Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Pancreatic cancer (PC) is a lethal complication in the world, affecting around half a million individuals each year. The treatment of PC is relatively difficult due to the difficulty in making an early diagnosis. Most PC patients are confronted with locally metastatic or advanced diseases in the asymptomatic phase, and about 80% have late diagnosis with metastasis. Recently, long noncoding RNAs (lncRNAs) have drawn attention as a novel biological regulation layer. They take part in the regulation of mRNA and can be used as a prognostic factor or drug target. Based on their functions as regulators of PC initiation and progress, the lncRNAs can be categorized as tumor suppressors or oncogenic. They can be considered as a target for finding new biomarkers for prognosis, diagnosis, monitoring, and treating drug response in PC. Therefore, the present study summarizes the lncRNAs role in PC and the probable strategies to deal with their expression and controlling tumorigenesis and detection of the prognosis of PC.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096300768240604045809
2024-07-15
2025-10-11
Loading full text...

Full text loading...

References

  1. KamisawaT. WoodL.D. ItoiT. TakaoriK. Pancreatic cancer.Lancet201638810039738510.1016/S0140‑6736(16)00141‑026830752
    [Google Scholar]
  2. ZhaoC. GaoF. LiQ. LiuQ. LinX. The distributional characteristic and growing trend of pancreatic cancer in China.Pancreas201948330931410.1097/MPA.000000000000122230855427
    [Google Scholar]
  3. LöhrJ.M. Dominguez-MunozE. RosendahlJ. BesselinkM. MayerleJ. LerchM.M. HaasS. AkisikF. KartalisN. Iglesias-GarciaJ. KellerJ. BoermeesterM. WernerJ. DumonceauJ.M. FockensP. DrewesA. CeyhanG. LindkvistB. DrenthJ. EwaldN. HardtP. de MadariaE. WittH. SchneiderA. ManfrediR. BrøndumF.J. RudolfS. BollenT. BrunoM. United european gastroenterology evidence‐based guidelines for the diagnosis and therapy of chronic pancreatitis (HaPanEU).United European Gastroenterol. J.20175215319910.1177/205064061668469528344786
    [Google Scholar]
  4. MizrahiJ.D. SuranaR. ValleJ.W. ShroffR.T. Pancreatic cancer.Lancet2020395102422008202010.1016/S0140‑6736(20)30974‑032593337
    [Google Scholar]
  5. HaeberleL. EspositoI. Pathology of pancreatic cancer.Transl Gastroenterol Hepatol201945010.21037/tgh.2019.06.02
    [Google Scholar]
  6. ZhaoZ. LiuW. Pancreatic cancer: A review of risk factors, diagnosis, and treatment.Technol. Cancer Res. Treat.20201910.1177/153303382096211733357065
    [Google Scholar]
  7. HuJ.X. ZhaoC.F. ChenW.B. LiuQ.C. LiQ.W. LinY.Y. GaoF. Pancreatic cancer: A review of epidemiology, trend, and risk factors.World J. Gastroenterol.202127274298432110.3748/wjg.v27.i27.429834366606
    [Google Scholar]
  8. KleinA.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors.Nat. Rev. Gastroenterol. Hepatol.202118749350210.1038/s41575‑021‑00457‑x34002083
    [Google Scholar]
  9. GaoN. LiY. LiJ. GaoZ. YangZ. LiY. LiuH. FanT. Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers.Front. Oncol.20201059881710.3389/fonc.2020.59881733392092
    [Google Scholar]
  10. FlorathI. ButterbachK. MüllerH. Bewerunge-HudlerM. BrennerH. Cross-sectional and longitudinal changes in DNA methylation with age: an epigenome-wide analysis revealing over 60 novel age-associated CpG sites.Hum. Mol. Genet.20142351186120110.1093/hmg/ddt53124163245
    [Google Scholar]
  11. ShiW. WuQ. LiS. YangT. LiuZ. TongY. TuoL. WangS. CaoX.F. Upregulation of the long noncoding RNA PCAT-1 correlates with advanced clinical stage and poor prognosis in esophageal squamous carcinoma.Tumour Biol.20153642501250710.1007/s13277‑014‑2863‑325731728
    [Google Scholar]
