Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Background

Dendrobine is a bioactive alkaloid isolated from . Studies have evaluated the anti-tumor effect of dendrobine in cancers, including lung cancer. However, the mechanism of dendrobine inhibiting tumors requires further study.

Methods

Bioinformatics was performed to screen the potential targets of dendrobine. The intersection of dendrobine and lung cancer targets was performed for KEGG analysis. CCK-8 was used to detect cell viability after dendrobine treatment. A xenograft mouse model was established to explore the effect of dendrobine on lung cancer. The percentages of PD-L1+, CD4+, CD8+, CD11b+, CD25+FOXP3+ cells, the expression of Ki-67 and caspase-3, the expression of pathway-related proteins, the levels of IL-2, IFN-γ, and TGF-β, and the changes of indicators of liver and renal function were measured.

Results

Dendrobine regulated the PD1/PD-L1 checkpoint signaling pathway and affected the occurrence and development of lung cancer. Dendrobine decreased the cell viability of lung cancer. Dendrobine and anti-PD-L1 decreased tumor growth, increased caspase-3 expression, and reduced Ki-67 expression in tumor tissues. Dendrobine and anti-PD-L1 suppressed protein expression of PD-L1, p-JAK1/JAK1, and p-JAK2/JAK2 in tumor tissues. Greatly, dendrobine and anti-PD-L1 decreased the percentages of PD-L1+, CD11b+, and CD25+FOXP3+ cells, increased the percentages of CD4+ and CD8+cells, and enhanced the levels of IL-2, IFN-γ, and TGF-β in tumor tissues. Dendrobine demonstrated no hepatorenal toxicity to the tumor mice. The combination of dendrobine and anti-PD-L1 greatly strengthened the effects of dendrobine on tumors.

