Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1568-0096
  • E-ISSN: 1873-5576

Abstract

Colorectal cancer (CRC) is a significant global health concern. We need ways to detect it early and determine the best treatments. One promising method is liquid biopsy, which uses cancer cells and other components in the blood to help diagnose and treat the disease. Liquid biopsies focus on three key elements: circulating tumor DNA (ctDNA), circulating microRNA (miRNA), and circulating tumor cells (CTC). By analyzing these elements, we can identify CRC in its early stages, predict how well a treatment will work, and even spot signs of cancer returning. This study investigates the world of liquid biopsy, a rapidly growing field. We want to understand how it can help us better recognize the molecular aspects of cancer, improve and diagnostics, tailor treatments to individual patients, and keep track of the disease over the long-term. We explored specific components of liquid biopsy, like extracellular vesicles and cell-free DNA, and how they are used to detect CRC. This review sheds light on the current state of knowledge and the many ways a liquid biopsy can be used in treating colorectal cancer. It can transform patient care, disease management, and clinical outcomes by offering non-invasive cancer-targeting solutions.

Loading

Article metrics loading...

/content/journals/ccdt/10.2174/0115680096295070240318075023
2024-04-15
2025-10-10
Loading full text...

Full text loading...

References

  1. ArbeletF.B SmåstuenC.M HovdeØ JørgensenJ.L.P MoumB Risk of cancer in patients with crohn’s disease 30 years after diagnosis (the IBSEN Study).Crohns. Colit.202354otad057
    [Google Scholar]
  2. NorcicG. Liquid biopsy in colorectal cancer-current status and potential clinical applications.Micromachines20189630010.3390/mi906030030424233
    [Google Scholar]
  3. FerlayJ. Global Cancer Observatory: Cancer TomorrowLyon, FranceInternational Agency for Research on Cancer2020
    [Google Scholar]
  4. BahnassyA.A. SalemS.E. MohanadM. AbulezzN.Z. AbdellateifM.S. HusseinM. ZekriC.A.N. ZekriA.R.N. AllahloubiN.M.A. Prognostic significance of circulating tumor cells (CTCs) in Egyptian non-metastatic colorectal cancer patients: A comparative study for four different techniques of detection (Flowcytometry, CellSearch, Quantitative Real-time PCR and Cytomorphology).Exp. Mol. Pathol.20191069010110.1016/j.yexmp.2018.12.00630578762
    [Google Scholar]
  5. VerplanckeK.B. KeirnsD.L. McMahonK. CreechZ.A. TruongG.T. SilbersteinP.T. DahlM.B. Association between demographic and socioeconomic factors and diagnosis of advanced non-small cell lung cancer: An analysis of the national cancer database.Cureus2023158e4435110.7759/cureus.4435137779816
    [Google Scholar]
  6. MirzaS. BhadreshaK. MughalM.J. McCabeM. ShahbaziR. RuffP. PennyC. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet?Front. Oncol.202312102356510.3389/fonc.2022.102356536686736
    [Google Scholar]
  7. DavisA.A. ZhangQ. GerratanaL. ShahA.N. ZhanY. QiangW. FinkelmanB.S. FlaumL. BehdadA. GradisharW.J. PlataniasL.C. CristofanilliM. Association of a novel circulating tumor DNA next-generating sequencing platform with circulating tumor cells (CTCs) and CTC clusters in metastatic breast cancer.Breast Cancer Res.201921113710.1186/s13058‑019‑1229‑631801599
