Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Phytosomes, innovative lipid-compatible complexes formed by combining natural phospholipids with water-soluble phytoconstituents, represent a groundbreaking technology in herbal medicine. This review examines the novel applications of phytosomes in liver cancer treatment. Phytosome technology overcomes traditional obstacles in utilizing herbal potential for modern medicine, such as issues with potency, solubility, permeability, and stability, which has led to increased interest in herbal drug sources. By enhancing the bioavailability and bioefficacy of polyphenolic phytoconstituents, particularly those with anti-angiogenic properties critical for tumor growth and embryonic nourishment, phytosome technology addresses these challenges. The complexity of liver cancer, including both cholangiocarcinoma and hepatocellular carcinoma, demands comprehensive medical management. Although natural compounds like resveratrol, curcumin, and silymarin show promise with their anticancer effects, their full efficacy in human trials is not yet confirmed. Phytosomal preparations, which incorporate these compounds into lipid complexes, offer a potential solution for improved bioavailability and absorption. This review thoroughly explores the application of phytosome technology in herbal medicine, highlighting its potential role in tackling the complexities of liver cancer treatment. As research advances, phytosomes are expected to be a valuable addition to the evolving field of natural product-based therapeutic formulations.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096319007240703072650
2024-09-23
2025-10-25
Loading full text...

Full text loading...

References

  1. MahomoodallyM.F. SadeerN. EdooM. VenugopalaK.N. The potential application of novel drug delivery systems for phytopharmaceuticals and natural extracts–current status and future perspectives.Mini Rev. Med. Chem.202121182731274610.2174/1389557520666200730160911 32744974
    [Google Scholar]
  2. AroraaS. DhokeV. MoharirK. YendeS. ShahS. Novel drug delivery system of Phytopharmaceuticals: a review.Curr. Tradit. Med.202175e26042119302410.2174/2215083807666210426121038
    [Google Scholar]
  3. WahabS. AhmadM.P. HussainA. QadirS.F.A. Nanomaterials for the Delivery of Herbal Bioactive Compounds.Curr. Nanosci.202218442544110.2174/1573413717666211004090341
    [Google Scholar]
  4. RizzoA. RicciA.D. BrandiG. Trans-arterial chemoembolization plus systemic treatments for hepatocellular carcinoma: an update.J. Pers. Med.20221211178810.3390/jpm12111788 36579504
    [Google Scholar]
  5. GuvenD.C. SahinT.K. ErulE. RizzoA. RicciA.D. AksoyS. YalcinS. The association between albumin levels and survival in patients treated with immune checkpoint inhibitors: A systematic review and meta-analysis.Front. Mol. Biosci.20229103912110.3389/fmolb.2022.1039121 36533070
    [Google Scholar]
  6. RizzoA. RicciA.D. BrandiG. Immune-based combinations for advanced hepatocellular carcinoma: shaping the direction of first-line therapy.Future Oncol.202117775575710.2217/fon‑2020‑0986 33508960
    [Google Scholar]
  7. RizzoA. MollicaV. TateoV. TassinariE. MarchettiA. RoselliniM. De LucaR. SantoniM. MassariF. Hypertransaminasemia in cancer patients receiving immunotherapy and immune-based combinations: the MOUSEION-05 study.Cancer Immunol. Immunother.20237261381139410.1007/s00262‑023‑03366‑x 36695827
    [Google Scholar]
  8. Sedaghat DoostA. Nikbakht NasrabadiM. KassoziV. NakisoziH. Van der MeerenP. Recent advances in food colloidal delivery systems for essential oils and their main components.Trends Food Sci. Technol.20209947448610.1016/j.tifs.2020.03.037
    [Google Scholar]
  9. SinghM. DeviS. RanaV.S. MishraB.B. KumarJ. AhluwaliaV. Delivery of phytochemicals by liposome cargos: recent progress, challenges and opportunities.J. Microencapsul.201936321523510.1080/02652048.2019.1617361 31092084
    [Google Scholar]
