Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Cancer is a life-threatening disease prevalent worldwide, but its proper treatment has not yet been developed. Conventional therapies, like chemotherapy, surgery, and radiation, have shown relapse and drug resistance. Nanomedicine comprising cancer theranostics based on imaging probes functionalized with polymeric nanoconjugates is acquiring importance due to its targeting capability, biodegradability, biocompatibility, capacity for drug loading, and long blood circulation time. The application of synthetic polymers containing anti-cancer agents and functionalizing their surface amenities with diagnostic probes offer a nano-combinatorial model in cancer theranostics.

Objective

This study aimed to highlight the recent advancements in quantum dots-functionalized nanoconjugates and substantial progress in advanced polymeric nanomaterials in cancer theragnostics.

Methods

This review details the synthetic methods for fabricating Quantum Dots (QDs) and QDs-functionalized polymeric nanoparticles, such as the hydrothermal method, solvothermal technique, atomic layer desorption, electrochemical method, microwave, and ultrasonic method.

Results

Conjugating nanoparticles with photo-emitting quantum dots has shown efficacy for real-time monitoring and treating multi-drug-resistant cancer.

Conclusion

Quantum dots are used in phototherapy, bioimaging, and medication delivery for cancer therapy. Real-time monitoring of therapy is possible and multiple models of hybridized quantum dots may be created to treat cancer. This review has discovered that numerous attempts have been made to conjugate carbon and graphene-based quantum dots with various biomolecules.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096299455240621070820
2024-09-04
2025-10-24
Loading full text...

Full text loading...

References

  1. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.21492 30207593
    [Google Scholar]
  2. de SouzaJ.A. HuntB. AsirwaF.C. AdebamowoC. LopesG. Global health equity: Cancer care outcome disparities in high, middle, and low-income countries.J. Clin. Oncol.201634161310.1200/JCO.2015.62.2860 26578608
    [Google Scholar]
  3. YenurkarD. NayakM. MukherjeeS. Recent advances of nanocrystals in cancer theranostics.Nanoscale Adv.20235164018404010.1039/D3NA00397C 37560418
    [Google Scholar]
  4. NorouziM. NazariB. MillerD.W. Injectable hydrogel-based drug delivery systems for local cancer therapy.Drug Discov. Today201621111835184910.1016/j.drudis.2016.07.006 27423369
    [Google Scholar]
  5. ZhangY. LinS. WangX.Y. ZhuG. Nanovaccines for cancer immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2019115e155910.1002/wnan.1559 31172659
    [Google Scholar]
  6. XiongL. LuoQ. WangY. LiX. ShenZ. ZhuW. An injectable drug-loaded hydrogel based on a supramolecular polymeric prodrug.Chem. Commun.20155178146441464710.1039/C5CC06025G 26290273
    [Google Scholar]
  7. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  8. PatraC.R. BhattacharyaR. MukhopadhyayD. MukherjeeP. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer.Adv. Drug Deliv. Rev.201062334636110.1016/j.addr.2009.11.007 19914317
    [Google Scholar]
  9. KangS.J. JeongH.Y. KimM.W. JeongI.H. ChoiM.J. YouY.M. ImC.S. SongI.H. LeeT.S. ParkY.S. Anti-EGFR lipid micellar nanoparticles co-encapsulating quantum dots and paclitaxel for tumor-targeted theranosis.Nanoscale20181041193381935010.1039/C8NR05099F 30307008
    [Google Scholar]
  10. ShiJ. KantoffP.W. WoosterR. FarokhzadO.C. Cancer nanomedicine: Progress, challenges and opportunities.Nat. Rev. Cancer2017171203710.1038/nrc.2016.108 27834398
    [Google Scholar]
  11. MukherjeeS. PatraC.R. Therapeutic application of anti-angiogenic nanomaterials in cancers.Nanoscale2016825124441247010.1039/C5NR07887C 27067119
    [Google Scholar]
  12. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd2591 20616808
    [Google Scholar]
  13. van VlerkenL.E. AmijiM.M. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery.Expert Opin. Drug Deliv.20063220521610.1517/17425247.3.2.205 16506948
    [Google Scholar]
  14. JeyamoganS. KhanN.A. SiddiquiR. Application and importance of theranostics in the diagnosis and treatment of cancer.Arch. Med. Res.202152213114210.1016/j.arcmed.2020.10.016 33423803
    [Google Scholar]
  15. ZhangH. YeeD. WangC. Quantum dots for cancer diagnosis and therapy: Biological and clinical perspectives.Nanomedicine200831839110.2217/17435889.3.1.83 18393668
    [Google Scholar]
  16. BeginesB. OrtizT. Pérez-ArandaM. MartínezG. MerineroM. Argüelles-AriasF. AlcudiaA. Polymeric nanoparticles for drug delivery: Recent developments and future prospects.Nanomaterials2020107140310.3390/nano10071403 32707641
    [Google Scholar]
  17. ShahA. AftabS. NisarJ. AshiqM.N. IftikharF.J. Nanocarriers for targeted drug delivery.J. Drug Deliv. Sci. Technol.20216210242610.1016/j.jddst.2021.102426
    [Google Scholar]
  18. ChoK. WangX. NieS. ChenZ.G. ShinD.M. Therapeutic nanoparticles for drug delivery in cancer.Clin. Cancer Res.20081451310131610.1158/1078‑0432.CCR‑07‑1441 18316549
    [Google Scholar]
  19. MuthuM.S. LeongD.T. MeiL. FengS.S. Nanotheranostics, ˗. Nanotheranostics application and further development of nanomedicine strategies for advanced theranostics.Theranostics20144666067710.7150/thno.8698 24723986
    [Google Scholar]
  20. HossenS. HossainM.K. BasherM.K. MiaM.N.H. RahmanM.T. UddinM.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review.J. Adv. Res.20191511810.1016/j.jare.2018.06.005 30581608
    [Google Scholar]