    [Google Scholar]
  8. DenèveE. RiethdorfS. RamosJ. NoccaD. CoffyA. DaurèsJ.P. MaudelondeT. FabreJ.M. PantelK. PanabièresA.C. Capture of viable circulating tumor cells in the liver of colorectal cancer patients.Clin. Chem.20135991384139210.1373/clinchem.2013.20284623695297
    [Google Scholar]
  9. MagbanuaM.J.M. SwigartL.B. WuH.T. HirstG.L. YauC. WolfD.M. TinA. SalariR. ShchegrovaS. PawarH. DelsonA.L. DeMicheleA. LiuM.C. ChienA.J. TripathyD. AsareS. LinC.H.J. BillingsP. AleshinA. SethiH. LouieM. ZimmermannB. EssermanL.J. van ’t VeerL.J. Circulating tumor DNA in neoadjuvant-treated breast cancer reflects response and survival.Ann. Oncol.202132222923910.1016/j.annonc.2020.11.00733232761
    [Google Scholar]
  10. Marrugo-RamírezJ. MirM. SamitierJ. Blood-based cancer biomarkers in liquid biopsy: A promising non-invasive alternative to tissue biopsy.Int. J. Mol. Sci.20181910287710.3390/ijms1910287730248975
    [Google Scholar]
  11. RuttenF.L.J. ParksP.D. WeiserE. FanC. JacobsonD.J. JenkinsG.D. ZhuX. GriffinJ.M. LimburgP.J. Health care provider characteristics associated with colorectal cancer screening preferences and use.Mayo Clin. Proc.202297110110910.1016/j.mayocp.2021.06.02834920895
    [Google Scholar]
  12. NguyenV.T.C. NguyenT.H. DoanN.N.T. PhamT.M.Q. NguyenG.T.H. NguyenT.D. TranT.T.T. VoD.L. PhanT.H. JasmineT.X. NguyenV.C. NguyenH.T. NguyenT.V. NguyenT.H.H. HuynhL.A.K. TranT.H. DangQ.T. DoanT.N. TranA.M. NguyenV.H. NguyenV.T.A. HoL.M.Q. TranQ.D. PhamT.T.T. HoT.D. NguyenB.T. NguyenT.N.V. NguyenT.D. PhuD.T.B. PhanB.H.H. VoT.L. NaiT.H.T. TranT.T. TruongM.H. TranN.C. LeT.K. TranT.H.T. DuongM.L. BachH.P.T. KimV.V. PhamT.A. TranD.H. LeT.N.A. PhamT.V.N. LeM.T. VoD.H. TranT.M.T. NguyenM.N. VanT.T.V. NguyenA.N. TranT.T. TranV.U. LeM.P. DoT.T. PhanT.V. NguyenH.D.L. NguyenD.S. CaoV.T. DoT.T.T. TruongD.K. TangH.S. GiangH. NguyenH.N. PhanM.D. TranL.S. Multimodal analysis of methylomics and fragmentomics in plasma cell-free DNA for multi-cancer early detection and localization.eLife202312RP8908310.7554/eLife.89083.337819044
    [Google Scholar]
  13. GostomczykK. MarsoolM.D.M. TayyabH. PandeyA. BorowczakJ. MacomeF. ChaconJ. DaveT. ManiewskiM. SzylbergŁ. Targeting circulating tumor cells to prevent metastases.Hum. Cell202337110112010.1007/s13577‑023‑00992‑637874534
    [Google Scholar]
  14. TarazonaN. ValienteG.F. GambardellaV. ZuñigaS. GarridoR.P. HuertaM. RosellóS. CiarpagliniM.C. AsinsC.J.A. CarrascoF. MartínezF.A. BruixolaG. FleitasT. MartínJ. MartínezT.R. MoroD. CastilloJ. EspíA. RodaD. CervantesA. Targeted next-generation sequencing of circulating-tumor DNA for tracking minimal residual disease in localized colon cancer.Ann. Oncol.201930111804181210.1093/annonc/mdz39031562764
    [Google Scholar]
  15. BoucherL. SorelN. DesterkeC. CholletM. RozalskaL. HernanzG.M.P. CayssialsE. RaimbaultA. GriscelliB.A. TurhanA.G. ChomelJ.C. Deciphering potential molecular signatures to differentiate acute myeloid leukemia (AML) with BCR:ABL1 from chronic myeloid leukemia (CML) in blast crisis.Int. J. Mol. Sci.202324201544110.3390/ijms24201544137895120
    [Google Scholar]
  16. ZhuV.L. RandD.R. ArnoldK.E. PagedarN.A. BayonR. BuchakjianM.R. Association of core biopsy with extranodal extension in surgically treated human papillomavirus–associated oropharyngeal squamous cell carcinoma.JAMA Otolaryngol. Head Neck Surg.20231491195596010.1001/jamaoto.2023.189737433026
