Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Hispolon, a phenolic compound isolated from the medicinal yellow fungal mulberry, exhibits a strong anti-triple-negative breast cancer (TNBC) effect. However, the antitumor mechanisms of Hispolon have not been fully explored.

Objective

In this study, we systematically investigated the mechanism of Hispolon against TNBC based on bioinformatics and experiments.

Methods

The Hispolon-related targets were first collected from the SwissTarget database. Differential Expression Genes (DEG) were screened between TNBC and normal breast tissue using the Gene Expression Comprehensive (GEO) dataset. The overlapping targets between Hispolon and DEG were analyzed by plotting Venn maps. Protein-protein interaction (PPI) network was constructed to analyze the interactions among these targets. The focus was on mining the core targets of anti-TNBC effects of Hispolon the Cytohubba and MCODE plugin of Cytoscape 3.7.2 software. We performed survival analysis on these core targets to screen the best-matched targets, including EGFR, KIT, and PLAU. This correlated strongly with our validation of Hispolon by molecular docking. In addition, Gene Ontology (GO) analysis and KEGG pathway analysis were performed using R software (ClusterProfiler package). Finally, experiments were performed to assess the accuracy of predicted target genes.

Results

The ADME results suggested that Hispolon has great potential to develop into a drug. Twenty overlapping targets were screened by matching the 107 targets of Hispolon to the 2,013 targets of TNBC DEG. Seven core targets of Hispolon against TNBC were initially identified, including EGFR, IGFBP3, MMP9, MMP2, MMP1, PLAU, and KIT. GO enrichment analysis demonstrated that the biological process of Hispolon acting on TNBC mainly involves lymphocyte activation in immune response and phosphatidylinositol-mediated signaling. Additionally, the relaxin signaling pathway, estrogen signaling pathway, proteoglycans in cancer, and others might be the key pathways of Hispolon against TNBC. Furthermore, Hispolon inhibited the proliferation of MDA-MB-231 cells in a concentration-dependent manner and regulated the RNA and protein expression of the core targets EGFR, PLAU, and KIT for the treatment of TNBC.

Conclusion

In this study, the polygenic pharmacological mechanism of action of Hispolon against TNBC was explored through network pharmacology and experiments, providing a new insight into the mechanism of TCM monomer against TNBC.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096313623240801070716
2024-08-06
2025-10-23
Loading full text...

Full text loading...

