BrockM. GillS.E. The role of TIMPs in regulation of extracellular matrix proteolysis.Matrix Biol.201544-4624725410.1016/j.matbio.2015.03.00525805621
    [Google Scholar]
  89. ZengW. LiuY. LiW.T. LiY. ZhuJ.F. CircFNDC3B sequestrates miR‐937‐5p to derepress TIMP3 and inhibit colorectal cancer progression.Mol. Oncol.202014112960298410.1002/1878‑0261.1279632896063
    [Google Scholar]
  90. ChenC. LiuY. LiuL. SiC. XuY. WuX. WangC. SunZ. KangQ. Exosomal circTUBGCP4 promotes vascular endothelial cell tipping and colorectal cancer metastasis by activating Akt signaling pathway.J. Exp. Clin. Cancer Res.20234214610.1186/s13046‑023‑02619‑y36793126
    [Google Scholar]
  91. GhafouriI. PakravanK. RazmaraE. MontazeriM. RouhollahF. BabashahS. Colorectal cancer-secreted exosomal circ_001422 plays a role in regulating KDR expression and activating mTOR signaling in endothelial cells by targeting miR-195-5p.J. Cancer Res. Clin. Oncol.202314913122271224010.1007/s00432‑023‑05095‑137432457
    [Google Scholar]
  92. SiemerinkM.J. KlaassenI. VogelsI.M.C. GriffioenA.W. Van NoordenC.J.F. SchlingemannR.O. CD34 marks angiogenic tip cells in human vascular endothelial cell cultures.Angiogenesis201215115116310.1007/s10456‑011‑9251‑z22249946
    [Google Scholar]
  93. LongleyD.B. HarkinD.P. JohnstonP.G. 5-Fluorouracil: mechanisms of action and clinical strategies.Nat. Rev. Cancer20033533033810.1038/nrc107412724731
    [Google Scholar]
  94. MeyerhardtJ.A. MayerR.J. Systemic therapy for colorectal cancer.N. Engl. J. Med.2005352547648710.1056/NEJMra04095815689586
    [Google Scholar]
  95. HongY.S. NamB.H. KimK. KimJ.E. ParkS.J. ParkY.S. ParkJ.O. KimS.Y. KimT.Y. KimJ.H. AhnJ.B. LimS.B. YuC.S. KimJ.C. YunS.H. KimJ.H. ParkJ. ParkH.C. JungK.H. KimT.W. Oxaliplatin, fluorouracil, and leucovorin versus fluorouracil and leucovorin as adjuvant chemotherapy for locally advanced rectal cancer after preoperative chemoradiotherapy (ADORE): an open-label, multicentre, phase 2, randomised controlled trial.Lancet Oncol.201415111245125310.1016/S1470‑2045(14)70377‑825201358
    [Google Scholar]
  96. KimJ.Y. KimJ.S. BaekM.J. KimC.N. ChoiW.J. ParkD.K. NamgungH. LeeS.C. LeeS.J. Prospective multicenter phase II clinical trial of FOLFIRI chemotherapy as a neoadjuvant treatment for colorectal cancer with multiple liver metastases.J. Korean Surg. Soc.201385415416010.4174/jkss.2013.85.4.15424106681
    [Google Scholar]
  97. LiC. LiX. Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis.Contrast Media Mol. Imaging2022202211210.1155/2022/287855735854778
    [Google Scholar]
  98. ZhaoK. ChengX. YeZ. LiY. PengW. WuY. XingC. Exosome-Mediated Transfer of circ_0000338 Enhances 5-Fluorouracil Resistance in Colorectal Cancer through Regulating MicroRNA 217 (miR-217) and miR-485-3p.Mol. Cell. Biol.2021415e00517e0052010.1128/MCB.00517‑2033722958
    [Google Scholar]
  99. ZhangY. TanX. LuY. Exosomal transfer of circ_0006174 contributes to the chemoresistance of doxorubicin in colorectal cancer by depending on the miR-1205/CCND2 axis.J. Physiol. Biochem.2022781395010.1007/s13105‑021‑00831‑y34792792
    [Google Scholar]
  100. WangX. ZhangH. YangH. BaiM. NingT. DengT. LiuR. FanQ. ZhuK. LiJ. ZhanY. YingG. BaY. Exosome‐delivered circRNA promotes glycolysis to induce chemoresistance through the miR‐122‐PKM2 axis in colorectal cancer.Mol. Oncol.202014353955510.1002/1878‑0261.1262931901148
    [Google Scholar]
  101. DengJ. PanT. LvC. CaoL. LiL. ZhouX. LiG. LiH. VicencioJ.M. XuY. WeiF. WangY. LiuZ. ZhouG. YinM. Exosomal transfer leads to chemoresistance through oxidative phosphorylation-mediated stemness phenotype in colorectal cancer.Theranostics202313145057507410.7150/thno.8493737771767