    [Google Scholar]
  17. WuZ. YuL. HouJ. CuiL. HuangY. ChenQ. SunY. LuW. ZhangC. SunD. Plasma cfDNA for the diagnosis and prognosis of colorectal cancer.J. Oncol.2022202211010.1155/2022/953838435685424
    [Google Scholar]
  18. KolenčíkD. ShishidoS.N. PituleP. MasonJ. HicksJ. KuhnP. Liquid biopsy in colorectal carcinoma: Clinical applications and challenges.Cancers2020126137610.3390/cancers1206137632471160
    [Google Scholar]
  19. VacanteM. CiuniR. BasileF. BiondiA. The liquid biopsy in the management of colorectal cancer: An overview.Biomedicines20208930810.3390/biomedicines809030832858879
    [Google Scholar]
  20. IranpourP. HaseliS. Missing pituitary stalk: A key to the diagnosis.Iran. J. Med. Sci.202045322422532546890
    [Google Scholar]
  21. MendelsonM. VenterF. MoshabelaM. GrayG. BlumbergL. de OliveiraT. MadhiS.A. The political theatre of the UK’s travel ban on South Africa.Lancet2021398103182211221310.1016/S0140‑6736(21)02752‑534871546
    [Google Scholar]
  22. ZhouH. ZhuL. SongJ. WangG. LiP. LiW. LuoP. SunX. WuJ. LiuY. ZhuS. ZhangY. Liquid biopsy at the frontier of detection, prognosis and progression monitoring in colorectal cancer.Mol. Cancer20222118610.1186/s12943‑022‑01556‑235337361
    [Google Scholar]
  23. ArmstrongA.J. LiX. TuckerM. LiS. MuX.J. EngK.W. SbonerA. RubinM. GersteinM. Molecular medicine tumor board: Whole-genome sequencing to inform on personalized medicine for a man with advanced prostate cancer.Prostate Cancer Prostatic Dis.202124378679310.1038/s41391‑021‑00324‑533568750
    [Google Scholar]
  24. JiangM. YangZ. DaiJ. Intratumor microbiome: Selective colonization in the tumor microenvironment and a vital regulator of tumor biology.MedComm202345e376
    [Google Scholar]
  25. OrdóñezC.D. CamposM.C. EgasC. RodríguezR.M. A primer-independent DNA polymerase-based method for competent whole-genome amplification of intermediate to high GC sequences.NAR Genom. Bioinform.202353lqad07310.1093/nargab/lqad07337608803
    [Google Scholar]
  26. YeomH. LeeY. RyuT. NohJ. LeeA.C. LeeH.B. KangE. SongS.W. KwonS. Barcode-free next-generation sequencing error validation for ultra-rare variant detection.Nat. Commun.201910197710.1038/s41467‑019‑08941‑430816127
    [Google Scholar]
  27. UnderhillH.R. Leveraging the fragment length of circulating tumour dna to improve molecular profiling of solid tumour malignancies with next-generation sequencing: A pathway to advanced non-invasive diagnostics in precision oncology?Mol. Diagn. Ther.202125438940810.1007/s40291‑021‑00534‑634018157
    [Google Scholar]
  28. CifuentesG.A. SantiagoA. BlancoM.L. FueyoM. MartínezL.E. SoriaR. LópezM.I. BeltránC.P. CotoP.P. RubiR.D. UrquillaK. DuránN.S. ÁlvarezR. LagoC.G. OteroA. DiñeiroM. CapínR. CadiñanosJ. CabanillasR. Clinical utility of liquid biopsy and integrative genomic profiling in early-stage and oligometastatic cancer patients treated with radiotherapy.Br. J. Cancer2023128585787610.1038/s41416‑022‑02102‑z36550207
    [Google Scholar]
  29. FuX. SunL. DongR. ChenJ.Y. SilakitR. CondonL.F. LinY. LinS. PalmiterR.D. GuL. Polony gels enable amplifiable DNA stamping and spatial transcriptomics of chronic pain.Cell20221852446214633.e1710.1016/j.cell.2022.10.02136368323