References

  1. HoughtonS.C. HankinsonS.E. Cancer progress and priorities: Breast cancer.Cancer Epidemiol. Biomarkers Prev.202130582284410.1158/1055‑9965.EPI‑20‑119333947744
    [Google Scholar]
  2. HwangS.Y. ParkS. KwonY. Recent therapeutic trends and promising targets in triple negative breast cancer.Pharmacol. Ther.2019199305710.1016/j.pharmthera.2019.02.00630825473
    [Google Scholar]
  3. YinL. DuanJ.J. BianX.W. YuS. Triple-negative breast cancer molecular subtyping and treatment progress.Breast Cancer Res.20202216110.1186/s13058‑020‑01296‑532517735
    [Google Scholar]
  4. YangZ. ZhangQ. YuL. ZhuJ. CaoY. GaoX. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer.J. Ethnopharmacol.202126411324910.1016/j.jep.2020.11324932810619
    [Google Scholar]
  5. AliN.A.A. JansenR. PilgrimH. LiberraK. LindequistU. Hispolon, a yellow pigment from Inonotus hispidus.Phytochemistry19964192792910.1016/0031‑9422(95)00717‑2
    [Google Scholar]
  6. SarfrazA. RasulA. SarfrazI. ShahM.A. HussainG. ShafiqN. MasoodM. AdemŞ. SarkerS.D. LiX. Hispolon: A natural polyphenol and emerging cancer killer by multiple cellular signaling pathways.Environ. Res.202019011001710.1016/j.envres.2020.11001732768475
    [Google Scholar]
  7. ArcellaA. OlivaM.A. SanchezM. StaffieriS. EspositoV. GiangasperoF. CantoreG. Effects of hispolon on glioblastoma cell growth.Environ. Toxicol.20173292113212310.1002/tox.2241928618133
    [Google Scholar]
  8. HsinM.C. HsiehY.H. WangP.H. KoJ.L. HsinI.L. YangS.F. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells.Cell Death Dis.2017810e308910.1038/cddis.2017.45928981104
    [Google Scholar]
  9. LiaoK.F. ChiuT.L. ChangS.F. WangM.J. ChiuS.C. Hispolon induces apoptosis, suppresses migration and invasion of glioblastoma cells and inhibits GBM xenograft tumor growth in vivo.Molecules20212615449710.3390/molecules2615449734361649
    [Google Scholar]
  10. JangE.H. JangS.Y. ChoI.H. HongD. JungB. ParkM.J. KimJ.H. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha.Biochem. Biophys. Res. Commun.2015463491792210.1016/j.bbrc.2015.06.03526056942
    [Google Scholar]
  11. SunY.S. ZhaoZ. ZhuH.P. Hispolon inhibits TPA-induced invasion by reducing MMP-9 expression through the NF-κB signaling pathway in MDA-MB-231 human breast cancer cells.Oncol. Lett.201510153654210.3892/ol.2015.322026171065
    [Google Scholar]
  12. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.00434895945
    [Google Scholar]
  13. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  14. DingF. TanA. JuW. LiX. LiS. DingJ. The prediction of key cytoskeleton components involved in glomerular diseases based on a protein-protein interaction network.PLoS One2016115e015602410.1371/journal.pone.015602427227331
    [Google Scholar]
  15. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S1125521941
    [Google Scholar]
  16. WangW. LiuQ. WangY. PiaoH. LiB. ZhuZ. LiD. WangT. XuR. LiuK. Integration of gene expression profile data of human epicardial adipose tissue from coronary artery disease to verification of hub genes and pathways.BioMed Res. Int.201920191910.1155/2019/856730631886261
    [Google Scholar]
  17. MartinY.C. A bioavailability score.J. Med. Chem.20054893164317010.1021/jm049200215857122
    [Google Scholar]
  18. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  19. BalajiN.V. RamaniM.V. VianaA.G. SanglardL.P. WhiteJ. MulabagalV. LeeC. GanaT.J. EgieborN.O. SubbarajuG.V. TiwariA.K. Design, synthesis and in vitro cell-based evaluation of the anti-cancer activities of hispolon analogs.Bioorg. Med. Chem.20152392148215810.1016/j.bmc.2015.03.00225842364
    [Google Scholar]
  20. CaoW.H. LiuH.M. LiuX. LiJ.G. LiangJ. LiuM. NiuZ.H. Relaxin enhances in-vitro invasiveness of breast cancer cell lines by upregulation of S100A4/MMPs signaling.Eur. Rev. Med. Pharmacol. Sci.201317560961723543443
    [Google Scholar]
  21. TreeckO. Schüler-ToprakS. OrtmannO. Estrogen actions in triple-negative breast cancer.Cells2020911235810.3390/cells911235833114740
    [Google Scholar]
  22. NilandS. RiscanevoA.X. EbleJ.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression.Int. J. Mol. Sci.202123114610.3390/ijms2301014635008569
    [Google Scholar]