  12. ZhangJ. ZhangZ. ChenZ. DengL. Integrating multiple heterogeneous networks for novel lncRNA-disease association inference.IEEE/ACM Trans. Comput. Biol. Bioinformatics201916239640610.1109/TCBB.2017.270137928489543
    [Google Scholar]
  13. WuH. YangL. ChenL.L. The diversity of long noncoding RNAs and their generation.Trends Genet.201733854055210.1016/j.tig.2017.05.00428629949
    [Google Scholar]
  14. BridgesM.C. DaulagalaA.C. KourtidisA. LNCcation: lncRNA localization and function.J. Cell Biol.20212202e20200904510.1083/jcb.20200904533464299
    [Google Scholar]
  15. RobinsonE.K. CovarrubiasS. CarpenterS. The how and why of lncRNA function: An innate immune perspective.Biochim. Biophys. Acta. Gene Regul. Mech.20201863419441910.1016/j.bbagrm.2019.19441931487549
    [Google Scholar]
  16. BhanA. SoleimaniM. MandalS.S. Long noncoding RNA and cancer: A new paradigm.Cancer Res.201777153965398110.1158/0008‑5472.CAN‑16‑263428701486
    [Google Scholar]
  17. LiJ. MengH. BaiY. WangK. Regulation of lncRNA and its role in cancer metastasis.Oncol. Res.201623520521710.3727/096504016X1454966733400727098144
    [Google Scholar]
  18. JatharS. KumarV. SrivastavaJ. TripathiV. Technological developments in lncRNA biology.Long Non Coding RNA Biology2017283323
    [Google Scholar]
  19. JiangM-C. NiJ-J. CuiW-Y. WangB-Y. ZhuoW. Emerging roles of lncRNA in cancer and therapeutic opportunities.Am. J. Cancer Res.2019971354136631392074
    [Google Scholar]
  20. Ghafouri-FardS. FathiM. ZhaiT. TaheriM. DongP. LncRNAs: novel biomarkers for pancreatic cancer.Biomolecules20211111166510.3390/biom1111166534827663
    [Google Scholar]
  21. XuJ. XuJ. LiuX. JiangJ. The role of lncRNA-mediated ceRNA regulatory networks in pancreatic cancer.Cell Death Discov.20228128710.1038/s41420‑022‑01061‑x35697671
    [Google Scholar]
  22. FuZ. ChenC. ZhouQ. WangY. ZhaoY. ZhaoX. LiW. ZhengS. YeH. WangL. HeZ. LinQ. LiZ. ChenR. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9.Cancer Lett.2017410688110.1016/j.canlet.2017.09.01928947139
    [Google Scholar]
  23. LiuY. DingW. YuW. ZhangY. AoX. WangJ. Long non-coding RNAs: Biogenesis, functions, and clinical significance in gastric cancer.Mol. Ther. Oncolytics20212345847610.1016/j.omto.2021.11.00534901389
    [Google Scholar]
  24. DongY. YoshitomiT. HuJ.F. CuiJ. Long noncoding RNAs coordinate functions between mitochondria and the nucleus.Epigenetics Chromatin20171014110.1186/s13072‑017‑0149‑x28835257
    [Google Scholar]
  25. ZhaoY. ZhouL. LiH. SunT. WenX. LiX. MengY. LiY. LiuM. LiuS. KimS.J. XiaoJ. LiL. ZhangS. LiW. CohenP. HoffmanA.R. HuJ.F. CuiJ. Nuclear-encoded lncRNA MALAT1 epigenetically controls metabolic reprogramming in HCC cells through the mitophagy pathway.Mol. Ther. Nucleic Acids20212326427610.1016/j.omtn.2020.09.04033425485
    [Google Scholar]
  26. StatelloL. GuoC.J. ChenL.L. HuarteM. Gene regulation by long non-coding RNAs and its biological functions.Nat. Rev. Mol. Cell Biol.20212229611810.1038/s41580‑020‑00315‑933353982
    [Google Scholar]
  27. FazalF.M. HanS. ParkerK.R. KaewsapsakP. XuJ. BoettigerA.N. Atlas of subcellular RNA localization revealed by APEX-Seq.Cell2019178247349010.1016/j.cell.2019.05.027
    [Google Scholar]
  28. ShahI. M. DarM. A. BhatK. A. DarT. A. AhmadF. AhmadS. M. Long Non-Coding RNAs: Biogenesis, Mechanism of Action and Role in Different Biological and Pathological Processesintechopen2022
    [Google Scholar]
  29. WangC. WangL. DingY. LuX. ZhangG. YangJ. ZhengH. WangH. JiangY. XuL. LncRNA structural characteristics in epigenetic regulation.Int. J. Mol. Sci.20171812265910.3390/ijms1812265929292750
    [Google Scholar]
  30. WangT. LiJ. YangL. WuM. MaQ. The role of long Non-coding RNAs in human imprinting disorders: Prospective therapeutic targets.Front. Cell Dev. Biol.2021973001410.3389/fcell.2021.73001434760887
    [Google Scholar]