    [Google Scholar]
  30. MarineR.L. MagañaL.C. CastroC.J. ZhaoK. MontmayeurA.M. SchmidtA. Diez-ValcarceM. NgT.F.F. VinjéJ. BurnsC.C. NixW.A. RotaP.A. ObersteM.S. Comparison of Illumina MiSeq and the ion torrent PGM and S5 platforms for whole-genome sequencing of picornaviruses and caliciviruses.J. Virol. Methods202028011386510.1016/j.jviromet.2020.11386532302601
    [Google Scholar]
  31. BegolliR. ChatziangelouM. SamiotakiM. GoutasA. BardaS. GoutzourelasN. KevrekidisD.P. MaleaP. TrachanaV. LiuM. LinX. KollatosN. StagosD. GiakountisA. Transcriptome and proteome analysis reveals the anti-cancer properties of Hypnea musciformis marine macroalga extract in liver and intestinal cancer cells.Hum. Genomics20231717110.1186/s40246‑023‑00517‑037525271
    [Google Scholar]
  32. DasS. BiswasN.K. BasuA. Mapinsights: Deep exploration of quality issues and error profiles in high-throughput sequence data.Nucleic Acids Res.20235114e75e7510.1093/nar/gkad53937378434
    [Google Scholar]
  33. MikhaylovaV. RzepkaM. KawamuraT. Targeted phasing of 2-200 kilobase DNA fragments with a short-read sequencer and a single-tube linked-read library method.bioRxiv202310.1101/2023.03.05.531179
    [Google Scholar]
  34. MigliettaL. ChenY. LuoZ. XuK. DingN. PengT. MoniriA. KreitmannL. SoblecheroC.M. HolmesA. GeorgiouP. ManzanoR.J. Smart-Plexer: A breakthrough workflow for hybrid development of multiplex PCR assays.Commun. Biol.20236192210.1038/s42003‑023‑05235‑w37689821
    [Google Scholar]
  35. YangS. XianQ. LiuY. ZhangZ. SongQ. GaoY. WenW. A silicon-based PDMS-PEG copolymer microfluidic chip for real-time polymerase chain reaction diagnosis.J. Funct. Biomater.202314420810.3390/jfb1404020837103298
    [Google Scholar]
  36. ManukyanH. WahidR. AnsariA. TritamaE. MacadamA. KonzJ. ChumakovK. LaassriM. Quantitative RT-PCR assays for quantification of undesirable mutants in the novel type 2 oral poliovirus vaccine.Vaccines2022109139410.3390/vaccines1009139436146473
    [Google Scholar]
  37. FilgesS. YamadaE. StåhlbergA. GodfreyT.E. Impact of polymerase fidelity on background error rates in next-generation sequencing with unique molecular identifiers/barcodes.Sci. Rep.201991350310.1038/s41598‑019‑39762‑630837525
    [Google Scholar]
  38. YaoY. ZhaoS. LiangY. HuF. PengN. A one-stage deep learning based method for automatic analysis of droplet-based digital PCR images.Analyst2023148133065307310.1039/D3AN00615H37305953
    [Google Scholar]
  39. ArcilaM.E. PatelU. BoroujeniM.A. YaoJ. ChanR. ChanJ. RijoI. YuW. ChavesN. PatelH. KakadiyaS. LachhanderS. SenechalB. RiviereI.C. WangX. SadelainM. NafaK. SalazarP. PalombaL. CurranK.J. ParkJ.H. DaniyanA. BorsuL. Validation of a high-sensitivity assay for detection of chimeric antigen receptor T-cell vectors using low-partition digital PCR technology.J. Mol. Diagn.202325963464510.1016/j.jmoldx.2023.06.00237330049
    [Google Scholar]
  40. DongL. WangS. FuB. WangJ. Evaluation of droplet digital PCR and next generation sequencing for characterizing DNA reference material for KRAS mutation detection.Sci. Rep.201881965010.1038/s41598‑018‑27368‑330504843
    [Google Scholar]
  41. Fitarelli-KiehlM. YuF. AshtaputreR. LeongK.W. LadasI. SuppleeJ. PaweletzC. MitraD. SchoenfeldJ.D. ParangiS. MakrigiorgosG.M. Denaturation-enhanced droplet digital PCR for liquid biopsies.Clin. Chem.201864121762177110.1373/clinchem.2018.29384530274976