  10. TelangeD.R. SohailN.K. HemkeA.T. KharkarP.S. PetheA.M. Phospholipid complex-loaded self-assembled phytosomal soft nanoparticles: evidence of enhanced solubility, dissolution rate, ex vivo permeability, oral bioavailability, and antioxidant potential of mangiferin.Drug Deliv. Transl. Res.20211131056108310.1007/s13346‑020‑00822‑4 32696222
    [Google Scholar]
  11. KumarR. KumarK. TeotiaD. KhairyaD. JoshiA. Phytosomes as an innovative technique in novel drug delivery system: a comprehensive review.Int. J. Curr. Innov. Adv. Res.20225217
    [Google Scholar]
  12. DireitoR. ReisC. RoqueL. GonçalvesM. Sanches-SilvaA. GasparM.M. PintoR. RochaJ. SepodesB. Rosário BronzeM. Eduardo FigueiraM. Phytosomes with persimmon (Diospyros kaki l.) extract: Preparation and preliminary demonstration of in vivo tolerability.Pharmaceutics201911629610.3390/pharmaceutics11060296 31234548
    [Google Scholar]
  13. NagarG. Phytosomes: A novel drug delivery for herbal extracts.Int. J. Pharm. Sci. Res.201943949959
    [Google Scholar]
  14. Hari PriyaV.M. KumaranA. Recent Trends in Phytosome Nanocarriers for Improved Bioavailability and Uptake of Herbal Drugs Ulum-i Daruyi202329329831910.34172/PS.2023.6
    [Google Scholar]
  15. TiwariG. TiwariR. SharmaS. RamachandranV. An Exploration of herbal extracts loaded phyto-phospholipid complexes (Phytosomes) against polycystic ovarian syndrome: Formulation considerations.Pharm. Nanotechnol.2023111445510.2174/2211738510666220919125434 36121090
    [Google Scholar]
  16. YousufS. ShabirS. SinghM.P. Protection against drug-induced liver injuries through nutraceuticals via amelioration of Nrf-2 signaling.J. Am. Nutr. Assoc.202342549551510.1080/27697061.2022.2089403 35771985
    [Google Scholar]
  17. LiX. SunR. LiuR. Natural products in licorice for the therapy of liver diseases: Progress and future opportunities.Pharmacol. Res.201914421022610.1016/j.phrs.2019.04.025 31022523
    [Google Scholar]
  18. DaniyalM. AkramM. ZainabR. MunirN. SharifA. ShahS.M.A. LiuB. WangW. Prevalence and current therapy in chronic liver disorders.Inflammopharmacology201927221323110.1007/s10787‑019‑00562‑z 30737607
    [Google Scholar]
  19. SomanS. SharmaR.K. SharmaV. GautamV. ShrmanK. KewatR. KourS. Phytosomes-A novel approach for herbal drug delivery.J. Anim. Res.202010447948510.30954/2277‑940X.04.2020.1
    [Google Scholar]
  20. UpaseA.U. BhusnureO.G. GholveS.B. GiramP.S. WattamwarP.B. A review on Phytosome loaded with novel herbal drug and their formulation, standardization and applications.J. Drug Deliv. Ther.201993-s765769
    [Google Scholar]
  21. BaraniM. SangiovanniE. AngaranoM. RajizadehM.A. MehrabaniM. PiazzaS. GangadharappaH.V. PardakhtyA. MehrbaniM. Dell’AgliM. NematollahiM.H. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature.Int. J. Nanomedicine2021166983702210.2147/IJN.S318416 34703224
    [Google Scholar]
  22. MeiH. CaiS. HuangD. GaoH. CaoJ. HeB. Carrier-free nanodrugs with efficient drug delivery and release for cancer therapy: From intrinsic physicochemical properties to external modification.Bioact. Mater.2022822024010.1016/j.bioactmat.2021.06.035 34541398
    [Google Scholar]
  23. KaurL. KaurA. SinghG. DhawanR.K. MahajanA. Nanotechnology-based herbal formulations: A survey of recent patents, advancements, and transformative headways.Recent Pat. Nanotechnol.202216429530710.2174/1872210515666210428135343 33913409
    [Google Scholar]
  24. Garcia-CortesM. Robles-DiazM. StephensC. Ortega-AlonsoA. LucenaM.I. AndradeR.J. Drug induced liver injury: an update.Arch. Toxicol.202094103381340710.1007/s00204‑020‑02885‑1 32852569
    [Google Scholar]
  25. AlhakamyN. Badr-EldinS. FahmyU. AlruwailiN. AwanZ. CarusoG. AlfalehM. AlaofiA. ArifF. AhmedO. AlghaithA. Thymoquinone-loaded soy-phospholipid-based phytosomes exhibit anticancer potential against human lung cancer cells.Pharmaceutics202012876110.3390/pharmaceutics12080761 32806507
    [Google Scholar]
  26. KimK.H. KiM.R. MinK.H. PackS.P. Advanced Delivery System of Polyphenols for Effective Cancer Prevention and Therapy.Antioxidants2023125104810.3390/antiox12051048 37237914