Conclusion

Dendrobine inhibited tumor immune escape by suppressing the PD-1/PD-L1 checkpoint pathway, thus restricting tumor growth of lung cancer.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096305416240820040314
2024-09-18
2025-10-25
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.21590 31912902
    [Google Scholar]
  3. TravisW.D. BrambillaE. NicholsonA.G. YatabeY. AustinJ.H.M. BeasleyM.B. ChirieacL.R. DacicS. DuhigE. FliederD.B. GeisingerK. HirschF.R. IshikawaY. KerrK.M. NoguchiM. PelosiG. PowellC.A. TsaoM.S. WistubaI. The 2015 world health organization classification of lung tumors.J. Thorac. Oncol.20151091243126010.1097/JTO.0000000000000630 26291008
    [Google Scholar]
  4. MithoowaniH. FebbraroM. Non-small-cell lung cancer in 2022: A review for general practitioners in oncology.Curr. Oncol.20222931828183910.3390/curroncol29030150 35323350
    [Google Scholar]
  5. MillerK.D. SiegelR.L. LinC.C. MariottoA.B. KramerJ.L. RowlandJ.H. SteinK.D. AlteriR. JemalA. Cancer treatment and survivorship statistics, 2016.CA Cancer J. Clin.201666427128910.3322/caac.21349 27253694
    [Google Scholar]
  6. KudoY. TanakaA. YamadaK. Dendrobine, an antagonist of β‐alanine, taurine and of presynaptic inhibition in the frog spinal cord.Br. J. Pharmacol.198378470971510.1111/j.1476‑5381.1983.tb09424.x 6405832
    [Google Scholar]
  7. NieJ. TianY. ZhangY. LuY.L. LiL.S. ShiJ.S. Dendrobium alkaloids prevent Aβ 25–35 -induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice.PeerJ201644e273910.7717/peerj.2739 27994964
    [Google Scholar]
  8. MengJ. SongX. YanG. WangH. LiH. LouD. Dendrobine suppresses endoplasmic reticulum stress-induced apoptosis through upregulating microRNA miR-381-3p to decrease caspase-4.Bioengineered20211214452446310.1080/21655979.2021.1956672 34308746
    [Google Scholar]
  9. LouD. XingX. LiangY. Dendrobine modulates autophagy to alleviate ox‐LDL‐induced oxidative stress and senescence in HUVECs.Drug Dev. Res.20228351125113710.1002/ddr.21937 35417048
    [Google Scholar]
  10. DengW. DingZ. WangY. ZouB. ZhengJ. TanY. YangQ. KeM. ChenY. WangS. LiX. Dendrobine attenuates osteoclast differentiation through modulating ROS/NFATc1/MMP9 pathway and prevents inflammatory bone destruction.Phytomedicine20229615383815383810.1016/j.phymed.2021.153838 34801352
    [Google Scholar]
  11. XiA. A study of the effect of dendrobine from dendrobium nobile on Mcf- 7 cell apoptosis in mitochondrial pathway.Acta Agriculturae Universitatis Jiangxiensis2015375920926https://link.cnki.net/doi/10.13836/j.jjau.2015140
    [Google Scholar]
  12. SongT.H. ChenX.X. LeeC.K.F. SzeS.C.W. FengY.B. YangZ.J. ChenH.Y. LiS.T. ZhangL.Y. WeiG. ShiJ. XuK. NgT.B. ZhuL.L. ZhangK.Y. Dendrobine targeting JNK stress signaling to sensitize chemotoxicity of cisplatin against non-small cell lung cancer cells in vitro and in vivo.Phytomedicine201953182710.1016/j.phymed.2018.06.018 30668397
    [Google Scholar]
  13. ChenD.S. MellmanI. Elements of cancer immunity and the cancer–immune set point.Nature2017541763732133010.1038/nature21349 28102259
    [Google Scholar]
  14. ZhangJ. DangF. RenJ. WeiW. Biochemical aspects of PD-L1 regulation in cancer immunotherapy.Trends Biochem. Sci.201843121014103210.1016/j.tibs.2018.09.004 30287140
    [Google Scholar]
  15. DoroshowD.B. BhallaS. BeasleyM.B. ShollL.M. KerrK.M. GnjaticS. WistubaI.I. RimmD.L. TsaoM.S. HirschF.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors.Nat. Rev. Clin. Oncol.202118634536210.1038/s41571‑021‑00473‑5 33580222
    [Google Scholar]
  16. HuX. WangJ. ChuM. LiuY. WangZ. ZhuX. Emerging role of ubiquitination in the regulation of PD-1/PD-L1 in cancer immunotherapy.Mol. Ther.202129390891910.1016/j.ymthe.2020.12.032 33388422
    [Google Scholar]
  17. WuM. HuangQ. XieY. WuX. MaH. ZhangY. XiaY. Improvement of the anticancer efficacy of PD-1/PD-L1 blockade via combination therapy and PD-L1 regulation.J. Hematol. Oncol.20221512410.1186/s13045‑022‑01242‑2 35279217
    [Google Scholar]