    [Google Scholar]
  42. BelloneS. McNamaraB. MutluL. DemirkiranC. HartwichT.M.P. HaroldJ. HartwichY.Y. SiegelE.R. SantinA.D. Monitoring treatment response, early recurrence, and survival in uterine serous carcinoma and carcinosarcoma patients using personalized circulating tumor DNA biomarkers.Int. J. Mol. Sci.20232410887310.3390/ijms2410887337240216
    [Google Scholar]
  43. HallermayrA. KeßlerT. FujeraM. LiesfeldB. BernsteinS. von AmelnS. SchanzeD. LangeS.V. PicklJ.M.A. NeuhannT.M. FederH.E. Impact of cfDNA reference materials on clinical performance of liquid biopsy NGS assays.Cancers20231520502410.3390/cancers1520502437894392
    [Google Scholar]
  44. AyerbesV.M. AlfonsoG.P. LuengoM.J. CaceresP.P.P. TrujilloC.O.A. TocinoV.R. LlanosM. AyalaL.B. MironL.M.L. SaludA. NoguerasC.L. CarboneroG.R. SafontM.J. FerrerF.E. AparicioJ. ConesaV.M.A. PonceG.C. TeijidoG.P. MaganM.M.B. BusquierI. SalgadoM. VilaL.A. Evolution of RAS mutations in cell-free DNA of patients with tissue RAS wild-type metastatic colorectal cancer receiving first-line treatment: The PERSEIDA study.Cancers20221424607510.3390/cancers1424607536551560
    [Google Scholar]
  45. CaugheyB.A. UmemotoK. GreenM.F. IkedaM. LoweM.E. UenoM. NiedzwieckiD. TaniguchiH. WaldenD.J. KomatsuY. D’AnnaR. EsakiT. DendaT. DattoM.B. BandoH. Bekaii-SaabT. YoshinoT. StricklerJ.H. NakamuraY. Identification of an optimal mutant allele frequency to detect activating KRAS, NRAS, and BRAF mutations in a commercial cell-free DNA next-generation sequencing assay in colorectal and pancreatic adenocarcinomas.J. Gastrointest. Oncol.20231452083209610.21037/jgo‑23‑11437969845
    [Google Scholar]
  46. GarciaJ. ForestierJ. DusserreE. WoznyA.S. GeiguerF. MerleP. TissotC. Ferraro-PeyretC. JonesF.S. EdelsteinD.L. CheynetV. BardelC. VilchezG. XuZ. BringuierP.P. BarritaultM. PesceB.K. GuilletM. ChauvenetM. ManshipB. BrevetM. LafrasseR.C. HervieuV. CouraudS. WalterT. PayenL. Cross-platform comparison for the detection of RAS mutations in cfDNA (ddPCR Biorad detection assay, BEAMing assay, and NGS strategy).Oncotarget2018930211222113110.18632/oncotarget.2495029765524
    [Google Scholar]
  47. ChenM. Mohd SaidN. Mohd RaisN.C. HoF. LingN. ChunM. NgY.S. EngW.N. YaoY. GrodzickiK.B. PangA. Remaining agile in the COVID-19 pandemic healthcare landscape – How we adopted a hybrid telemedicine geriatric oncology care model in an academic tertiary cancer center.J. Geriatr. Oncol.202213685686110.1016/j.jgo.2022.04.00635461791
    [Google Scholar]
  48. LoreeJ.M. KopetzS. RaghavK.P.S. Current companion diagnostics in advanced colorectal cancer; getting a bigger and better piece of the pie.J. Gastrointest. Oncol.20178119921210.21037/jgo.2017.01.0128280626
    [Google Scholar]
  49. DidelotA. Le CorreD. LuscanA. CazesA. PallierK. EmileJ.F. PuigL.P. BlonsH. Competitive allele specific TaqMan PCR for KRAS, BRAF and EGFR mutation detection in clinical formalin fixed paraffin embedded samples.Exp. Mol. Pathol.201292327528010.1016/j.yexmp.2012.03.00122426079
    [Google Scholar]
  50. SiuR.H.P. LiuY. ChanK.H.Y. RidzewskiC. SlaughterL.S. WuA.R. Optimization of on-bead emulsion polymerase chain reaction based on single particle analysis.Talanta202122112159310.1016/j.talanta.2020.12159333076127