  21. AmaralP.E.M. HallD.C.Jr PaiR. KrólJ.E. KalraV. EhrlichG.D. JiH-F. Fibrous phosphorus quantum dots for cell imaging.ACS Appl. Nano Mater.20203175275910.1021/acsanm.9b01786
    [Google Scholar]
  22. LaurentS. ForgeD. PortM. RochA. RobicC. Vander ElstL. MullerR.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications.Chem. Rev.200810862064211010.1021/cr068445e 18543879
    [Google Scholar]
  23. SinghR. LillardJ.W. Jr Nanoparticle-based targeted drug delivery.Exp. Mol. Pathol.200986321522310.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  24. JainK.K. Role of nanobiotechnology in drug delivery.Methods Mol Biol2020557310.1007/978‑1‑4939‑9798‑5_2
    [Google Scholar]
  25. HaleyB. FrenkelE. Nanoparticles for drug delivery in cancer treatment.Urol. Oncol.2008261576410.1016/j.urolonc.2007.03.015 18190833
    [Google Scholar]
  26. HuC.M.J. FangR.H. LukB.T. ZhangL. Polymeric nanotherapeutics: Clinical development and advances in stealth functionalization strategies.Nanoscale201461657510.1039/C3NR05444F 24280870
    [Google Scholar]
  27. SamadianH. Hosseini-NamiS. KamravaS.K. GhaznaviH. Shakeri-ZadehA. Folate-conjugated gold nanoparticle as a new nanoplatform for targeted cancer therapy.J. Cancer Res. Clin. Oncol.2016142112217222910.1007/s00432‑016‑2179‑3 27209529
    [Google Scholar]
  28. SannaV. RoggioA.M. PosadinoA.M. CossuA. MarcedduS. MarianiA. AlzariV. UzzauS. PintusG. SechiM. Novel docetaxel-loaded nanoparticles based on poly(lactide-co-caprolactone) and poly(lactide-co-glycolide-co-caprolactone) for prostate cancer treatment: Formulation, characterization, and cytotoxicity studies.Nanoscale Res. Lett.20116126010.1186/1556‑276X‑6‑260 21711774
    [Google Scholar]
  29. MogilevskyG. HartmanO. EmmonsE.D. BalboaA. DeCosteJ.B. SchindlerB.J. IordanovI. KarwackiC.J. Bottom-up synthesis of anatase nanoparticles with graphene domains.ACS Appl. Mater. Interfaces2014613106381064810.1021/am502322y 24937354
    [Google Scholar]
  30. ZhangY. HeX. ZhangY. ZhaoY. LuS. PengY. LuL. HuX. ZhanM. Native Mitochondria-Targeting polymeric nanoparticles for mild photothermal therapy rationally potentiated with immune checkpoints blockade to inhibit tumor recurrence and metastasis.Chem. Eng. J.202142413017110.1016/j.cej.2021.130171
    [Google Scholar]
  31. WangX. TongJ. HeZ. YangX. MengF. LiangH. ZhangX. LuoL. Paclitaxel-potentiated photodynamic theranostics for synergistic tumor ablation and precise anticancer efficacy monitoring.ACS Appl. Mater. Interfaces20201255476548710.1021/acsami.9b19073 31910619
    [Google Scholar]
  32. CaoL. WangX. MezianiM.J. LuF. WangH. LuoP.G. LinY. HarruffB.A. VecaL.M. MurrayD. XieS.Y. SunY.P. Carbon dots for multiphoton bioimaging.J. Am. Chem. Soc.200712937113181131910.1021/ja073527l 17722926
    [Google Scholar]
  33. MiaoH. WangL. ZhuoY. ZhouZ. YangX. Label-free fluorimetric detection of CEA using carbon dots derived from tomato juice.Biosens. Bioelectron.201686838910.1016/j.bios.2016.06.043 27336615
    [Google Scholar]
  34. DasP. MaruthapandiM. SaravananA. NatanM. JacobiG. BaninE. GedankenA. Carbon dots for heavy-metal sensing, ph-sensitive cargo delivery, and antibacterial applications.ACS Appl. Nano Mater.2020312117771179010.1021/acsanm.0c02305
    [Google Scholar]
  35. ChenL. LiangJ. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents.Mater. Sci. Eng. C202011211092410.1016/j.msec.2020.110924 32409074
    [Google Scholar]
  36. DeviS. KumarM. TiwariA. TiwariV. KaushikD. VermaR. BhattS. SahooB.M. BhattacharyaT. AlshehriS. GhoneimM.M. BabalghithA.O. BatihaG.E-S. Quantum dots: An emerging approach for cancer therapy.Front. Mater.2022879844010.3389/fmats.2021.798440
    [Google Scholar]
  37. ShouX. LiuY. WuD. ZhangH. ZhaoY. SunW. ShenX. Black phosphorus quantum dots doped multifunctional hydrogel particles for cancer immunotherapy.Chem. Eng. J.202140812734910.1016/j.cej.2020.127349
    [Google Scholar]
  38. WangF. TanW.B. ZhangY. FanX. WangM. Luminescent nanomaterials for biological labelling.Nanotechnology2006171R1R1310.1088/0957‑4484/17/1/R01
    [Google Scholar]
  39. ZongJ. ZhuY. YangX. ShenJ. LiC. Synthesis of photoluminescent carbogenic dots using mesoporous silica spheres as nanoreactors.Chem. Commun.201147276476610.1039/C0CC03092A 21069221
    [Google Scholar]
  40. HarishV. TewariD. GaurM. YadavA.B. SwaroopS. BechelanyM. BarhoumA. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications.Nanomaterials202212345710.3390/nano12030457 35159802
    [Google Scholar]
  41. KaramiM.H. AbdoussM. RahdarA. PandeyS. Graphene quantum dots: Background, synthesis methods, and applications as nanocarrier in drug delivery and cancer treatment: An updated review.Inorg. Chem. Commun.202416111203210.1016/j.inoche.2024.112032
    [Google Scholar]
  42. YuanC. ZhouY. ZhuY. LiangJ. WangS. PengS. LiY. ChengS. YangM. HuJ. ZhangB. ZengR. HeJ. LiQ. Polymer/molecular semiconductor all-organic composites for high-temperature dielectric energy storage.Nat. Commun.2020111391910.1038/s41467‑020‑17760‑x 32764558
    [Google Scholar]
  43. ZrazhevskiyP. GaoX. Quantum dot imaging platform for single-cell molecular profiling.Nat. Commun.201341161910.1038/ncomms2635 23511483
    [Google Scholar]
  44. ManabeN. HoshinoA. LiangY. GotoT. KatoN. YamamotoK. Quantum Dot as a Drug Tracer <emphasis>In Vivo</emphasis>.IEEE Trans. Nanobiosci.2006526326710.1109/TNB.2006.886569 17181025
    [Google Scholar]
  45. AbdellatifA.A.H. Targeting of somatostatin receptors using quantum dots nanoparticles decorated with octreotide.J. Nanomed. Nanotechnol.2015s600710.4172/2157‑7439.S6‑005
    [Google Scholar]