  23. JiangH. LiH. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: A systematic review and meta-analysis.BMC Cancer202121114910.1186/s12885‑021‑07860‑233568081
    [Google Scholar]
  24. ByunH.J. DarvinP. KangD.Y. SpN. JoungY.H. ParkJ.H. KimS.J. YangY.M. Silibinin downregulates MMP2 expression via Jak2/STAT3 pathway and inhibits the migration and invasive potential in MDA-MB-231 cells.Oncol. Rep.20173763270327810.3892/or.2017.558828440514
    [Google Scholar]
  25. WangQ.M. LvL. TangY. ZhangL. WangL.F. MMP-1 is overexpressed in triple-negative breast cancer tissues and the knockdown of MMP-1 expression inhibits tumor cell malignant behaviors in vitro.Oncol. Lett.20191721732174030675232
    [Google Scholar]
  26. Argote CamachoA.X. González RamírezA.R. Pérez AlonsoA.J. Rejón GarcíaJ.D. Olivares UrbanoM.A. Torné PoyatosP. Ríos ArrabalS. NúñezM.I. Metalloproteinases 1 and 3 as potential biomarkers in breast cancer development.Int. J. Mol. Sci.20212216901210.3390/ijms2216901234445715
    [Google Scholar]
  27. BizinelliD. Flores NavarroF. Lima Costa FaldoniF. Maca root (Lepidium meyenii) extract increases the expression of MMP-1 and stimulates migration of triple-negative breast cancer cells.Nutr. Cancer202274134635610.1080/01635581.2021.188251133560149
    [Google Scholar]
  28. KumagaiS. KoyamaS. NishikawaH. Antitumour immunity regulated by aberrant ERBB family signalling.Nat. Rev. Cancer202121318119710.1038/s41568‑020‑00322‑033462501
    [Google Scholar]
  29. LiuX. Adorno-CruzV. ChangY.F. JiaY. KawaguchiM. DashzevegN.K. TaftafR. RamosE.K. SchusterE.J. El-ShennawyL. PatelD. ZhangY. CristofanilliM. LiuH. EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer.Theranostics202111136632664310.7150/thno.5770633995681
    [Google Scholar]
  30. LiR.H. HuangW.H. WuJ.D. DuC.W. ZhangG.J. EGFR expression is associated with cytoplasmic staining of CXCR4 and predicts poor prognosis in triple-negative breast carcinomas.Oncol. Lett.201713269570310.3892/ol.2016.548928356948
    [Google Scholar]
  31. PengB. HeR. XuQ. YangY. HuQ. HouH. LiuX. LiJ. Ginsenoside 20(S)-protopanaxadiol inhibits triple-negative breast cancer metastasis in vivo by targeting EGFR-mediated MAPK pathway.Pharmacol. Res.201914211310.1016/j.phrs.2019.02.00330735802
    [Google Scholar]
  32. UliviP. ZoliW. MedriL. AmadoriD. SaragoniL. BarbantiF. CalistriD. SilvestriniR. c-kit and SCF expression in normal and tumor breast tissue.Breast Cancer Res. Treat.2004831334210.1023/B:BREA.0000010694.35023.9e14997053
    [Google Scholar]
  33. YaredM.A. MiddletonL.P. Meric BernstamF. CristofanilliM. SahinA.A. Expression of c-kit proto-oncogene product in breast tissue.Breast J.200410432332710.1111/j.1075‑122X.2004.21351.x15239791
    [Google Scholar]
  34. WangY. ZhuM. LiJ. XiongY. WangJ. JingH. GuY. Overexpression of PSMC2 promotes the tumorigenesis and development of human breast cancer via regulating plasminogen activator urokinase (PLAU).Cell Death Dis.202112769010.1038/s41419‑021‑03960‑w34244472
    [Google Scholar]
  35. VishnubalajiR. AlajezN.M. Epigenetic regulation of triple negative breast cancer (TNBC) by TGF-β signaling.Sci. Rep.20211111541010.1038/s41598‑021‑94514‑934326372
    [Google Scholar]
  36. MarzecK.A. BaxterR.C. MartinJ.L. Targeting insulin-like growth factor binding protein-3 signaling in triple-negative breast cancer.BioMed Res. Int.201520151810.1155/2015/63852626221601
    [Google Scholar]
  37. BurnessM.L. GrushkoT.A. OlopadeO.I. Epidermal growth factor receptor in triple-negative and basal-like breast cancer: Promising clinical target or only a marker?Cancer J.2010161233210.1097/PPO.0b013e3181d24fc120164687
    [Google Scholar]
  38. CareyL.A. RugoH.S. MarcomP.K. MayerE.L. EstevaF.J. MaC.X. LiuM.C. StornioloA.M. RimawiM.F. Forero-TorresA. WolffA.C. HobdayT.J. IvanovaA. ChiuW.K. FerraroM. BurrowsE. BernardP.S. HoadleyK.A. PerouC.M. WinerE.P. TBCRC 001: Randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer.J. Clin. Oncol.201230212615262310.1200/JCO.2010.34.557922665533
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096313623240801070716
Loading
/content/journals/ccdt/10.2174/0115680096313623240801070716
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test