Skip to content
2000
Volume 25, Issue 8
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

The advent of mRNA vaccines has heralded a transformative era in oncology, exemplified by the BNT116 mRNA lung cancer vaccine. Leveraging the same groundbreaking technology as COVID-19 vaccines, BNT116 delivers tumor-specific genetic instructions to the immune system, targeting non-small cell lung cancer (NSCLC), the most prevalent lung cancer subtype. This approach contrasts with conventional therapies that lack precision and often damage healthy tissues. By encoding tumor antigens, BNT116 educates cytotoxic T cells to recognize and eradicate malignant cells, aligning with the principles of precision medicine. Early-phase clinical trials (e.g., NCT05142189) have demonstrated a favorable safety profile and promising antitumor activity, with ongoing research exploring its use in combination therapies, such as checkpoint inhibitors. Despite logistical challenges, such as mRNA instability and cold chain requirements, advances in lipid nanoparticle delivery systems are enhancing vaccine stability and efficacy. The adaptability of mRNA technology positions it as a cornerstone for personalized oncology, with potential applications extending to other cancers. Success in the BNT116 trials could redefine NSCLC treatment paradigms, offering a targeted, less cytotoxic alternative. This innovation can not only improve therapeutic outcomes, but also pave the way for preventive cancer vaccines, signaling a new dawn in cancer treatment.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096360059250131075456
2025-02-14
2025-10-23
Loading full text...

Full text loading...