    [Google Scholar]
  27. Al HroutA. Cervantes-GraciaK. ChahwanR. AminA. Modelling liver cancer microenvironment using a novel 3D culture system.Sci. Rep.2022121800310.1038/s41598‑022‑11641‑7 35568708
    [Google Scholar]
  28. HamzaA.A. HeebaG.H. HassaninS.O. ElwyH.M. BekhitA.A. AminA. Hibiscus-cisplatin combination treatment decreases liver toxicity in rats while increasing toxicity in lung cancer cells via oxidative stress- apoptosis pathway.Biomed. Pharmacother.202316511514810.1016/j.biopha.2023.115148 37450997
    [Google Scholar]
  29. AwadB. HamzaA.A. Al-MaktoumA. Al-SalamS. AminA. Combining crocin and sorafenib improves their tumor-inhibiting effects in a rat model of diethylnitrosamine-induced cirrhotic-hepatocellular carcinoma.Cancers (Basel)20231516406310.3390/cancers15164063 37627094
    [Google Scholar]
  30. SharmaS. GuptaN. Review on phytosomes: as a emerging strategy to improve the bioavailability of phytoconstituents.American Journal of PharmTech Research202010512113410.46624/ajptr.2020.v10.i5.009
    [Google Scholar]
  31. PandeyR. BhairamM. ShuklaS.S. GidwaniB. Colloidal and vesicular delivery system for herbal bioactive constituents.Daru202129241543810.1007/s40199‑021‑00403‑x 34327650
    [Google Scholar]
  32. KesharwaniR. JaiswalP. PatelD.K. YadavP.K. Lipid-based drug delivery system (LBDDS): An emerging paradigm to enhance oral bioavailability of poorly soluble drugs.Biomed. Mater. Devices20231264866310.1007/s44174‑022‑00041‑0
    [Google Scholar]
  33. HanH.S. KooS.Y. ChoiK.Y. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging.Bioact. Mater.20221418220510.1016/j.bioactmat.2021.11.027 35310344
    [Google Scholar]
  34. SteinkühlerJ. DimovaR. Giant vesicles: A biomimetic tool for membrane characterization.Adv. Planar Lipid Bilay. Lipos.201216150
    [Google Scholar]
  35. KempińskaD. ChmielT. Kot-WasikA. MrózA. MazerskaZ. NamieśnikJ. State of the art and prospects of methods for determination of lipophilicity of chemical compounds.Trends Analyt. Chem.2019113547310.1016/j.trac.2019.01.011
    [Google Scholar]
  36. KhanS.A. TavolariS. BrandiG. Cholangiocarcinoma: Epidemiology and risk factors.Liver Int.201939S1Suppl. 1193110.1111/liv.14095 30851228
    [Google Scholar]
  37. SchizasD. MastorakiA. RoutsiE. PapapanouM. TsapralisD. VassiliuP. ToutouzasK. FelekourasE. Combined hepatocellular-cholangiocarcinoma: An update on epidemiology, classification, diagnosis and management.Hepatobiliary Pancreat. Dis. Int.202019651552310.1016/j.hbpd.2020.07.004 32753331
    [Google Scholar]
  38. ZhouC. WangY. MaL. QianX. YangC. ZengM. Combined hepatocellular carcinoma-cholangiocarcinoma: MRI features correlated with tumor biomarkers and prognosis.Eur. Radiol.2022321788810.1007/s00330‑021‑08188‑y 34279688
    [Google Scholar]
  39. LinS.R. ChangC.H. HsuC.F. TsaiM.J. ChengH. LeongM.K. SungP.J. ChenJ.C. WengC.F. Natural compounds as potential adjuvants to cancer therapy: Preclinical evidence.Br. J. Pharmacol.202017761409142310.1111/bph.14816 31368509
    [Google Scholar]
  40. HarwanshR.K. DeshmukhR. RahmanM.A. Nanoemulsion: Promising nanocarrier system for delivery of herbal bioactives.J. Drug Deliv. Sci. Technol.20195122423310.1016/j.jddst.2019.03.006
    [Google Scholar]
  41. DehnadD. EmadzadehB. GhoraniB. RajabzadehG. KharazmiM.S. JafariS.M. Nano-vesicular carriers for bioactive compounds and their applications in food formulations.Crit. Rev. Food Sci. Nutr.2022120 36519525
    [Google Scholar]
  42. SahuA.N. MohapatraD. Nanovesicular transferosomes for the topical delivery of plant bioactives.Nanomedicine (Lond.)202116282491249510.2217/nnm‑2021‑0316 34743593
    [Google Scholar]
  43. ShewaleA. YadavA.R. AshwiniS.J. Novel drug delivery systems and its future prospects.J Univ Shanghai Sci Technol.202224486010.51201/JUSST/21/121047
    [Google Scholar]
  44. AlharbiW.S. AlmughemF.A. AlmehmadyA.M. JarallahS.J. AlsharifW.K. AlzahraniN.M. AlshehriA.A. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals.Pharmaceutics2021139147510.3390/pharmaceutics13091475 34575551