  31. AndergassenD. MuckenhuberM. BammerP.C. KulinskiT.M. TheusslH.C. ShimizuT. PenningerJ.M. PaulerF.M. HudsonQ.J. The Airn lncRNA does not require any DNA elements within its locus to silence distant imprinted genes.PLoS Genet.2019157e100826810.1371/journal.pgen.100826831329595
    [Google Scholar]
  32. VafadarA. ShabaninejadZ. MovahedpourA. MohammadiS. FathullahzadehS. MirzaeiH.R. NamdarA. SavardashtakiA. MirzaeiH. Long non-coding RNAs as epigenetic regulators in cancer.Curr. Pharm. Des.201925333563357710.2174/138161282566619083016152831470781
    [Google Scholar]
  33. ConfortiF.L. RuffoP. De AmicisF. GiardinaE. Long-noncoding RNAs as epigenetic regulators in neurodegenerative diseases.Neural Regen. Res.20231861243124810.4103/1673‑5374.35861536453400
    [Google Scholar]
  34. ErcanS. Mechanisms of x chromosome dosage compensation.J Genomics2015311910.7150/jgen.1040425628761
    [Google Scholar]
  35. LizJ. EstellerM. “lncRNAs and microRNAs with a role in cancer development,” Biochimica et Biophysica Acta (BBA)-.Gene Regulat. Mechan.20161859169176
    [Google Scholar]
  36. NandwaniA. RathoreS. DattaM. LncRNAs in cancer: Regulatory and therapeutic implications.Cancer Lett.202150116217110.1016/j.canlet.2020.11.04833359709
    [Google Scholar]
  37. RivandiM. PasdarA. HamzezadehL. TajbakhshA. SeifiS. Moetamani-AhmadiM. FernsG.A. AvanA. The prognostic and therapeutic values of long noncoding RNA PANDAR in colorectal cancer.J. Cell. Physiol.201923421230123610.1002/jcp.2713630191971
    [Google Scholar]
  38. ZhanY. LinJ. LiuY. ChenM. ChenX. ZhuangC. LiuL. XuW. ChenZ. HeA. ZhangQ. SunX. ZhaoG. HuangW. Up-regulation of long non-coding RNA PANDAR is associated with poor prognosis and promotes tumorigenesis in bladder cancer.J. Exp. Clin. Cancer Res.20163518310.1186/s13046‑016‑0354‑727206339
    [Google Scholar]
  39. LiuJ. BenQ. LuE. HeX. YangX. MaJ. ZhangW. WangZ. LiuT. ZhangJ. WangH. Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer.Cell Death Dis.20189216810.1038/s41419‑017‑0246‑629416011
    [Google Scholar]
  40. PengW. FanH. Long non-coding RNA PANDAR correlates with poor prognosis and promotes tumorigenesis in hepatocellular carcinoma.Biomed. Pharmacother.20157211311810.1016/j.biopha.2015.04.01426054684
    [Google Scholar]
  41. PuvvulaP.K. DesettyR.D. PineauP. MarchioA. MoonA. DejeanA. BischofO. Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit.Nat. Commun.201451532310.1038/ncomms632325406515
    [Google Scholar]
  42. KitagawaM. KotakeY. OhhataT. Long non-coding RNAs involved in cancer development and cell fate determination.Curr. Drug Targets201213131616162110.2174/13894501280353002622974399
    [Google Scholar]
  43. LuM. LiuZ. LiB. WangG. LiD. ZhuY. The high expression of long non-coding RNA PANDAR indicates a poor prognosis for colorectal cancer and promotes metastasis by EMT pathway.J. Cancer Res. Clin. Oncol.20171431718110.1007/s00432‑016‑2252‑y27629879
    [Google Scholar]
  44. JiangY. FengE. SunL. JinW. YouY. YaoY. XuY. An increased expression of long non-coding RNA PANDAR promotes cell proliferation and inhibits cell apoptosis in pancreatic ductal adenocarcinoma.Biomed. Pharmacother.20179568569110.1016/j.biopha.2017.08.12428886528
    [Google Scholar]
  45. WangY. ZhouL. LuJ. JiangB. LiuC. GuoJ. XiaoG.G. Research progress on long non-coding RNAs and their roles as potential biomarkers for diagnosis and prognosis in pancreatic cancer.Cancer Cell Int.202020145710.1186/s12935‑020‑01550‑y32973402
    [Google Scholar]
  46. ChengH. LuoG. JinK. FanZ. HuangQ. GongY. XuJ. YuX. LiuC. Kras mutation correlating with circulating regulatory T cells predicts the prognosis of advanced pancreatic cancer patients.Cancer Med.2020962153215910.1002/cam4.289532017404
    [Google Scholar]