  46. UmarE. IkramM. HaiderJ. NabganW. HaiderA. ImranM. NazirG. A state-of-the-art review on carbon quantum dots: Prospective, advances, zebrafish biocompatibility and bioimaging in vivo and bibliometric analysis.Sustainable Materials and Technologies202335e0052910.1016/j.susmat.2022.e00529
    [Google Scholar]
  47. LiS. LiY. LiuK. ChenM. PengW. YangY. LiX. Laser fabricated carbon quantum dots in anti-solvent for highly efficient carbon-based perovskite solar cells.J. Colloid Interface Sci.202160069170010.1016/j.jcis.2021.05.034 34049024
    [Google Scholar]
  48. LeN. ZhangM. KimK. Quantum dots and their interaction with biological systems.Int. J. Mol. Sci.202223181076310.3390/ijms231810763 36142693
    [Google Scholar]
  49. BruchezM.Jr MoronneM. GinP. WeissS. AlivisatosA.P. Semiconductor nanocrystals as fluorescent biological labels.Science199828153852013201610.1126/science.281.5385.2013 9748157
    [Google Scholar]
  50. AlivisatosA.P. Semiconductor clusters, nanocrystals, and quantum dots.Science1996271525193393710.1126/science.271.5251.933
    [Google Scholar]
  51. BeraD. QianL. TsengT.K. HollowayP.H. Quantum dots and their multimodal applications: A review.Materials2010342260234510.3390/ma3042260
    [Google Scholar]
  52. WangS. ColeI.S. ZhaoD. LiQ. Quasi-continuously tuning the size of graphene quantum dots via an edge-etching mechanism.MRS Adv.20161201459146710.1557/adv.2016.198
    [Google Scholar]
  53. AbdelhameedM. MartirD.R. ChenS. XuW.Z. OyeneyeO.O. ChakrabartiS. Zysman-ColmanE. CharpentierP.A. Tuning the optical properties of silicon quantum dots via surface functionalization with conjugated aromatic fluorophores.Sci. Rep.201881305010.1038/s41598‑018‑21181‑8 29445234
    [Google Scholar]
  54. Samadi-MaybodiA. TirbandpayR. Synthesis, optical properties and tuning size of CdSe quantum dots by variation capping agent.Spectrochim. Acta A Mol. Biomol. Spectrosc.202125011936910.1016/j.saa.2020.119369 33406453
    [Google Scholar]
  55. DubowskiJ.J. StanowskiR. DalacuD. PooleP.J. Precision tuning of InAs quantum dot emission wavelength by iterative laser annealing.Opt. Laser Technol.201810338238610.1016/j.optlastec.2018.01.061
    [Google Scholar]
  56. Resch-GengerU. GrabolleM. Cavaliere-JaricotS. NitschkeR. NannT. Quantum dots versus organic dyes as fluorescent labels.Nat. Methods20085976377510.1038/nmeth.1248 18756197
    [Google Scholar]
  57. YangY. DevA. SychugovI. HägglundC. ZhangS.L. Plasmon-enhanced fluorescence of single quantum dots immobilized in optically coupled aluminum nanoholes.J. Phys. Chem. Lett.20231492339234610.1021/acs.jpclett.3c00468 36847590
    [Google Scholar]
  58. PandeyS. BodasD. High-quality quantum dots for multiplexed bioimaging: A critical review.Adv. Colloid Interface Sci.202027810213710.1016/j.cis.2020.102137 32171116
    [Google Scholar]
  59. GeimA.K. NovoselovK.S. The rise of graphene.Nat. Mater.20076318319110.1038/nmat1849 17330084
    [Google Scholar]
  60. AhirwarS. MallickS. BahadurD. Electrochemical method to prepare graphene quantum dots and graphene oxide quantum dots.ACS Omega20172118343835310.1021/acsomega.7b01539 31457373
    [Google Scholar]
  61. HuangX. LiS. HuangY. WuS. ZhouX. LiS. GanC.L. BoeyF. MirkinC.A. ZhangH. Synthesis of hexagonal close-packed gold nanostructures.Nat. Commun.20112129210.1038/ncomms1291 21522136
    [Google Scholar]
  62. ChenS. ZhangS. WangY. YangX. YangH. CuiC. Anti-EpCAM functionalized graphene oxide vector for tumor targeted siRNA delivery and cancer therapy.Asian J. Pharmac. Sci.202116559861110.1016/j.ajps.2021.04.002 34849165
    [Google Scholar]
  63. ZedanA.F. MoussaS. TernerJ. AtkinsonG. El-ShallM.S. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions.ACS Nano20137162763610.1021/nn304775h 23194145
    [Google Scholar]
  64. KatsnelsonM.I. Graphene: carbon in two dimensions.Mater. Today2007101-2202710.1016/S1369‑7021(06)71788‑6
    [Google Scholar]
  65. GeimA.K. Graphene: Status and Prospects.Science200932459341530153410.1126/science.1158877 19541989
    [Google Scholar]
  66. AlamN. IhsanH. KhanS. UllahK. Graphene quantum dots-based composites for biomedical applications.Innovations and Applications of Hybrid Nanomaterials2024629010.4018/979‑8‑3693‑3268‑9.ch004
    [Google Scholar]
  67. KumawatM.K. ThakurM. BahadurR. KakuT. R S, P.; Suchitta, A.; Srivastava, R. Preparation of graphene oxide-graphene quantum dots hybrid and its application in cancer theranostics.Mater. Sci. Eng. C201910310977410.1016/j.msec.2019.109774 31349528
    [Google Scholar]
  68. BrunettiJ. RioloG. GentileM. BerniniA. PaccagniniE. FalcianiC. LozziL. ScaliS. DepauL. PiniA. LupettiP. BracciL. Near-infrared quantum dots labelled with a tumor selective tetrabranched peptide for in vivo imaging.J. Nanobiotechnology20181612110.1186/s12951‑018‑0346‑1 29501065
    [Google Scholar]
  69. BrunettiJ. PiantiniS. FragaiM. ScaliS. CiprianiG. DepauL. PiniA. FalcianiC. MenichettiS. BracciL. A New NT4 peptide-based drug delivery system for cancer treatment.Molecules2020255108810.3390/molecules25051088 32121130
    [Google Scholar]
  70. IravaniS. VarmaR.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review.Environ. Chem. Lett.202018370372710.1007/s10311‑020‑00984‑0 32206050
    [Google Scholar]
  71. ChangY.H. ChiangW.H. IlhamiF.B. TsaiC.Y. HuangS.Y. ChengC.C. Water-soluble graphene quantum dot‐based polymer nanoparticles with internal donor/acceptor heterojunctions for efficient and selective detection of cancer cells.J. Colloid Interface Sci.202363738939810.1016/j.jcis.2023.01.104 36716663
    [Google Scholar]