    [Google Scholar]
  45. NagpalM. BhuyanM. KaurM. KaushalU. SinghM. AggarwalG. Recent Avenues in Treatment of Liver Diseases: Role of Nanotechnology.Curr. Drug Targets202324432033110.2174/1389450124666230119151124 36658702
    [Google Scholar]
  46. HafezD.A. ElkhodairyK.A. TelebM. ElzoghbyA.O. Nanomedicine-based approaches for improved delivery of phyto-therapeutics for cancer therapy.Expert Opin. Drug Deliv.202017327928510.1080/17425247.2020.1723542 31997666
    [Google Scholar]
  47. QamarM. AkhtarS. IsmailT. SestiliP. TawabA. AhmedN. Anticancer and anti-inflammatory perspectives of Pakistan’s indigenous berry Grewia asiatica Linn (Phalsa).J. Berry Res.202010111513110.3233/JBR‑190459
    [Google Scholar]
  48. BeaufrèreA. CalderaroJ. ParadisV. Combined hepatocellular-cholangiocarcinoma: An update.J. Hepatol.20217451212122410.1016/j.jhep.2021.01.035 33545267
    [Google Scholar]
  49. PatkarS. MundhadaR.O. ChopdeA.N. KharatR. RaneS. GoelM. Hepatocellular carcinoma (HCC) masquerading as hilar cholangiocarcinoma: An unusual presentation of jaundice.Indian J. Pathol. Microbiol.202366488088210.4103/ijpm.ijpm_900_22 38084556
    [Google Scholar]
  50. NandhiniS. IlangoK. Development and characterization of a nano-drug delivery system containing vasaka phospholipid complex to improve bioavailability using quality by design approach.Res. Pharm. Sci.2020161103117 33953779
    [Google Scholar]
  51. AkyuniQ. PutriD.H. AhdaY. The Prediction of the Interaction Genistein and Daidzein Compounds on ESR2 Expression by Molecular Docking.Jurnal Serambi Biologi.2023813237
    [Google Scholar]
  52. SaptantiK. HeliawatiL. HermawatiE. SyahY.M. Pentacyclic triterpenes from the leaves extract of Sandoricum koetjape.J. Nat. Med.202276484284810.1007/s11418‑022‑01620‑7 35488895
    [Google Scholar]
  53. TanJ. HanY. HanB. QiX. CaiX. GeS. XueH. Extraction and purification of anthocyanins: A review.J. Agric. Food Res.2022810030610.1016/j.jafr.2022.100306
    [Google Scholar]
  54. GhariaB.D. KrishnamurthyR. RajashekharI. Phytosomes: Enhancing bioavailability of phytomedicine.IOSR J. Pharm.201996915
    [Google Scholar]
  55. GravasS. SamarinasM. ZacharouliK. KaratzasA. TzortzisV. KoukoulisG. MelekosM. The effect of hexanic extract of Serenoa repens on prostatic inflammation: results from a randomized biopsy study.World J. Urol.201937353954410.1007/s00345‑018‑2409‑1 30027406
    [Google Scholar]
  56. MahapatraD.K. PatilS. PatilA.G. The progressive journey of phytosomes in herbal based pharmacotherapeutics.Curr. Bioact. Compd.202016685388610.2174/1573407215666190417121237
    [Google Scholar]
  57. BiagiM. SarillM. CollottaD. Di GiacomoS. Di SottoA. GrilliM. LuceriC. MilellaL. SangiovanniE. VitaloneA. MontopoliM. TestaiL. From preclinical to clinical evidence: exploring the multiple perspectives and healing power of Boswellia serrata Roxb. ex Colebr.Pharmadvances202351295310.36118/pharmadvances.2023.53
    [Google Scholar]
  58. KumarD. VatsN. SarohaK. RanaA.C. Phytosomes as emerging nanotechnology for herbal drug delivery. Sustainable Agriculture Reviews 43: Pharmaceutical Technology for Natural Products Delivery.Fundamentals and Applications2020Vol. 1217237
    [Google Scholar]
  59. ChenR.P. ChavdaV.P. PatelA.B. ChenZ.S. Phytochemical delivery through transferosome (phytosome): an advanced transdermal drug delivery for complementary medicines.Front. Pharmacol.20221385086210.3389/fphar.2022.850862 35281927
    [Google Scholar]
  60. El HawaryS.S. RabehM. AliZ.Y. AlbohyA. FawazN.E. Sansevieria: an evaluation of potential cytotoxic activity in reference to metabolomic and molecular docking studies.Egypt. J. Chem.2021642835849
    [Google Scholar]
  61. LuM. QiuQ. LuoX. LiuX. SunJ. WangC. LinX. DengY. SongY. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents.Asian J. Pharm. Sci.201914326527410.1016/j.ajps.2018.05.011 32104457
    [Google Scholar]