    [Google Scholar]
  102. XuY. QiuA. PengF. TanX. WangJ. GongX. Exosomal transfer of circular RNA FBXW7 ameliorates the chemoresistance to oxaliplatin in colorectal cancer by sponging miR-18b-5p.Neoplasma202168110811810.4149/neo_2020_200417N41433147048
    [Google Scholar]
  103. YangC. ZhangY. YanM. WangJ. WangJ. WangM. XuanY. ChengH. MaJ. ChaiC. LiM. YuZ. Exosomes derived from cancer-associated fibroblasts promote tumorigenesis, metastasis and chemoresistance of colorectal cancer by upregulating circ_0067557 to target Lin28.BMC Cancer20242416410.1186/s12885‑023‑11791‑538216964
    [Google Scholar]
  104. BaassiriA. NassarF. MukherjiD. ShamseddineA. NasrR. TemrazS. Exosomal Non Coding RNA in LIQUID Biopsies as a Promising Biomarker for Colorectal Cancer.Int. J. Mol. Sci.2020214139810.3390/ijms2104139832092975
    [Google Scholar]
  105. HonK.W. Ab-MutalibN.S. AbdullahN.M.A. JamalR. AbuN. Extracellular Vesicle-derived circular RNAs confers chemoresistance in Colorectal cancer.Sci. Rep.2019911649710.1038/s41598‑019‑53063‑y31712601
    [Google Scholar]
  106. MallaB. ZauggK. VassellaE. AebersoldD.M. Dal PraA. Exosomes and Exosomal MicroRNAs in Prostate Cancer Radiation Therapy.Int. J. Radiat. Oncol. Biol. Phys.201798598299510.1016/j.ijrobp.2017.03.03128721912
    [Google Scholar]
  107. BoelensM.C. WuT.J. NabetB.Y. XuB. QiuY. YoonT. AzzamD.J. Twyman-Saint VictorC. WiemannB.Z. IshwaranH. ter BruggeP.J. JonkersJ. SlingerlandJ. MinnA.J. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways.Cell2014159349951310.1016/j.cell.2014.09.05125417103
    [Google Scholar]
  108. YangY. YangN. JiangJ. Exosomal circ_PTPRA inhibits tumorigenesis and promotes radiosensitivity in colorectal cancer by enriching the level of SMAD4 via competitively binding to miR-671-5p.Cytotechnology2022741516410.1007/s10616‑021‑00506‑y35185285
    [Google Scholar]
  109. LiL. JiangZ. ZouX. HaoT. Exosomal circ_IFT80 Enhances Tumorigenesis and Suppresses Radiosensitivity in Colorectal Cancer by Regulating miR-296-5p/MSI1 Axis.Cancer Manag. Res.2021131929194110.2147/CMAR.S29712333658855
    [Google Scholar]
  110. WangP. SunY. YangY. ChenY. LiuH. Circ_0067835 Knockdown Enhances the Radiosensitivity of Colorectal Cancer by miR-296-5p/IGF1R Axis.OncoTargets Ther.20211449150210.2147/OTT.S28101133500625
    [Google Scholar]
  111. BagheriR. GhorbianM. GhorbianS. Tumor circulating biomarkers in colorectal cancer.Cancer Treat. Res. Commun20243810078710.1016/j.ctarc.2023.10078738194840
    [Google Scholar]
  112. YuD. LiY. WangM. GuJ. XuW. CaiH. FangX. ZhangX. Exosomes as a new frontier of cancer liquid biopsy.Mol. Cancer20222115610.1186/s12943‑022‑01509‑935180868
    [Google Scholar]
  113. ZhouB. XuK. ZhengX. ChenT. WangJ. SongY. ShaoY. ZhengS. Application of exosomes as liquid biopsy in clinical diagnosis.Signal Transduct. Target. Ther.20205114410.1038/s41392‑020‑00258‑932747657
    [Google Scholar]
  114. LiT. WangW.C. McAlisterV. ZhouQ. ZhengX. Circular RNA in colorectal cancer.J. Cell. Mol. Med.20212583667367910.1111/jcmm.1638033687140
    [Google Scholar]
  115. PanB. QinJ. LiuX. HeB. WangX. PanY. SunH. XuT. XuM. ChenX. XuX. ZengK. SunL. WangS. Identification of Serum Exosomal hsa-circ-0004771 as a Novel Diagnostic Biomarker of Colorectal Cancer.Front. Genet.201910109610.3389/fgene.2019.0109631737058
    [Google Scholar]
  116. LiT. ZhouT. WuJ. LvH. ZhouH. DuM. ZhangX. WuN. GongS. RenZ. ZhangP. ZhangC. LiuG. LiuX. ZhangY. Plasma exosome-derived circGAPVD1 as a potential diagnostic marker for colorectal cancer.Transl. Oncol.20233110165210.1016/j.tranon.2023.10165236934637