  72. FeinerI.V.J. PulagamK.R. UribeK.B. PassannanteR. SimóC. ZamacolaK. Gómez-VallejoV. Herrero-ÁlvarezN. CossíoU. BazZ. CaffarelM.M. LawrieC.H. VugtsD.J. RejcL. LlopJ. Pre-targeting with ultra-small nanoparticles: Boron carbon dots as drug candidates for boron neutron capture therapy.J. Mater. Chem. B Mater. Biol. Med.20219241042010.1039/D0TB01880E 33367431
    [Google Scholar]
  73. CampbellE. HasanM.T. Gonzalez RodriguezR. AkkarajuG.R. NaumovA.V. Doped graphene quantum dots for intracellular multicolor imaging and cancer detection.ACS Biomater. Sci. Eng.2019594671468210.1021/acsbiomaterials.9b00603 33448839
    [Google Scholar]
  74. BhattacharyaT. ShinG.H. KimJ.T. Carbon Dots: Opportunities and challenges in cancer therapy.Pharmaceutics2023153101910.3390/pharmaceutics15031019 36986879
    [Google Scholar]
  75. PengC.W. LiY. Application of quantum dots-based biotechnology in cancer diagnosis: Current status and future perspectives.J. Nanomater.2010201011110.1155/2010/676839
    [Google Scholar]
  76. GaoG. JiangY.W. JiaH.R. YangJ. WuF.G. On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots.Carbon201813423224310.1016/j.carbon.2018.02.063
    [Google Scholar]
  77. JiangQ. LiuL. LiQ. CaoY. ChenD. DuQ. YangX. HuangD. PeiR. ChenX. HuangG. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer.J. Nanobiotechnology20211916410.1186/s12951‑021‑00811‑w 33653352
    [Google Scholar]
  78. PhuongP.T.M. WonH.J. RobbyA.I. KimS.G. Im, G.B.; Bhang, S.H.; Lee, G.; Park, S.Y. NIR-vis-Induced pH-Sensitive TiO 2 immobilized carbon dot for controllable membrane-nuclei targeting and photothermal therapy of cancer cells.ACS Appl. Mater. Interfaces20201234379293794210.1021/acsami.0c11979 32846494
    [Google Scholar]
  79. PardoJ. PengZ. LeblancR. Cancer targeting and drug delivery using carbon-based quantum dots and nanotubes.Molecules201823237810.3390/molecules23020378 29439409
    [Google Scholar]
  80. YuanF. LiY. LiX. ZhuJ. FanL. ZhouS. ZhangY. ZhouJ. Nitrogen-Rich D-π-A structural carbon quantum dots with a bright two-photon fluorescence for deep-tissue imaging.ACS Appl. Bio Mater.20181385385810.1021/acsabm.8b00276 34996177
    [Google Scholar]
  81. HettiarachchiS.D. GrahamR.M. MintzK.J. ZhouY. VanniS. PengZ. LeblancR.M. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors.Nanoscale201911136192620510.1039/C8NR08970A 30874284
    [Google Scholar]
  82. TangY. ZhangC. WangJ. LinX. ZhangL. YangY. WangY. ZhangZ. BulteJ.W.M. YangG.Y. MRI/SPECT/fluorescent tri‐modal probe for evaluating the homing and therapeutic efficacy of transplanted mesenchymal stem cells in a rat ischemic stroke model.Adv. Funct. Mater.20152571024103410.1002/adfm.201402930 26290659
    [Google Scholar]
  83. CormodeD.P. SkajaaT. van SchooneveldM.M. KooleR. JarzynaP. LobattoM.E. CalcagnoC. BarazzaA. GordonR.E. ZanzonicoP. FisherE.A. FayadZ.A. MulderW.J.M. Nanocrystal core high-density lipoproteins: A multimodality contrast agent platform.Nano Lett.20088113715372310.1021/nl801958b 18939808
    [Google Scholar]
  84. LouieA. Multimodality imaging probes: Design and challenges.Chem. Rev.201011053146319510.1021/cr9003538 20225900
    [Google Scholar]
  85. HuX. ChenT. XuY. WangM. JiangW. JiangW. Hydrothermal synthesis of bright and stable AgInS2 quantum dots with tunable visible emission.J. Lumin.201820018919510.1016/j.jlumin.2018.04.025
    [Google Scholar]
  86. HashemkhaniM. MutiA. SennaroğluA. Yagci AcarH. Multimodal image-guided folic acid targeted Ag-based quantum dots for the combination of selective methotrexate delivery and photothermal therapy.J. Photochem. Photobiol. B202021311208210.1016/j.jphotobiol.2020.112082 33221627
    [Google Scholar]
  87. LeeJ. ChoiY. KimK. HongS. ParkH.Y. LeeT. CheonG.J. SongR. Characterization and cancer cell specific binding properties of anti-EGFR antibody conjugated quantum dots.Bioconjug. Chem.201021594094610.1021/bc9004975 20420360
    [Google Scholar]
  88. HoY.P. LeongK.W. Quantum dot-based theranostics.Nanoscale201021606810.1039/B9NR00178F 20648364
    [Google Scholar]
  89. AbdelhamidH.N. Quantum dots hybrid systems for drug delivery.Hybrid Nanomaterials for Drug Delivery.Elsevier202232333810.1016/B978‑0‑323‑85754‑3.00013‑7
    [Google Scholar]
  90. BoopathyL.K. GopalT. RoyA. Kalari KandyR.R. ArumugamM.K. Recent trends in macromolecule-conjugated hybrid quantum dots for cancer theranostic applications.RSC Advances20231327187601877410.1039/D3RA02673F 37346950
    [Google Scholar]
  91. FakhriA. TahamiS. NejadP.A. Preparation and characterization of Fe 3 O 4 -Ag 2 O quantum dots decorated cellulose nanofibers as a carrier of anticancer drugs for skin cancer.J. Photochem. Photobiol. B2017175838810.1016/j.jphotobiol.2017.08.032 28865318
    [Google Scholar]
  92. WangY. ChenL. Quantum dots, lighting up the research and development of nanomedicine.Nanomedicine20117438540210.1016/j.nano.2010.12.006 21215327
    [Google Scholar]
  93. LynchI. DawsonK.A. Protein-nanoparticle interactions.Nano Today200831-2404710.1016/S1748‑0132(08)70014‑8
    [Google Scholar]
  94. AhmadH. UmarK. AliS.G. SinghP. IslamS.S. KhanH.M. Preconcentration and speciation of arsenic by using a graphene oxide nanoconstruct functionalized with a hyperbranched polyethyleneimine.Mikrochim. Acta2018185629010.1007/s00604‑018‑2829‑z 29748777
    [Google Scholar]
  95. ChenT. ZhaoT. WeiD. WeiY. LiY. ZhangH. Core-shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery.Carbohydr. Polym.20139221124113210.1016/j.carbpol.2012.10.022 23399137
    [Google Scholar]