  62. IslamN. IrfanM. HussainT. MushtaqM. KhanI.U. YousafA.M. GhoriM.U. ShahzadY. Piperine phytosomes for bioavailability enhancement of domperidone.J. Liposome Res.202232217218010.1080/08982104.2021.1918153 33944662
    [Google Scholar]
  63. TafishA.M. El-SherbinyM. Al-KarmalawyA.A. SolimanO.A.E.A. SalehN.M. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation.Int. J. Nanomedicine2023185749578010.2147/IJN.S421617 37849641
    [Google Scholar]
  64. SriyaK.C. SaiD. SankarP.R. Phytosomes: A novel approach for herbal phytochemicals for enhancing the bioavailability.Int. J. Pharm. Sci. Rev. Res.202062126
    [Google Scholar]
  65. LiB. HanL. CaoB. YangX. ZhuX. YangB. ZhaoH. QiaoW. Use of magnoflorine-phospholipid complex to permeate blood-brain barrier and treat depression in the CUMS animal model.Drug Deliv.201926156657410.1080/10717544.2019.1616236 31104521
    [Google Scholar]
  66. ShriramR.G. MoinA. AlotaibiH.F. KhafagyE.S. Al SaqrA. Abu LilaA.S. CharyuluR.N. Phytosomes as a plausible nano-delivery system for enhanced oral bioavailability and improved hepatoprotective activity of silymarin.Pharmaceuticals202215779010.3390/ph15070790 35890088
    [Google Scholar]
  67. RamanathanR. AliA.H. IbdahJ.A. Mitochondrial dysfunction plays central role in nonalcoholic fatty liver disease.Int. J. Mol. Sci.20222313728010.3390/ijms23137280 35806284
    [Google Scholar]
  68. GiriT.K. Breaking the barrier of cancer through liposome loaded with phytochemicals.Curr. Drug Deliv.201816131710.2174/1567201815666180918112139 30227818
    [Google Scholar]
  69. ChavdaV.P. ViholD. MehtaB. ShahD. PatelM. VoraL.K. Pereira-SilvaM. Paiva-SantosA.C. Phytochemical-loaded liposomes for anticancer therapy: an updated review.Nanomedicine202217854756810.2217/nnm‑2021‑0463 35259920
    [Google Scholar]
  70. YangB. DongY. WangF. ZhangY. Nanoformulations to enhance the bioavailability and physiological functions of polyphenols.Molecules20202520461310.3390/molecules25204613 33050462
    [Google Scholar]
  71. SaP. MohapatraP. SwainS.S. KhuntiaA. SahooS.K. Phytochemical-based nanomedicine for targeting tumor microenvironment and inhibiting cancer chemoresistance: Recent advances and pharmacological insights.Mol. Pharm.202320115254527710.1021/acs.molpharmaceut.3c00286 37596986
    [Google Scholar]
  72. KothawadeS.N. PandeV.V. Formulation and evaluation of amisulpride loaded intranasal microemulsion., Indian drugs2023609495610.53879/id.60.09.13783
    [Google Scholar]
  73. YinZ. ZhengT. HoC.T. HuangQ. WuQ. ZhangM. Improving the stability and bioavailability of tea polyphenols by encapsulations: A review.Food Sci. Hum. Wellness202211353755610.1016/j.fshw.2021.12.011
    [Google Scholar]
  74. KiddP.M. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts.Altern. Med. Rev.2009143226246 19803548
    [Google Scholar]
  75. EnechukwuC.I. OnuegbuA.J. OlisekodiakaM.J. ElejeG.U. IkechebeluJ.I. UgboajaJ.O. AmahU.K. OkwaraJ.E. IgwegbeA.O. Oxidative stress markers and lipid profiles of patients with polycystic ovary syndrome in a Nigerian tertiary hospital.Obstet. Gynecol. Sci.201962533534310.5468/ogs.2019.62.5.335 31538077
    [Google Scholar]
  76. da Silva BritoA.K. de Morais LimaG. de FariasL.M. RodriguesL.A.R.L. de CarvalhoV.B.L. de Carvalho PereiraC.F. de Macedo Gonçalves FrotaK. Conde-JúniorA.M. MouraA.M.O. dos Santos RizzoM. Barbosa FonsecaC.M. de MouraR.C. dos SantosR.C. de Souza de Almeida LeiteJ.R. dos SantosM.A.P. NunesP.H.M. ArcanjoD.D.R. do Carmo de Carvalho e Martins, M. Lycopene-rich extract from red guava (Psidium guajava L.) decreases plasma triglycerides and improves oxidative stress biomarkers on experimentally-induced dyslipidemia in hamsters.Nutrients201911239310.3390/nu11020393 30781884
    [Google Scholar]
  77. EriksonK.M. El-KhouriK. PetricR. TangC. ChenJ. VasquezD.E.C. FordahlS.C. JiaZ. Carbon nanodots attenuate lipid peroxidation in the ldl receptor knockout mouse brain.Antioxidants2023125108110.3390/antiox12051081 37237947
    [Google Scholar]