    [Google Scholar]
  117. LongF. LinZ. LiL. MaM. LuZ. JingL. LiX. LinC. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer.Mol. Cancer20212012610.1186/s12943‑021‑01318‑633536039
    [Google Scholar]
  118. WangP. HeX. Current research on circular RNAs associated with colorectal cancer.Scand. J. Gastroenterol.201752111203121010.1080/00365521.2017.136516828812395
    [Google Scholar]
  119. RinaldiC. WoodM.J.A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders.Nat. Rev. Neurol.201814192110.1038/nrneurol.2017.14829192260
    [Google Scholar]
  120. DhuriK. BechtoldC. QuijanoE. PhamH. GuptaA. VikramA. BahalR. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development.J. Clin. Med.202096200410.3390/jcm906200432604776
    [Google Scholar]
  121. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci. Rep.2021111706210.1038/s41598‑021‑86391‑z33782460
    [Google Scholar]
  122. LozonL. SalehE. MenonV. RamadanW.S. AminA. El-AwadyR. Effect of safranal on the response of cancer cells to topoisomerase I inhibitors: Does sequence matter?Front. Pharmacol.20221393847110.3389/fphar.2022.93847136120345
    [Google Scholar]
  123. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal Prevents Liver Cancer Through Inhibiting Oxidative Stress and Alleviating Inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.77750035177980
    [Google Scholar]
  124. AbdallaA. MuraliC. AminA. Safranal Inhibits Angiogenesis via Targeting HIF-1α/VEGF Machinery: In vitro and Ex Vivo Insights.Front. Oncol.20221178917210.3389/fonc.2021.78917235211395
    [Google Scholar]
  125. NelsonD.R. HroutA.A. AlzahmiA.S. ChaiboonchoeA. AminA. Salehi-AshtianiK. Molecular Mechanisms behind Safranal’s Toxicity to HepG2 Cells from Dual Omics.Antioxidants2022116112510.3390/antiox1106112535740022
    [Google Scholar]
  126. AbduS. JuaidN. AminA. MoulayM. MiledN. Therapeutic Effects of Crocin Alone or in Combination with Sorafenib against Hepatocellular Carcinoma: In vivo & In vitro Insights.Antioxidants2022119164510.3390/antiox1109164536139719
    [Google Scholar]
  127. BouabdallahS. Al-MaktoumA. AminA. Steroidal Saponins: Naturally Occurring Compounds as Inhibitors of the Hallmarks of Cancer.Cancers (Basel)20231515390010.3390/cancers1515390037568716
    [Google Scholar]
  128. XieY. MuC. KazybayB. SunQ. KutzhanovaA. NazarbekG. XuN. NurtayL. WangQ. AminA. LiX. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery.Drug Deliv.20212812187219710.1080/10717544.2021.197742234662244
    [Google Scholar]
  129. Al HroutA. Cervantes-GraciaK. ChahwanR. AminA. Modelling liver cancer microenvironment using a novel 3D culture system.Sci. Rep.2022121800310.1038/s41598‑022‑11641‑735568708
    [Google Scholar]
  130. BotrosS.R. MatoukA.I. AminA. HeebaG.H. Comparative effects of incretin-based therapy on doxorubicin-induced nephrotoxicity in rats: the role of SIRT1/Nrf2/NF-κB/TNF-α signaling pathways.Front. Pharmacol.202415135302910.3389/fphar.2024.135302938440177
    [Google Scholar]
  131. HamzaA.A. HassaninS.O. HamzaS. AbdallaA. AminA. Polyphenolic-enriched olive leaf extract attenuated doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress and inflammation.J. Basic Appl. Zool.20218215410.1186/s41936‑021‑00251‑w
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096323472240710101854
Loading
/content/journals/ccdt/10.2174/0115680096323472240710101854
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; circRNA; colorectal cancer; Exosome; functions; therapeutic targets
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test