  96. YeF. BarrefeltÅ. AsemH. Abedi-ValugerdiM. El-SerafiI. SaghafianM. Abu-SalahK. AlrokayanS. MuhammedM. HassanM. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging.Biomaterials201435123885389410.1016/j.biomaterials.2014.01.041 24495486
    [Google Scholar]
  97. Li VolsiA. FioricaC. D’AmicoM. ScialabbaC. PalumboF.S. GiammonaG. LicciardiM. Hybrid Gold/Silica/Quantum-Dots supramolecular-nanostructures encapsulated in polymeric micelles as potential theranostic tool for targeted cancer therapy.Eur. Polym. J.2018105384710.1016/j.eurpolymj.2018.05.013
    [Google Scholar]
  98. WangY. WangY. ChenG. LiY. XuW. GongS. Quantum-dot-based theranostic micelles conjugated with an anti-EGFR nanobody for triple-negative breast cancer therapy.ACS Appl. Mater. Interfaces2017936302973030510.1021/acsami.7b05654 28845963
    [Google Scholar]
  99. DasM. DuanW. SahooS.K. Multifunctional nanoparticle-EpCAM aptamer bioconjugates: A paradigm for targeted drug delivery and imaging in cancer therapy.Nanomedicine201511237938910.1016/j.nano.2014.09.002 25240596
    [Google Scholar]
  100. KoH.Y. ChoiK.J. LeeC.H. KimS. A multimodal nanoparticle-based cancer imaging probe simultaneously targeting nucleolin, integrin αvβ3 and tenascin-C proteins.Biomaterials20113241130113810.1016/j.biomaterials.2010.10.034 21071077
    [Google Scholar]
  101. KoM.H. KimS. KangW.J. LeeJ.H. KangH. MoonS.H. HwangD.W. KoH.Y. LeeD.S. In vitro derby imaging of cancer biomarkers using quantum dots.Small20095101207121210.1002/smll.200801580 19235198
    [Google Scholar]
  102. ZainiM.S. Ying Chyi LiewJ. Alang AhmadS.A. MohmadA.R. KamarudinM.A. Quantum confinement effect and photoenhancement of photoluminescence of PbS and PbS/MnS quantum dots.Appl. Sci.20201018628210.3390/app10186282
    [Google Scholar]
  103. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  104. ParamasivamG. PalemV.V. SundaramT. SundaramV. KishoreS.C. BellucciS. Nanomaterials: Synthesis and applications in theranostics.Nanomaterials20211112322810.3390/nano11123228 34947577
    [Google Scholar]
  105. ManzoorS. DarA.H. DashK.K. PandeyV.K. SrivastavaS. BashirI. KhanS.A. Carbon dots applications for development of sustainable technologies for food safety: A comprehensive review. Appl.Food Res.20233110026310.1016/j.afres.2023.100263
    [Google Scholar]
  106. MakadiaH.K. SiegelS.J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier.Polymers2011331377139710.3390/polym3031377 22577513
    [Google Scholar]
  107. LiuL. XieF. XiaoD. XuX. SuZ. WangY. FanS. ZhouX. LiS. Synthesis and evaluation of highly releasable and structurally stable antibody-SN-38-conjugates.Drug Deliv.20212812603261710.1080/10717544.2021.2008053 34894942
    [Google Scholar]
  108. LiuB. XieJ. MaH. ZhangX. PanY. LvJ. GeH. RenN. SuH. XieX. HuangL. HuangW. From graphite to graphene oxide and graphene oxide quantum dots.Small20171318160100110.1002/smll.201601001 28195445
    [Google Scholar]
  109. TeymouriniaH. Salavati-NiasariM. AmiriO. Safardoust-HojaghanH. Synthesis of graphene quantum dots from corn powder and their application in reduce charge recombination and increase free charge carriers.J. Mol. Liq.201724244745510.1016/j.molliq.2017.07.052
    [Google Scholar]
  110. TianP. TangL. TengK.S. LauS.P. Graphene quantum dots from chemistry to applications.Mater. Today Chem.20181022125810.1016/j.mtchem.2018.09.007
    [Google Scholar]
  111. LiangQ. MaW. ShiY. LiZ. YangX. Easy synthesis of highly fluorescent carbon quantum dots from gelatin and their luminescent properties and applications.Carbon20136042142810.1016/j.carbon.2013.04.055
    [Google Scholar]
  112. SangjanA. BoonsithS. SansanaphongprichaK. ThinbanmaiT. RatchahatS. LaosiripojanaN. WuK.C.W. ShinH.S. SakdaronnarongC. Facile preparation of aqueous-soluble fluorescent polyethylene glycol functionalized carbon dots from palm waste by one-pot hydrothermal carbonization for colon cancer nanotheranostics.Sci. Rep.20221211055010.1038/s41598‑022‑14704‑x 35732805
    [Google Scholar]
  113. LiuW. DiaoH. ChangH. WangH. LiT. WeiW. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging.Sens. Actuators B Chem.201724119019810.1016/j.snb.2016.10.068
    [Google Scholar]
  114. TianR. ZhongS. WuJ. JiangW. WangT. Facile hydrothermal method to prepare graphene quantum dots from graphene oxide with different photoluminescences.RSC Advances2016646404224042610.1039/C6RA00780E
    [Google Scholar]
  115. WangR. GuoM. HuY. ZhouJ. WuR. YangX. A molecularly imprinted fluorescence sensor based on the ZnO quantum dot core-shell structure for high selectivity and photolysis function of methylene blue.ACS Omega2020532206642067310.1021/acsomega.0c03095 32832820
    [Google Scholar]
  116. WangY. MengY. WangS. LiC. ShiW. ChenJ. WangJ. HuangR. Direct solvent-derived polymer-coated nitrogen-doped carbon nanodots with high water solubility for targeted fluorescence imaging of glioma.Small201511293575358110.1002/smll.201403718 25808813
    [Google Scholar]
  117. HouX. LiY. ZhaoC. Microwave-assisted synthesis of nitrogen-doped multi-layer graphene quantum dots with oxygen-rich functional groups.Aust. J. Chem.201669335710.1071/CH15431
    [Google Scholar]
  118. AlvesA.K. FrantzA.C.S. BeruttiF.A. Microwave-assisted oleothermal synthesis of graphene-TiO2 quantum dots for photoelectrochemical oxygen evolution reaction.FlatChem201812263410.1016/j.flatc.2018.12.001
    [Google Scholar]
  119. Fresco-CalaB. SorianoM.L. SciortinoA. CannasM. MessinaF. CardenasS. One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly via a novel microwave-assisted method: impact on triazine removal and efficiency monitoring.RSC Advances2018852299392994610.1039/C8RA04286A 35547271
    [Google Scholar]