    [Google Scholar]
  51. AlexandrouG. MantikasK.T. AllsoppR. YapeterC.A. JahinM. MelnickT. AliS. CoombesR.C. ToumazouC. ShawJ.A. KalofonouM. The evolution of affordable technologies in liquid biopsy diagnostics: The key to clinical implementation.Cancers20231522543410.3390/cancers1522543438001698
    [Google Scholar]
  52. Bravo-EganaV. SandersH. ChitnisN. New challenges, new opportunities: Next generation sequencing and its place in the advancement of HLA typing.Hum. Immunol.202182747848710.1016/j.humimm.2021.01.01033551127
    [Google Scholar]
  53. HayesE.K. SweeneyC.L. AndersonL.E. LiB. ErjavecG.B. GouthroM.T. KrkosekW.H. StoddartA.K. GagnonG.A. A novel passive sampling approach for SARS-CoV-2 in wastewater in a Canadian province with low prevalence of COVID-19.Environ. Sci. Water Res. Technol.2021791576158610.1039/D1EW00207D
    [Google Scholar]
  54. BelleiE. CaramaschiS. GiannicoG.A. MonariE. MartoranaE. BonettiR.L. BergaminiS. Research of prostate cancer urinary diagnostic biomarkers by proteomics: The noteworthy influence of inflammation.Diagnostics2023137131810.3390/diagnostics1307131837046536
    [Google Scholar]
  55. CabúsL. LagardeJ. CuradoJ. LizanoE. BozaP.J. Current challenges and best practices for cell-free long RNA biomarker discovery.Biomark. Res.20221016210.1186/s40364‑022‑00409‑w35978416
    [Google Scholar]
  56. CohenS.A. LiuM.C. AleshinA. Practical recommendations for using ctDNA in clinical decision making.Nature2023619796925926810.1038/s41586‑023‑06225‑y37438589
    [Google Scholar]
  57. HeidrichI. AbdallaT.S.A. ReehM. PantelK. Clinical applications of circulating tumor cells and circulating tumor DNA as a liquid biopsy marker in colorectal cancer.Cancers20211318450010.3390/cancers1318450034572727
    [Google Scholar]
  58. ZhongY. ZhouQ. ZhangY. ZhouS. ZhangG. JiangC. ZhangZ. ZhangX. XuJ. JinC. CaoL. ChenL. Cell-free DNA as a biomarker for colorectal cancer: A retrospective analysis in patients before and after surgery.Cell. Mol. Biol.202066213514110.14715/cmb/2020.66.2.2232415940
    [Google Scholar]
  59. YuanZ. ChenW. LiuD. QinQ. GradyW.M. FicheraA. WangH. HouT. LvX. LiC. WangH. CaiJ. Peritoneal cell-free DNA as a sensitive biomarker for detection of peritoneal metastasis in colorectal cancer: A prospective diagnostic study.Clin. Epigenetics20231516510.1186/s13148‑023‑01479‑937072801
    [Google Scholar]
  60. van’t ErveI. RoversK.P. ConstantinidesA. BolhuisK. WassenaarE.C.E. LurvinkR.J. HuysentruytC.J. SnaebjornssonP. BoermaD. van den BroekD. BuffartT.E. LahayeM.J. AalbersA.G.J. KokN.F.M. MeijerG.A. PuntC.J.A. KranenburgO. de HinghI.H.J.T. FijnemanR.J.A. Detection of tumor‐derived cell‐free DNA from colorectal cancer peritoneal metastases in plasma and peritoneal fluid.J. Pathol. Clin. Res.20217320320810.1002/cjp2.20733635598
    [Google Scholar]
  61. XuX. YuY. ShenM. LiuM. WuS. LiangL. HuangF. ZhangC. GuoW. LiuT. Role of circulating free DNA in evaluating clinical tumor burden and predicting survival in Chinese metastatic colorectal cancer patients.BMC Cancer2020201100610.1186/s12885‑020‑07516‑733066758
    [Google Scholar]
  62. LiJ. DittmarR.L. XiaS. ZhangH. DuM. HuangC.C. DrulinerB.R. BoardmanL. WangL. Cell‐free DNA copy number variations in plasma from colorectal cancer patients.Mol. Oncol.20171181099111110.1002/1878‑0261.1207728504856