  78. VenâncioF.A. AlmeidaL.A. ZovicoP.V. BaraunaV.G. MiguelG.P.S. PedrosaR.G. HaraguchiF.K. Roux-en-Y gastric bypass and sleeve gastrectomy differently affect oxidative damage markers and their correlations with body parameters.Obes. Surg.20213141680168710.1007/s11695‑020‑05179‑8 33392994
    [Google Scholar]
  79. CoftaS. WiniarskaH.M. PłóciniczakA. BielawskaL. BrożekA. PiorunekT. KostrzewskaT.M. WysockaE. Oxidative stress markers and severity of obstructive sleep apnea.Adv. Exp. Med. Biol.20191222273510.1007/5584_2019_433 31559568
    [Google Scholar]
  80. TomaL. DeleanuM. SandaG.M. BarbălatăT. NiculescuL.Ş. SimaA.V. StancuC.S. Bioactive compounds formulated in phytosomes administered as complementary therapy for metabolic disorders.Int. J. Mol. Sci.2024258416210.3390/ijms25084162 38673748
    [Google Scholar]
  81. VaradkarM. GadgoliC. Preparation and evaluation of wound healing activity of phytosomes of crocetin from Nyctanthes arbor-tristis in rats.J. Tradit. Complement. Med.202212435436010.1016/j.jtcme.2021.10.002 35747356
    [Google Scholar]
  82. KhanzodeM.B. KajaleA.D. ChannawarM.A. GawandeS.R. Review on phytosomes: A novel drug delivery system.GSC Biol. Pharm. Sci.202013120321110.30574/gscbps.2020.13.1.0345
    [Google Scholar]
  83. FernandesF. Dias-TeixeiraM. Delerue-MatosC. GrossoC. Critical review of lipid-based nanoparticles as carriers of neuroprotective drugs and extracts.Nanomaterials202111356310.3390/nano11030563 33668341
    [Google Scholar]
  84. ManeK. BaokarS. BhujbalA. PharandeS. PatilG. PatilR. JainP. PandeyA. Phyto-phospholipid complexes (phytosomes): A novel approach to improve the bioavailability of active constituents.Int. J. Adv. Sci. Res.202011036878
    [Google Scholar]
  85. HendawyO.M. Al-SaneaM.M. ElbargisyR.M. RahmanH.U. GomaaH.A.M. MohamedA.A.B. IbrahimM.F. KassemA.M. ElmowafyM. Development of olive oil containing phytosomal nanocomplex for improving skin delivery of quercetin: Formulation design optimization, in vitro and Ex Vivo appraisals.Pharmaceutics2023154112410.3390/pharmaceutics15041124 37111610
    [Google Scholar]
  86. QushawyM. AlenziA.M. AlbalawiS.A. AlghamdiS.G. AlbalawiR.F. AlbalawiH.S. Review on different vesicular drug delivery systems (VDDSs) and their applications.Recent Pat. Nanotechnol.2023171183210.2174/1872210516666220228150624 35227188
    [Google Scholar]
  87. KumarS. BaldiA. SharmaD.K. Phytosomes: A modernistic approach for novel herbal drug delivery-enhancing bioavailability and revealing endless frontier of phytopharmaceuticals.J. Dev. Drugs2019918
    [Google Scholar]
  88. DodleT. MohantyD. TripathyB. PanigrahyA.B. SirikondaS. KumarL. KumarC.P. GobinathM. PatroC.S. BakshiV. MaharanaP. A critical review on phytosomes: Advancement and research on emerging nanotechnological tools.Curr. Bioact. Compd.2023195e20092220896610.2174/1573407218666220920094352
    [Google Scholar]
  89. KothawadeS.N. PacharneV.M. Formulation and evaluation of liquid and solid self micro emulsifying drug delivery system of eprosartan mesylate.Int. J. Pharm. Sci. Res.201891253335338
    [Google Scholar]
  90. KalitaB. PatwaryB.N. Formulation and in vitro evaluation of hesperidin-phospholipid complex and its antioxidant potential.Curr. Drug Ther.2020151283610.2174/1574885514666190226155933
    [Google Scholar]
  91. PoliaF. Pastor-BeldaM. Martínez-BlázquezA. HorcajadaM.N. Tomás-BarberánF.A. García-VillalbaR. Technological and biotechnological processes to enhance the bioavailability of dietary (poly) phenols in humans.J. Agric. Food Chem.20227072092210710.1021/acs.jafc.1c07198 35156799
    [Google Scholar]
  92. ZhangW. LiuY. ZhangX. WuZ. WengP. Tea polyphenols-loaded nanocarriers: preparation technology and biological function.Biotechnol. Lett.202244338739810.1007/s10529‑022‑03234‑1 35229222
    [Google Scholar]
  93. DuttaA. PatilR.K. PatiH.C. Curcumin: Its bioavailability and nanoparticle formulation: A Review.Int. J. Health Sci. Res.2021111022823810.52403/ijhsr.20211030
    [Google Scholar]