  120. ZhuC. ChenZ. GaoS. GohB.L. SamsudinI.B. LweK.W. WuY. WuC. SuX. Recent advances in non-toxic quantum dots and their biomedical applications.Prog. Nat. Sci.201929662864010.1016/j.pnsc.2019.11.007
    [Google Scholar]
  121. DunnS.S. LuftJ.C. ParrottM.C. Zapped assembly of polymeric (ZAP) nanoparticles for anti-cancer drug delivery.Nanoscale20191141847185510.1039/C8NR09944H 30637420
    [Google Scholar]
  122. ZayedD.G. AbdElhamid, A.S.; Freag, M.S.; Elzoghby, A.O. Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging.Nanomedicine201914322522810.2217/nnm‑2018‑0414 30652951
    [Google Scholar]
  123. OmidiM. HashemiM. TayebiL. Microfluidic synthesis of PLGA/carbon quantum dot microspheres for vascular endothelial growth factor delivery.RSC Adv.2019957332463325610.1039/C9RA06279C 35529135
    [Google Scholar]
  124. BokovD. Turki JalilA. ChupraditS. SuksatanW. Javed AnsariM. ShewaelI.H. ValievG.H. KianfarE. Nanomaterial by Sol-Gel Method: Synthesis and application.Adv. Mater. Sci. Eng.2021202112110.1155/2021/5102014
    [Google Scholar]
  125. GharebaghiF. DalaliN. AhmadiE. DanafarH. Preparation of wormlike polymeric nanoparticles coated with silica for delivery of methotrexate and evaluation of anticancer activity against MCF7 cells.J. Biomater. Appl.20173191305131610.1177/0885328217698063 28447548
    [Google Scholar]
  126. BorhanA. HereaD.D. GhercaD. StavilaC. MinutiA.E. GrigorasM. DanceanuC.M. LabuscaL. StoianG. AbabeiG. StanC. LupuN. ChiriacH. Flash-cooling assisted sol-gel self-ignited synthesis of magnetic carbon dots-based heterostructure with antitumor properties.Mater. Sci. Eng. C202011711128810.1016/j.msec.2020.111288 32919649
    [Google Scholar]
  127. KimM. OsoneS. KimT. HigashiH. SetoT. Synthesis of nanoparticles by laser ablation: A review.Kona Powder Particle J.2017340809010.14356/kona.2017009
    [Google Scholar]
  128. SunX. LeiY. Fluorescent carbon dots and their sensing applications.Trends Analyt. Chem.20178916318010.1016/j.trac.2017.02.001
    [Google Scholar]
  129. RoldánM.V. PellegriN. de SanctisO. Electrochemical method for Ag-PEG nanoparticles synthesis.Journal of Nanoparticles201320131710.1155/2013/524150
    [Google Scholar]
  130. KumarN. YadavS. SadiqueM.A. KhanR. Electrochemically exfoliated graphene quantum dots based biosensor for CD44 breast cancer biomarker.Biosensors2022121196610.3390/bios12110966 36354475
    [Google Scholar]
  131. PrasadR. JainN.K. YadavA.S. JadhavM. RadharaniN.N.V. GorainM. KunduG.C. CondeJ. SrivastavaR. Ultrahigh penetration and retention of graphene quantum dot mesoporous silica nanohybrids for image guided tumor regression.ACS Appl. Bio Mater.2021421693170310.1021/acsabm.0c01478 35014516
    [Google Scholar]
  132. MohamedW.A.A. Abd El-GawadH. MekkeyS. GalalH. HandalH. MousaH. LabibA. Quantum dots synthetization and future prospect applications.Nanotechnol. Rev.20211011926194010.1515/ntrev‑2021‑0118
    [Google Scholar]
  133. DongH. TangS. HaoY. YuH. DaiW. ZhaoG. CaoY. LuH. ZhangX. JuH. Fluorescent MoS 2 Quantum Dots: Ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy.ACS Appl. Mater. Interfaces2016853107311410.1021/acsami.5b10459 26761391
    [Google Scholar]
  134. Chapter 8 Ionized magnetron sputter deposition: I-PVD.Thin Films19992624128410.1016/S1079‑4050(99)80011‑8
    [Google Scholar]
  135. BaigN. KammakakamI. FalathW. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges.Mat. Adv.2021261821187110.1039/D0MA00807A
    [Google Scholar]
  136. HuM. YanJ. HeY. LuH. WengL. SongS. FanC. WangL. Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip.ACS Nano20104148849410.1021/nn901404h 20041634
    [Google Scholar]
  137. FariqA. KhanT. YasminA. Microbial synthesis of nanoparticles and their potential applications in biomedicine.J. Appl. Biomed.201715424124810.1016/j.jab.2017.03.004
    [Google Scholar]
  138. Abdel-SalamM. OmranB. WhiteheadK. BaekK.H. Superior properties and biomedical applications of microorganism-derived fluorescent quantum dots.Molecules20202519448610.3390/molecules25194486 33007905
    [Google Scholar]
  139. RanaA. YadavK. JagadevanS. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity.J. Clean. Prod.202027212288010.1016/j.jclepro.2020.122880
    [Google Scholar]
  140. AlghuthaymiM.A. AlmoammarH. RaiM. Said-GalievE. Abd-ElsalamK.A. Myconanoparticles: synthesis and their role in phytopathogens management.Biotechnol. Biotechnol. Equip.201529222123610.1080/13102818.2015.1008194 26019636
    [Google Scholar]
  141. ZomorodianK. PourshahidS. SadatsharifiA. MehryarP. PakshirK. RahimiM.J. Arabi MonfaredA. Biosynthesis and characterization of silver nanoparticles by Aspergillus Species.BioMed Res. Int.201620161610.1155/2016/5435397 27652264
    [Google Scholar]
  142. MadakkaM. JayarajuN. RajeshN. Mycosynthesis of silver nanoparticles and their characterization.MethodsX20185202910.1016/j.mex.2017.12.003 30619720
    [Google Scholar]
  143. WeiS. ZhengQ. Biosynthesis and characterization of zinc sulphide nanoparticles produced by the bacterium Lysinibacillus sp. SH74.Ceram. Int.20245022637264210.1016/j.ceramint.2023.10.246
    [Google Scholar]
  144. MandalT.K. ParvinN. Rapid detection of bacteria by carbon quantum dots.J. Biomed. Nanotechnol.20117684684810.1166/jbn.2011.1344 22416585
    [Google Scholar]
  145. DuanN. WuS. YuY. MaX. XiaY. ChenX. HuangY. WangZ. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels.Anal. Chim. Acta201380415115810.1016/j.aca.2013.09.047 24267076
    [Google Scholar]