  18. IwaiY. IshidaM. TanakaY. OkazakiT. HonjoT. MinatoN. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade.Proc. Natl. Acad. Sci. USA20029919122931229710.1073/pnas.192461099 12218188
    [Google Scholar]
  19. PragerG.W. TaghizadehH. Immune checkpoint inhibitors for advanced biliary tract cancer.Curr. Cancer Drug Targets202222863965010.2174/1568009622666220215144235 35168521
    [Google Scholar]
  20. GaoY. ZhangH. QiuY. BianX. WangX. LiY. Effect of neoadjuvant immunotherapy combined with chemotherapy on pulmonary function and postoperative pulmonary complications in esophageal cancer: A retrospective study.Curr. Cancer Drug Targets202424101061107010.2174/0115680096280761231229055929 38310460
    [Google Scholar]
  21. HuangZ. SuW. LuT. WangY. DongY. QinY. LiuD. SunL. JiaoW. First-line immune-checkpoint inhibitors in non-small cell lung cancer: Current landscape and future progress.Front. Pharmacol.20201157809110.3389/fphar.2020.578091 33117170
    [Google Scholar]
  22. KimY.R. HanA.R. KimJ.B. JungC.H. Dendrobine inhibits γ-irradiation-induced cancer cell migration, invasion and metastasis in non-small cell lung cancer cells.Biomedicines20219895410.3390/biomedicines9080954 34440158
    [Google Scholar]
  23. BretscherP.A. A two-step, two-signal model for the primary activation of precursor helper T cells.Proc. Natl. Acad. Sci. USA199996118519010.1073/pnas.96.1.185 9874793
    [Google Scholar]
  24. BoussiotisV.A. Molecular and biochemical aspects of the PD-1 checkpoint pathway.N. Engl. J. Med.2016375181767177810.1056/NEJMra1514296 27806234
    [Google Scholar]
  25. AiL. XuA. XuJ. Roles of PD-1/PD-L1 pathway: Signaling, cancer, and beyond.Adv. Exp. Med. Biol.2020326610.1007/978‑981‑15‑3266‑5_3 32185706
    [Google Scholar]
  26. JiangY. ZhaoX. FuJ. WangH. Progress and challenges in precise treatment of tumors with PD-1/PD-L1 blockade.Front. Immunol.20201133910.3389/fimmu.2020.00339 32226426
    [Google Scholar]
  27. YinJ. WuY. YangX. GanL. XueJ. Checkpoint inhibitor pneumonitis induced by Anti-PD-1/PD-L1 therapy in non-small-cell lung cancer: Occurrence and mechanism.Front. Immunol.20221383063110.3389/fimmu.2022.830631 35464480
    [Google Scholar]
  28. PengZ. LiM. LiH. GaoQ. PD-1/PD-L1 immune checkpoint blockade in ovarian cancer: Dilemmas and opportunities.Drug Discov. Today202328810366610.1016/j.drudis.2023.103666 37302543
    [Google Scholar]
  29. LiQ. HanJ. YangY. ChenY. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy.Front. Immunol.202213107096110.3389/fimmu.2022.1070961 36601120
    [Google Scholar]
  30. OlsonD.J. ErogluZ. BrocksteinB. PoklepovicA.S. BajajM. BabuS. HallmeyerS. VelascoM. LutzkyJ. HiggsE. BaoR. CarllT.C. LabadieB. KrauszT. ZhaY. KarrisonT. SondakV.K. GajewskiT.F. KhushalaniN.I. LukeJ.J. Pembrolizumab plus ipilimumab following anti-PD-1/L1 failure in melanoma.J. Clin. Oncol.202139242647265510.1200/JCO.21.00079 33945288
    [Google Scholar]
  31. QinS. ChanS.L. GuS. BaiY. RenZ. LinX. ChenZ. JiaW. JinY. GuoY. HuX. MengZ. LiangJ. ChengY. XiongJ. RenH. YangF. LiW. ChenY. ZengY. SultanbaevA. Pazgan-SimonM. PisetskaM. MelisiD. PonomarenkoD. OsypchukY. SinielnikovI. YangT.S. LiangX. ChenC. WangL. ChengA.L. KasebA. VogelA. QinS. ChanS.L. ChengA-L. KasebA. VogelA. GuS. BaiY. RenZ. LinX. ChenZ. JiaW. JinY. GuoY. HuX. MengZ. LiangJ. ChengY. XiongJ. RenH. YangF. LiW. ChenY. ZengY. SultanbaevA. Pazgan-SimonM. PisetskaM. MelisiD. PonomarenkoD. OsypchukY. SinielnikovI. YangT-S. LiangX. ChenC. WangL. ZhangM. XuL. YuanX. LiD. YingJ. ZhangJ. ZhangT. GuK. HeY. HaoP. JiangD. ZhangS. XingB. ZhangB. WangD. ZhaiX. LiangH. Cybulska-StopaB. DvorkinM. StroyakovskiyD. NechaevaM. YenC-J. SuW-W. ChenY-H. BondarenkoI. YangL. FangW. Gomez-MartinC. RyuM-H. KimH-S. KimJ-H. ZarubenkovO. OrlovaR. PoddubskayaE. FadeevaN. MakarovaY. ChaoY. HungC-H. NeffaM. VynnychenkoO. BurgoyneA. HaoC. MohrR.U. Diaz-BeveridgeR. Feliu-BatlleJ. Cubillo-GracianA. LeeA-S. DanieleB. AntonuzzoL. SangiovanniA. GasbarriniA. ScartozziM. AhnM.S. OhS-Y. OrlovS. HarputluogluH. OksuzogluB. HsuC. RauK-M. KrechkovskyiO. YareshkoV. XiongH. LeeF-C. JiangY. GabayanA. CrowM. Van SteenkisteC. VersetG. Camrelizumab plus rivoceranib versus sorafenib as first-line therapy for unresec hepatocellular carcinoma (CARES-310): A randomised, open-label, international phase 3 study.Lancet2023402104081133114610.1016/S0140‑6736(23)00961‑3 37499670