  94. AraneP.M. GhanwatD.A. BoyaneV. KothawadeS.N. DoshiP. Preparation and in vitro characterization of eprosartan mesylate solid dispersions using skimmed milk powder as carrier.Int. J. Adv. Pharmaceut. Res.2011212658665
    [Google Scholar]
  95. SinghA.K. SinghA. Phyto-phospholipid complexes: a potential novel carrier system for improving bioavailability of phytoconstituents.Res. J. Pharm. Technol.20201321059106610.5958/0974‑360X.2020.00195.X
    [Google Scholar]
  96. KarpuzM. Silindir‐GunayM. Lipid‐based drug delivery systems and their role in infection and inflammation imaging.Nanoengineering of Biomaterials.WILEY‐VCH GmbH2022202246950310.1002/9783527832095.ch15
    [Google Scholar]
  97. LiQ. XiongY. JiC. YanZ. The application of nanotechnology in the codelivery of active constituents of plants and chemotherapeutics for overcoming physiological barriers during antitumor treatment.BioMed Res. Int.2019201911610.1155/2019/9083068 31915707
    [Google Scholar]
  98. NeillT. KapoorA. XieC. BuraschiS. IozzoR.V. A functional outside-in signaling network of proteoglycans and matrix molecules regulating autophagy.Matrix Biol.2021100-10111814910.1016/j.matbio.2021.04.001 33838253
    [Google Scholar]
  99. YouM. XieZ. ZhangN. ZhangY. XiaoD. LiuS. ZhuangW. LiL. TaoY. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets.Signal Transduct. Target. Ther.20238119610.1038/s41392‑023‑01442‑3 37164974
    [Google Scholar]
  100. MazurakovaA. SamecM. KoklesovaL. BiringerK. KudelaE. Al-IshaqR.K. PecM. GiordanoF.A. BüsselbergD. KubatkaP. GolubnitschajaO. Anti-prostate cancer protection and therapy in the framework of predictive, preventive and personalised medicine — comprehensive effects of phytochemicals in primary, secondary and tertiary care.EPMA J.202213346148610.1007/s13167‑022‑00288‑z 35821883
    [Google Scholar]
  101. JavedM.N. DahiyaE.S. IbrahimA.M. AlamM.S. KhanF.A. PottooF.H. Recent advancement in clinical application of nanotechnological approached targeted delivery of herbal drugs.Nanophytomedicine.SingaporeSpringer202010.1007/978‑981‑15‑4909‑0_9
    [Google Scholar]
  102. DwivediJ. SachanP. WalP. DwivediS. SharmaM.C. RaoS.P. Detailed review on phytosomal formulation attenuating new pharmacological therapies. Adv Tradit Med.ADTM202310.1007/s13596‑023‑00712‑3
    [Google Scholar]
  103. RenzulliM. PetaG. VasuriF. MarascoG. CarettiD. BartalenaL. SpinelliD. GiampalmaE. D’ErricoA. GolfieriR. Standardization of conventional chemoembolization for hepatocellular carcinoma.Ann. Hepatol.20212210027810.1016/j.aohep.2020.10.006 33129978
    [Google Scholar]
  104. RanaM. KumarA. RanaA.J. Drug delivery through targeted approach with special references to phytosomes.Role of Novel Drug Delivery Vehicles in NanobiomedicineIntech open202010.5772/intechopen.86644
    [Google Scholar]
  105. StromsnesK. LagzdinaR. Olaso-GonzalezG. Gimeno-MallenchL. GambiniJ. Pharmacological properties of polyphenols: Bioavailability, mechanisms of action, and biological effects in in vitro studies, animal models, and humans.Biomedicines202198107410.3390/biomedicines9081074 34440278
    [Google Scholar]
  106. MunteanuC. SchwartzB. The effect of bioactive aliment compounds and micronutrients on non-alcoholic fatty liver disease.Antioxidants202312490310.3390/antiox12040903 37107278
    [Google Scholar]
  107. DaiX. LiaoY. YangC. ZhangY. FengM. TianY. QuQ. ShengM. LiZ. PengX. CenS. ShiX. Diammonium glycyrrhizinate-based micelles for improving the hepatoprotective effect of baicalin: Characterization and biopharmaceutical study.Pharmaceutics202215112510.3390/pharmaceutics15010125 36678754
    [Google Scholar]
  108. KadriyaA. FalahM. Nanoscale phytosomes as an emerging modality for cancer therapy.Cells20231215199910.3390/cells12151999 37566078
    [Google Scholar]
  109. SuprajaB. MulangiS. An updated review on pharmacosomes, a vesicular drug delivery system.J. Drug Deliv. Ther.201991-s39340210.22270/jddt.v9i1‑s.2234
    [Google Scholar]