  146. DavodabadiF. MirinejadS. Fathi-KarkanS. MajidpourM. AjalliN. SheervalilouR. SargaziS. RozmusD. RahdarA. Diez-PascualA.M. Aptamer‐functionalized quantum dots as theranostic nanotools against cancer and bacterial infections: A comprehensive overview of recent trends.Biotechnol. Prog.2023395e336610.1002/btpr.3366 37222166
    [Google Scholar]
  147. BaiH.J. ZhangZ.M. GuoY. YangG.E. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris.Colloids Surf. B Biointerfaces200970114214610.1016/j.colsurfb.2008.12.025 19167198
    [Google Scholar]
  148. PandianS.R.K. DeepakV. KalishwaralalK. GurunathanS. Biologically synthesized fluorescent CdS NPs encapsulated by PHB.Enzyme Microb. Technol.2011484-531932510.1016/j.enzmictec.2011.01.005 22112944
    [Google Scholar]
  149. Raouf HosseiniM. Nasiri SarviM. Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles.Mater. Sci. Semicond. Process.20154029330110.1016/j.mssp.2015.06.003
    [Google Scholar]
  150. AhmadA. SenapatiS. KhanM.I. KumarR. SastryM. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp.Langmuir20031983550355310.1021/la026772l
    [Google Scholar]
  151. BaoH. LuZ. CuiX. QiaoY. GuoJ. AndersonJ.M. LiC.M. Extracellular microbial synthesis of biocompatible CdTe quantum dots.Acta Biomater.2010693534354110.1016/j.actbio.2010.03.030 20350621
    [Google Scholar]
  152. XuS. LuH. Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of TNT based on MIP@QD fluorescence sensors.Chem. Commun.201551153200320310.1039/C4CC09766A 25604738
    [Google Scholar]
  153. HanS. YangL. WenZ. ChuS. WangM. WangZ. JiangC. A dual-response ratiometric fluorescent sensor by europium-doped CdTe quantum dots for visual and colorimetric detection of tetracycline.J. Hazard. Mater.202039812289410.1016/j.jhazmat.2020.122894 32768819
    [Google Scholar]
  154. YouH. MuZ. ZhaoM. ZhouJ. ChenY. BaiL. Voltammetric aptasensor for sulfadimethoxine using a nanohybrid composed of multifunctional fullerene, reduced graphene oxide and Pt@Au nanoparticles, and based on direct electron transfer to the active site of glucose oxidase.Mikrochim. Acta20191861110.1007/s00604‑018‑3127‑5 30515617
    [Google Scholar]
  155. WangY. YangL. LiuB. YuS. JiangC. A colorimetric paper sensor for visual detection of mercury ions constructed with dual-emission carbon dots.New J. Chem.20184219156711567710.1039/C8NJ03683G
    [Google Scholar]
  156. MondalT.K. MondalS. GhoraiU.K. SahaS.K. White light emitting lanthanide based carbon quantum dots as toxic Cr (VI) and pH sensor.J. Colloid Interface Sci.201955317718510.1016/j.jcis.2019.06.009 31202054
    [Google Scholar]
  157. MondalT.K. GhoraiU.K. SahaS.K. Dual-emissive carbon quantum Dot-Tb nanocomposite as a fluorescent indicator for a highly selective visual detection of Hg(II) in water.ACS Omega201839114391144610.1021/acsomega.8b01159 31459247
    [Google Scholar]
  158. SangleeK. NukunudompanichM. PartF. ZafiuC. BelloG. EhmoserE.K. ChuangchoteS. The current state of the art in internal additive materials and quantum dots for improving efficiency and stability against humidity in perovskite solar cells.Heliyon2022812e1187810.1016/j.heliyon.2022.e11878 36590569
    [Google Scholar]
  159. WangL. ZhouH.S. Green synthesis of luminescent nitrogen-doped carbon dots from milk and its imaging application.Anal. Chem.201486188902890510.1021/ac502646x 25181643
    [Google Scholar]
  160. ChenH. ZhaoL. Quantum-dot cellular automata as a potential technology for designing nano-scale computers: Exploring the state-of-the-art techniques and suggesting the opportunities for the future.Optik202226516943110.1016/j.ijleo.2022.169431
    [Google Scholar]
  161. AlharbiM. EdwardsG. StockerR. Reversible quantum-dot cellular automata-based arithmetic logic unit.Nanomaterials20231317244510.3390/nano13172445 37686953
    [Google Scholar]
  162. JeongY.J. YunD.J. NohS.H. ParkC.E. JangJ. Surface modification of CdSe quantum-dot floating gates for advancing light-erasable organic field-effect transistor memories.ACS Nano20181287701770910.1021/acsnano.8b01413 30024727
    [Google Scholar]
  163. MondalS. VenkataramanV. All inorganic spin-coated nanoparticle-based capacitive memory devices.IEEE Electron Device Lett.201637439639910.1109/LED.2016.2527689
    [Google Scholar]
  164. BangS.Y. SuhY.H. FanX.B. ShinD.W. LeeS. ChoiH.W. LeeT.H. YangJ. ZhanS. Harden-ChatersW. SamarakoonC. OcchipintiL.G. HanS.D. JungS.M. KimJ.M. Technology progress on quantum dot light-emitting diodes for next-generation displays.Nanoscale Horiz.202162687710.1039/D0NH00556H 33400752
    [Google Scholar]
  165. LiH. ZhangW. BianY. AhnT.K. ShenH. JiB. ZnF 2 -assisted synthesis of highly luminescent InP/ZnSe/ZnS quantum dots for efficient and stable electroluminescence.Nano Lett.202222104067407310.1021/acs.nanolett.2c00763 35536635
    [Google Scholar]
  166. AgarwalK. RaiH. MondalS. Quantum dots: An overview of synthesis, properties, and applications.Mater. Res. Express202310606200110.1088/2053‑1591/acda17
    [Google Scholar]
  167. PauloS. PalomaresE. Martinez-FerreroE. Graphene and carbon quantum dot-based materials in photovoltaic devices: From synthesis to applications.Nanomaterials20166915710.3390/nano6090157 28335285
    [Google Scholar]
  168. ZhouJ. YangY. ZhangC. Toward biocompatible semiconductor quantum dots: From biosynthesis and bioconjugation to biomedical application.Chem. Rev.201511521116691171710.1021/acs.chemrev.5b00049 26446443
    [Google Scholar]
  169. AhmadJ. GargA. MustafaG. AhmadM.Z. AslamM. MishraA. Hybrid quantum dot as promising tools for theranostic application in cancer.Electronics202312497210.3390/electronics12040972
    [Google Scholar]