  47. Vila-NavarroE. Duran-SanchonS. Vila-CasadesúsM. MoreiraL. GinèsÀ. CuatrecasasM. LozanoJ.J. BujandaL. CastellsA. GironellaM. Novel circulating miRNA signatures for early detection of pancreatic neoplasia.Clin. Transl. Gastroenterol.2019104e0002910.14309/ctg.000000000000002931009404
    [Google Scholar]
  48. LvY. HuangS. Role of non‑coding RNA in pancreatic cancer (Review).Oncol. Lett.20191843963397310.3892/ol.2019.1075831579086
    [Google Scholar]
  49. LanzafameM. BiancoG. TerraccianoL. NgC. PiscuoglioS. The Role of Long Non-Coding RNAs in Hepatocarcinogenesis.Int. J. Mol. Sci.201819368210.3390/ijms1903068229495592
    [Google Scholar]
  50. MontesM. ArnesL. lncRNAs: Potential therapeutic targets and biomarkers for pancreatic cancer?Expert Opin. Ther. Targets202125752152810.1080/14728222.2021.193854134077329
    [Google Scholar]
  51. HanL. WangB. WangR. WangZ. GongS. ChenG. TelemacqueD. FengY. XuW. Prognostic and clinicopathological significance of long non-coding RNA PANDAR expression in cancer patients: A meta-analysis.Front. Oncol.20199133710.3389/fonc.2019.0133731850222
    [Google Scholar]
  52. PermuthJ.B. ChenD.T. YoderS.J. LiJ. SmithA.T. ChoiJ.W. KimJ. BalagurunathanY. JiangK. CoppolaD. CentenoB.A. KlapmanJ. HodulP. KarrethF.A. TrevinoJ.G. MerchantN. MaglioccoA. MalafaM.P. GilliesR. Linc-ing circulating long non-coding RNAs to the diagnosis and malignant prediction of intraductal papillary mucinous neoplasms of the pancreas.Sci. Rep.2017711048410.1038/s41598‑017‑09754‑528874676
    [Google Scholar]
  53. JemalA. BrayF. CenterM.M. FerlayJ. WardE. FormanD. Global cancer statistics.CA Cancer J. Clin.2011612699010.3322/caac.2010721296855
    [Google Scholar]
  54. KangW. ZhengQ. LeiJ. ChenC. YuC. Prognostic value of long noncoding RNAs in patients with gastrointestinal cancer: a systematic review and meta-analysis.Dis Markers201820185340894
    [Google Scholar]
  55. LiX. WangF. SunY. FanQ. CuiG. Expression of long non-coding RNA PANDAR and its prognostic value in colorectal cancer patients.Int. J. Biol. Markers201732221822310.5301/jbm.500024928106228
    [Google Scholar]
  56. Al-GhafariA.B. SiddiquiH.A. ChoudhryH.M. Al DoghaitherH.A. AlshaibiH.F. AlsufianiH.M. Contribution of long non-coding rnas (ccat1, malat1, and pandar) in the pathogenesis of colorectal cancer.Pak. J. Med. Health Sci.202216512512
    [Google Scholar]
  57. SiddiqueH. Al-GhafariA. ChoudhryH. AlTurkiS. AlshaibiH. Al DoghaitherH. AlsufianiH. Long noncoding RNAs as prognostic markers for colorectal cancer in Saudi patients.Genet. Test. Mol. Biomarkers201923850951410.1089/gtmb.2018.030831328973
    [Google Scholar]
  58. MaP. XuT. HuangM. ShuY. Increased expression of LncRNA PANDAR predicts a poor prognosis in gastric cancer.Biomed. Pharmacother.20167817217610.1016/j.biopha.2016.01.02526898439
    [Google Scholar]
  59. YangZ. SunY. LiuR. ShiY. DingS. Plasma long noncoding RNAs PANDAR, FOXD2-AS1, and SMARCC2 as potential novel diagnostic biomarkers for gastric cancer.Cancer Manag. Res.2019116175618410.2147/CMAR.S20193531308753
    [Google Scholar]
  60. XuY. JiangX. CuiY. Upregulated long noncoding RNA PANDAR predicts an unfavorable prognosis and promotes tumorigenesis in cholangiocarcinoma.OncoTargets Ther.2017102873288310.2147/OTT.S13704428652769
    [Google Scholar]
  61. ArunG. DiermeierS.D. SpectorD.L. Therapeutic targeting of long non-coding RNAs in cancer.Trends Mol. Med.201824325727710.1016/j.molmed.2018.01.00129449148
    [Google Scholar]
  62. ChenT. YangP. WangH. HeZ.Y. Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells.OncoTargets Ther.20171048349110.2147/OTT.S12754728176943
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096300768240604045809
Loading
/content/journals/ccdt/10.2174/0115680096300768240604045809
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarker; long non-coding; pancreatic cancer; PANDAR; RNA; tumorigenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test