  110. ZhouJ. SunH. WangZ. CongW. WangJ. ZengM. ZhouW. BieP. LiuL. WenT. HanG. WangM. LiuR. LuL. RenZ. ChenM. ZengZ. LiangP. LiangC. ChenM. YanF. WangW. JiY. YunJ. CaiD. ChenY. ChengW. ChengS. DaiC. GuoW. HuaB. HuangX. JiaW. LiY. LiY. LiangJ. LiuT. LvG. MaoY. PengT. RenW. ShiH. ShiG. TaoK. WangW. WangX. WangZ. XiangB. XingB. XuJ. YangJ. YangJ. YangY. YangY. YeS. YinZ. ZhangB. ZhangB. ZhangL. ZhangS. ZhangT. ZhaoY. ZhengH. ZhuJ. ZhuK. LiuR. ShiY. XiaoY. DaiZ. TengG. CaiJ. WangW. CaiX. LiQ. ShenF. QinS. DongJ. FanJ. Guidelines for the diagnosis and treatment of hepatocellular carcinoma (2019 edition).Liver Cancer20209668272010.1159/000509424 33442540
    [Google Scholar]
  111. Pan-OnS. DilokthornsakulP. TiyaboonchaiW. Trends in advanced oral drug delivery system for curcumin: A systematic review.J. Control. Release202234833534510.1016/j.jconrel.2022.05.048 35654170
    [Google Scholar]
  112. AminA. AwadB. Crocin-sorafenib combination therapy for liver cancer.Patent US10933076B22019
  113. AminA. Prevention of liver cancer with safranal-based formulations.Patent US10912741B22019
  114. Camptothecin derivatives with antitumor activity.Patent WO2008011994A12006
  115. MuraliC. MudgilP. GanC.Y. TaraziH. El-AwadyR. AbdallaY. AminA. MaqsoodS. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma.Sci. Rep.2021111706210.1038/s41598‑021‑86391‑z 33782460
    [Google Scholar]
  116. AbdallaY. AbdallaA. HamzaA.A. AminA. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation.Front. Pharmacol.20221277750010.3389/fphar.2021.777500 35177980
    [Google Scholar]
  117. MathewB.T. TorkyY. AminA. MouradA.H.I. AyyashM.M. El-KeblawyA. Hilal-AlnaqbiA. AbuQamarS.F. El-TarabilyK.A. Halotolerant marine rhizosphere-competent actinobacteria promote Salicornia bigelovii growth and seed production using seawater irrigation.Front. Microbiol.20201155210.3389/fmicb.2020.00552 32308651
    [Google Scholar]
  118. XieY. MuC. KazybayB. SunQ. KutzhanovaA. NazarbekG. XuN. NurtayL. WangQ. AminA. LiX. Network pharmacology and experimental investigation of Rhizoma polygonati extract targeted kinase with herbzyme activity for potent drug delivery.Drug Deliv.20212812187219710.1080/10717544.2021.1977422 34662244
    [Google Scholar]
  119. Al ShamsiM. AminA. AdeghateE. Vitamin E ameliorates some biochemical parameters in normal and diabetic rats.Ann. N. Y. Acad. Sci.20061084141143110.1196/annals.1372.033 17151319
    [Google Scholar]
  120. AminA. BuratovichM. The anti-cancer charm of flavonoids: A cup-of-tea will do!Rec. Pat. Anti-Cancer Drug Disc20072210911710.2174/157489207780832414
    [Google Scholar]
  121. GuiuB. ChevallierP. AssenatE. BarbierE. MerleP. BouvierA. DumortierJ. Nguyen-KhacE. GugenheimJ. RodeA. ObertiF. ValetteP.J. YzetT. ChevallierO. BarbareJ.C. LatournerieM. BoulinM. Idarubicin-loaded beads for chemoembolization of hepatocellular carcinoma: the IDASPHERE II single-arm phase II trial.Radiology2019291380180810.1148/radiol.2019182399 31038408
    [Google Scholar]
  122. LiB. ChanH.L. ChenP. Immune checkpoint inhibitors: Basics and challenges.Curr. Med. Chem.201926173009302510.2174/0929867324666170804143706 28782469
    [Google Scholar]
  123. YangC. ZhangH. ZhangL. ZhuA.X. BernardsR. QinW. WangC. Evolving therapeutic landscape of advanced hepatocellular carcinoma.Nat. Rev. Gastroenterol. Hepatol.202320420322210.1038/s41575‑022‑00704‑9 36369487
    [Google Scholar]
  124. ChewS.A. MoscatoS. GeorgeS. AzimiB. DantiS. Liver cancer: current and future trends using biomaterials.Cancers20191112202610.3390/cancers11122026 31888198
    [Google Scholar]
  125. AddissoukyT.A. AliM.M.A. El Tantawy El SayedI. WangY. El BazA. ElarabanyN. KhalilA.A. Preclinical promise and clinical challenges for innovative therapies targeting liver fibrogenesis.Arch. Gastroenterol. Res.202341142310.33696/Gastroenterology.4.044
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096319007240703072650
Loading
/content/journals/ccdt/10.2174/0115680096319007240703072650
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test