References

  1. SusterD.I. Mino-KenudsonM. Molecular pathology of primary Non-small cell lung cancer.Arch. Med. Res.202051878479810.1016/j.arcmed.2020.08.00432873398
    [Google Scholar]
  2. HussainM.S. AfzalO. GuptaG. GoyalA. AlmalkiW.H. KazmiI. AlzareaS.I. AltamimiA.A.S. KukretiN. ChakrabortyA. SinghS.K. DuaK. Unraveling NEAT1's complex role in lung cancer biology: a comprehensive review.EXCLI J.202423345238343745
    [Google Scholar]
  3. SharmaP. KapoorB. HussainM.S. SinghG. RaniP. SainiB. WadhwaP. KumarR. Development and validation of reverse-phase high-performance liquid chromatography method for simultaneous estimation of doxorubicin and clotrimazole.Assay Drug Dev. Technol.2024222869610.1089/adt.2023.05738150558
    [Google Scholar]
  4. ZhouY. LiQ. PanR. WangQ. ZhuX. YuanC. CaiF. GaoY. CuiY. Regulatory roles of three miRNAs on allergen mRNA expression in Tyrophagus putrescentiae.Allergy202277246948210.1111/all.1511134570913
    [Google Scholar]
  5. SunD. LiX. NieS. LiuJ. WangS. Disorders of cancer metabolism: The therapeutic potential of cannabinoids.Biomed. Pharmacother.202315711399310.1016/j.biopha.2022.113993
    [Google Scholar]
  6. RibasA. WolchokJ.D. Cancer immunotherapy using checkpoint blockade.Science201835963821350135510.1126/science.aar406029567705
    [Google Scholar]
  7. WangB. PeiJ. XuS. LiuJ. YuJ. Recent advances in mRNA cancer vaccines: meeting challenges and embracing opportunities.Front. Immunol.202314124668210.3389/fimmu.2023.124668237744371
    [Google Scholar]
  8. DaiJ. AshrafizadehM. ArefA.R. SethiG. ErtasY.N. Peptide-functionalized, -assembled and -loaded nanoparticles in cancer therapy.Drug Discov. Today202429710398110.1016/j.drudis.2024.10398138614161
    [Google Scholar]
  9. TadicS. MartínezA. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer?Front. Immunol.202415143318510.3389/fimmu.2024.143318539081320
    [Google Scholar]
  10. HuS. JiangS. QiX. BaiR. YeX.Y. XieT. Races of small molecule clinical trials for the treatment of COVID‐19: An up‐to‐date comprehensive review.Drug Dev. Res.2022831165410.1002/ddr.2189534762760
    [Google Scholar]
  11. KumarA.R. DevanA.R. NairB. VinodB.S. NathL.R. Harnessing the immune system against cancer: current immunotherapy approaches and therapeutic targets.Mol. Biol. Rep.202148128075809510.1007/s11033‑021‑06752‑934671902
    [Google Scholar]
  12. ChenL. HeY. ZhuJ. ZhaoS. QiS. ChenX. The roles and mechanism of m(6)A RNA methylation regulators in cancer immunity.Biomed. Pharmacother.202316311483910.1016/j.biopha.2023.114839
    [Google Scholar]
  13. ZhuQ. GaoY. HuQ. HuD. WuX. A study on the factors influencing the intention to receive booster shots of the COVID-19 vaccine in China based on the information frame effect.Front. Public Health202412125818810.3389/fpubh.2024.125818838444439
    [Google Scholar]
  14. ChungY.H. BeissV. FieringS.N. SteinmetzN.F. COVID-19 vaccine frontrunners and their nanotechnology design.ACS Nano20201410125221253710.1021/acsnano.0c0719733034449
    [Google Scholar]
  15. FangE. LiuX. LiM. ZhangZ. SongL. ZhuB. WuX. LiuJ. ZhaoD. LiY. Advances in COVID-19 mRNA vaccine development.Signal Transduct. Target. Ther.2022719410.1038/s41392‑022‑00950‑y35322018
    [Google Scholar]
  16. MiaoL. ZhangY. HuangL. mRNA vaccine for cancer immunotherapy.Mol. Cancer20212014110.1186/s12943‑021‑01335‑533632261
    [Google Scholar]
  17. VishweshwaraiahY.L. DokholyanN.V. mRNA vaccines for cancer immunotherapy.Front. Immunol.202213102906910.3389/fimmu.2022.102906936591226
    [Google Scholar]
  18. ZhangY. ZhengX. LiuY. FangL. PanZ. BaoM. HuangP. Effect of oridonin on cytochrome P450 expression and activities in HepaRG cell.Pharmacology20181015-624625410.1159/00048660029393278
    [Google Scholar]
  19. NieY. LiD. PengY. WangS. HuS. LiuM. DingJ. ZhouW. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer.Int. J. Pharm.202058511951310.1016/j.ijpharm.2020.11951332526334
    [Google Scholar]
  20. YangR. CuiJ. Advances and applications of RNA vaccines in tumor treatment.Mol. Cancer202423122610.1186/s12943‑024‑02141‑539385255
    [Google Scholar]
  21. MaqboolM. HussainM.S. ShaikhN.K. SultanaA. BishtA.S. AgrawalM. Noncoding RNAs in the COVID-19 Saga: An untold story.Viral Immunol.202437626928610.1089/vim.2024.002638968365
    [Google Scholar]
  22. ChenB. YangY. WangX. YangW. LuY. WangD. ZhuoE. TangY. SuJ. TangG. ShaoS. GuK. mRNA vaccine development and applications: A special focus on tumors (Review).Int. J. Oncol.20246528110.3892/ijo.2024.566938994758
    [Google Scholar]
  23. NoorR. Developmental status of the potential vaccines for the mitigation of the COVID-19 pandemic and a focus on the effectiveness of the Pfizer-BioNTech and moderna mrna vaccines.Curr. Clin. Microbiol. Rep.20218317818510.1007/s40588‑021‑00162‑y33686365
    [Google Scholar]
  24. MeoS.A. BukhariI.A. AkramJ. MeoA.S. KlonoffD.C. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines.Eur. Rev. Med. Pharmacol. Sci.20212531663166933629336
    [Google Scholar]
  25. YaoR. XieC. XiaX. Recent progress in mRNA cancer vaccines.Hum. Vaccin. Immunother.2024201230718710.1080/21645515.2024.230718738282471
    [Google Scholar]
  26. SentiE.M. García del ValleL. SchiffelersR.M. mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond.Adv. Drug Deliv. Rev.202420611519010.1016/j.addr.2024.11519038307296
    [Google Scholar]
  27. KhanP. SiddiquiJ.A. LakshmananI. GantiA.K. SalgiaR. JainM. BatraS.K. NasserM.W. RNA-based therapies: A cog in the wheel of lung cancer defense.Mol. Cancer20212015410.1186/s12943‑021‑01338‑233740988
    [Google Scholar]
  28. LinX. YuT. ZhangL. ChenS. ChenX. LiaoY. LongD. ShenF. Silencing Op18/stathmin by RNA interference promotes the sensitivity of nasopharyngeal carcinoma cells to taxol and high‐grade differentiation of xenografted tumours in nude mice.Basic Clin. Pharmacol. Toxicol.2016119661162010.1111/bcpt.1263327289016
    [Google Scholar]
  29. FalcaroM. SoldanK. NdlelaB. SasieniP. Effect of the HPV vaccination programme on incidence of cervical cancer and grade 3 cervical intraepithelial neoplasia by socioeconomic deprivation in England: population based observational study.BMJ2024385e07734110.1136/bmj‑2023‑07734138749552
    [Google Scholar]
  30. FanT. ZhangM. YangJ. ZhuZ. CaoW. DongC. Therapeutic cancer vaccines: advancements, challenges and prospects.Signal Transduct. Target. Ther.20238145010.1038/s41392‑023‑01674‑338086815
    [Google Scholar]
  31. VermaelenK. Vaccine strategies to improve anti-cancer cellular immune responses.Front. Immunol.201910810.3389/fimmu.2019.0000830723469
    [Google Scholar]
  32. BerraondoP. CuestaR. SanmamedM.F. MeleroI. Immunogenicity and efficacy of personalized adjuvant mRNA cancer vaccines.Cancer Discov.202414112021202410.1158/2159‑8290.CD‑24‑119639485256
    [Google Scholar]
  33. G, T.S. Innate and adaptive immune cells in Tumor microenvironment.Gulf J. Oncolog.2021135778133716216
    [Google Scholar]
  34. PardiN. HoganM.J. PorterF.W. WeissmanD. mRNA vaccines — a new era in vaccinology.Nat. Rev. Drug Discov.201817426127910.1038/nrd.2017.24329326426
    [Google Scholar]
  35. ZongY. LinY. WeiT. ChengQ. Lipid nanoparticle (LNP) enables mRNA delivery for cancer therapy.Adv. Mater.20233551e2303261
    [Google Scholar]
  36. EygerisY. GuptaM. KimJ. SahayG. Chemistry of lipid nanoparticles for RNA delivery.Acc. Chem. Res.202255121210.1021/acs.accounts.1c0054434850635
    [Google Scholar]
  37. JamesE.R. Disrupting vaccine logistics.Int. Health202113321121410.1093/inthealth/ihab01033709112
    [Google Scholar]
  38. CaoY. GaoG.F. mRNA vaccines: A matter of delivery.Clin. Med. 20213210074610.1016/j.eclinm.2021.10074633644722
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096360059250131075456
Loading
/content/journals/ccdt/10.2174/0115680096360059250131075456
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BNT116; cancer vaccine; lung cancer; mRNA vaccine; treatment innovation; vaccine trials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test