  170. AbdellatifA.A.H. YounisM.A. AlsharidahM. Al RugaieO. TawfeekH.M. Biomedical applications of quantum dots: Overview, challenges, and clinical potential.Int. J. Nanomedicine2022171951197010.2147/IJN.S357980 35530976
    [Google Scholar]
  171. WagnerA.M. KnipeJ.M. OriveG. PeppasN.A. Quantum dots in biomedical applications.Acta Biomater.201994446310.1016/j.actbio.2019.05.022 31082570
    [Google Scholar]
  172. JiaN. LianQ. ShenH. WangC. LiX. YangZ. Intracellular delivery of quantum dots tagged antisense oligodeoxynucleotides by functionalized multiwalled carbon nanotubes.Nano Lett.20077102976298010.1021/nl071114c 17725375
    [Google Scholar]
  173. BilanR. NabievI. SukhanovaA. Quantum dot‐based nanotools for bioimaging, diagnostics, and drug delivery.ChemBioChem201617222103211410.1002/cbic.201600357 27535363
    [Google Scholar]
  174. CassidyP.J. RaddaG.K. Molecular imaging perspectives.J. R. Soc. Interface20052313314410.1098/rsif.2005.0040 16849174
    [Google Scholar]
  175. HillmanE.M.C. Optical brain imaging in vivo : techniques and applications from animal to man.J. Biomed. Opt.200712505140210.1117/1.2789693 17994863
    [Google Scholar]
  176. WeisslederR. PittetM.J. Imaging in the era of molecular oncology.Nature2008452718758058910.1038/nature06917 18385732
    [Google Scholar]
  177. YukawaH. SatoK. BabaY. Theranostics applications of quantum dots in regenerative medicine, cancer medicine, and infectious diseases.Adv. Drug Deliv. Rev.202320011486310.1016/j.addr.2023.114863 37156265
    [Google Scholar]
  178. SanoK. NakajimaT. ChoykeP.L. KobayashiH. Markedly enhanced permeability and retention effects induced by photo-immunotherapy of tumors.ACS Nano20137171772410.1021/nn305011p 23214407
    [Google Scholar]
  179. SzakácsG. PatersonJ.K. LudwigJ.A. Booth-GentheC. GottesmanM.M. Targeting multidrug resistance in cancer.Nat. Rev. Drug Discov.20065321923410.1038/nrd1984 16518375
    [Google Scholar]
  180. YangX. ShangC. ZhouS. ZhaoJ. MBenes: Emerging 2D materials as efficient electrocatalysts for the nitrogen reduction reaction.Nanoscale Horiz.2020571106111510.1039/D0NH00242A 32432627
    [Google Scholar]
  181. Ojea-JiménezI. TortO. LorenzoJ. PuntesV.F. Engineered nonviral nanocarriers for intracellular gene delivery applications.Biomed. Mater.20127505410610.1088/1748‑6041/7/5/054106 22972254
    [Google Scholar]
  182. ChenA.A. DerfusA.M. KhetaniS.R. BhatiaS.N. Quantum dots to monitor RNAi delivery and improve gene silencing.Nucleic Acids Res.20053322e190e19010.1093/nar/gni188 16352864
    [Google Scholar]
  183. DongX. MoyerM.M. YangF. SunY.P. YangL. Carbon dots’ antiviral functions against noroviruses.Sci. Rep.20177151910.1038/s41598‑017‑00675‑x 28364126
    [Google Scholar]
  184. ZhuX. ZhouX. JingY. LiY. Electrochemical synthesis of urea on MBenes.Nat. Commun.2021121408010.1038/s41467‑021‑24400‑5 34215749
    [Google Scholar]
  185. MichaletX. PinaudF.F. BentolilaL.A. TsayJ.M. DooseS. LiJ.J. SundaresanG. WuA.M. GambhirS.S. WeissS. Quantum dots for live cells, in vivo imaging, and diagnostics.Science2005307570953854410.1126/science.1104274 15681376
    [Google Scholar]
  186. MustafaS.M. BarzinjyA.A. HamadA.H. HamadS.M. Biosynthesis of quantum dots and their usage in solar cells: insight from the novel researches.Int. Nano Lett.202212213915110.1007/s40089‑021‑00359‑5
    [Google Scholar]
  187. TandaleP. ChoudharyN. SinghJ. SharmaA. ShuklaA. SriramP. SoniU. SinglaN. BarnwalR.P. SinghG. KaurI.P. SutteeA. Fluorescent quantum dots: An insight on synthesis and potential biological application as drug carrier in cancer.Biochem. Biophys. Rep.20212610096210.1016/j.bbrep.2021.100962 33763604
    [Google Scholar]
  188. LimS.Y. ShenW. GaoZ. Carbon quantum dots and their applications.Chem. Soc. Rev.201544136238110.1039/C4CS00269E 25316556
    [Google Scholar]
  189. MengQ. WangY. LiC. HuX. Bismuth- and gadolinium-codoped carbon quantum dots with red/green dual emission for fluorescence/CT/T1-MRI mode imaging.New J. Chem.20224635169701698010.1039/D2NJ03420D
    [Google Scholar]
  190. FangM. ChenM. LiuL. LiY. Applications of quantum dots in cancer detection and diagnosis: A review.J. Biomed. Nanotechnol.201713111610.1166/jbn.2017.2334 29372982
    [Google Scholar]
  191. AbbasA. MarianaL.T. PhanA.N. Biomass-waste derived graphene quantum dots and their applications.Carbon2018140779910.1016/j.carbon.2018.08.016
    [Google Scholar]
  192. LinL. RongM. LuoF. ChenD. WangY. ChenX. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications.Trends Analyt. Chem.2014548310210.1016/j.trac.2013.11.001
    [Google Scholar]
  193. LiY. LiS. WangY. WangJ. LiuH. LiuX. WangL. LiuX. XueW. MaN. Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging.Phys. Chem. Chem. Phys.20171918116311163810.1039/C6CP06377B 28430285
    [Google Scholar]
  194. KooleR. van SchooneveldM.M. HilhorstJ. CastermansK. CormodeD.P. StrijkersG.J. de Mello DonegáC. VanmaekelberghD. GriffioenA.W. NicolayK. FayadZ.A. MeijerinkA. MulderW.J.M. Paramagnetic lipid-coated silica nanoparticles with a fluorescent quantum dot core: a new contrast agent platform for multimodality imaging.Bioconjug. Chem.200819122471247910.1021/bc800368x 19035793
    [Google Scholar]
  195. TangL. JiangY. ZhuM. ChenL. ZhouX. ZhouC. YeP. ChenX. WangB. XuZ. ZhangQ. XuX. GaoH. WuX. LiD. JiangW. QuJ. XiangC. LiL. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19.Front. Med.202014566467310.1007/s11684‑020‑0810‑9 32761491
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096299455240621070820
Loading
/content/journals/ccdt/10.2174/0115680096299455240621070820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test