    [Google Scholar]
  32. DeNardoD.G. CoussensL.M. Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression.Breast Cancer Res.20079421210.1186/bcr1746 17705880
    [Google Scholar]
  33. TerabeM. BerzofskyJ.A. Immunoregulatory T cells in tumor immunity.Curr. Opin. Immunol.200416215716210.1016/j.coi.2004.01.010 15023407
    [Google Scholar]
  34. BeyerM. SchultzeJ.L. Regulatory T cells in cancer.Blood2006108380481110.1182/blood‑2006‑02‑002774 16861339
    [Google Scholar]
  35. FontenotJ.D. GavinM.A. RudenskyA.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells.Nat. Immunol.20034433033610.1038/ni904 12612578
    [Google Scholar]
  36. ShevachE.M. DiPaoloR.A. AnderssonJ. ZhaoD.M. StephensG.L. ThorntonA.M. The lifestyle of naturally occurring CD4 + CD25 + Foxp3 + regulatory T cells.Immunol. Rev.20062121607310.1111/j.0105‑2896.2006.00415.x 16903906
    [Google Scholar]
  37. GhiringhelliF. MénardC. TermeM. FlamentC. TaiebJ. ChaputN. PuigP.E. NovaultS. EscudierB. VivierE. LecesneA. RobertC. BlayJ.Y. BernardJ. Caillat-ZucmanS. FreitasA. TurszT. Wagner-BallonO. CapronC. VainchenckerW. MartinF. ZitvogelL. CD4 + CD25 + regulatory T cells inhibit natural killer cell functions in a transforming growth factor–β–dependent manner.J. Exp. Med.200520281075108510.1084/jem.20051511 16230475
    [Google Scholar]
  38. GanesanA.P. JohanssonM. RuffellB. BeltranA. LauJ. JablonsD.M. CoussensL.M. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma.J. Immunol.201319142009201710.4049/jimmunol.1301317 23851682
    [Google Scholar]
  39. NajjarY.G. FinkeJ.H. Clinical perspectives on targeting of myeloid derived suppressor cells in the treatment of cancer.Front. Oncol.20133494910.3389/fonc.2013.00049 23508517
    [Google Scholar]
  40. VignaliD.A.A. CollisonL.W. WorkmanC.J. How regulatory T cells work.Nat. Rev. Immunol.20088752353210.1038/nri2343 18566595
    [Google Scholar]
  41. McNallyA. HillG.R. SparwasserT. ThomasR. SteptoeR.J. CD4 + CD25 + regulatory T cells control CD8 + T-cell effector differentiation by modulating IL-2 homeostasis.Proc. Natl. Acad. Sci. USA2011108187529753410.1073/pnas.1103782108 21502514
    [Google Scholar]
  42. SpolskiR. LiP. LeonardW.J. Biology and regulation of IL-2: From molecular mechanisms to human therapy.Nat. Rev. Immunol.2018181064865910.1038/s41577‑018‑0046‑y 30089912
    [Google Scholar]
  43. GaoY. YangJ. CaiY. FuS. ZhangN. FuX. LiL. IFN‐γ‐mediated inhibition of lung cancer correlates with PD‐L1 expression and is regulated by PI3K‐AKT signaling.Int. J. Cancer2018143493194310.1002/ijc.31357 29516506
    [Google Scholar]
  44. FangC. WengT. HuS. YuanZ. XiongH. HuangB. CaiY. LiL. FuX. IFN-γ-induced ER stress impairs autophagy and triggers apoptosis in lung cancer cells.OncoImmunology2021101196259110.1080/2162402X.2021.1962591 34408924
    [Google Scholar]
  45. AryaR.K. SinghA. YadavN.K. CheruvuS.H. HossainZ. MeenaS. MaheshwariS. SinghA.K. ShahabU. SharmaC. SinghK. NarenderT. MitraK. AryaK.R. SinghR.K. GayenJ.R. DattaD. Anti-breast tumor activity of Eclipta extract in-vitro and in-vivo: Novel evidence of endoplasmic reticulum specific localization of Hsp60 during apoptosis.Sci. Rep.2015511845710.1038/srep18457 26672742
    [Google Scholar]
  46. SgambatoA. CasaluceF. SaccoP.C. PalazzoloG. MaioneP. RossiA. CiardielloF. GridelliC. Anti PD-1 and PDL-1 immunotherapy in the treatment of advanced non- small cell lung cancer (NSCLC): A review on toxicity profile and its management.Curr. Drug Saf.2016111626810.2174/1574886311207040289 26412670
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096305416240820040314
Loading
/content/journals/ccdt/10.2174/0115680096305416240820040314
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Dendrobine; immunity; lung cancer; PD-L1; tregs; tumor growth
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test