    [Google Scholar]
  63. SpindlerK.L.G. PallisgaardN. AndersenR.F. BrandslundI. JakobsenA. Circulating free DNA as biomarker and source for mutation detection in metastatic colorectal cancer.PLoS One2015104e010824710.1371/journal.pone.010824725875772
    [Google Scholar]
  64. HamfjordJ. GurenT.K. DajaniO. JohansenJ.S. GlimeliusB. SorbyeH. PfeifferP. LingjærdeO.C. TveitK.M. KureE.H. PallisgaardN. SpindlerK.L.G. Total circulating cell-free DNA as a prognostic biomarker in metastatic colorectal cancer before first-line oxaliplatin-based chemotherapy.Ann. Oncol.20193071088109510.1093/annonc/mdz13931046124
    [Google Scholar]
  65. SpindlerK.L.G. DemuthC. SorensenB.S. JohansenJ.S. NielsenD. PallisgaardN. HoegdallE. PfeifferP. JensenV.B. Total cell-free DNA, carcinoembryonic antigen, and C-reactive protein for assessment of prognosis in patients with metastatic colorectal cancer.Tumour Biol.2018401110.1177/101042831881120730486767
    [Google Scholar]
  66. WatanabeJ. MaedaH. NagasakaT. Multicenter, single-arm, phase II study of the continuous use of panitumumab in combination with FOLFIRI after FOLFOX for RAS wild-type metastatic colorectal cancer: Exploratory sequential examination of acquired mutations in circulating cell-free DNA.Int. J. Cancer2022151122172218110.1002/ijc.3418435723084
    [Google Scholar]
  67. VessiesD.C.L. GreuterM.J.E. van RooijenK.L. LindersT.C. LanfermeijerM. RamkisoensingK.L. MeijerG.A. KoopmanM. CoupéV.M.H. VinkG.R. FijnemanR.J.A. van den BroekD. Performance of four platforms for KRAS mutation detection in plasma cell-free DNA: ddPCR, Idylla, COBAS z480 and BEAMing.Sci. Rep.2020101812210.1038/s41598‑020‑64822‑732415199
    [Google Scholar]
  68. MahmoodK. JampaniP. ClarkeJ.M. WolfS. WangX. WahidiM.M. GiovacchiniC.X. DorryM. ShoferS.L. ShierJ. JonesG. AntoniaS.J. NixonA.B. High yield of pleural cell-free DNA for diagnosis of oncogenic mutations in lung adenocarcinoma.Chest2023164125226110.1016/j.chest.2023.01.01936693563
    [Google Scholar]
  69. BartelsS. PersingS. HasemeierB. SchipperE. KreipeH. LehmannU. Molecular analysis of circulating cell-free DNA from lung cancer patients in routine laboratory practice.J. Mol. Diagn.201719572273210.1016/j.jmoldx.2017.05.00828723342
    [Google Scholar]
  70. IwamaE. SakaiK. AzumaK. HaradaT. HaradaD. NosakiK. HottaK. OhyanagiF. KurataT. FukuharaT. AkamatsuH. GotoK. ShimoseT. KishimotoJ. NakanishiY. NishioK. OkamotoI. Monitoring of somatic mutations in circulating cell-free DNA by digital PCR and next-generation sequencing during afatinib treatment in patients with lung adenocarcinoma positive for EGFR activating mutations.Ann. Oncol.201728113614110.1093/annonc/mdw53128177428
    [Google Scholar]
  71. BianchiR.M. AlvesC.D.B.T. SchwertzC.I. PanzieraW. De LorenzoC. da SilvaF.S. de CeccoB.S. DaudtC. ChavesF.R. CanalC.W. PavariniS.P. DriemeierD. Molecular and pathological characterization of teat papillomatosis in dairy cows in southern Brazil.Braz. J. Microbiol.202051136937510.1007/s42770‑019‑00175‑231642003
    [Google Scholar]
  72. HoldsJ.B. Is health care reform a gathering storm, for doctors?Mo. Med.2016113210410527311216
    [Google Scholar]
  73. WolfA.M.D. FonthamE.T.H. ChurchT.R. FlowersC.R. GuerraC.E. LaMonteS.J. EtzioniR. McKennaM.T. OeffingerK.C. ShihY.C.T. WalterL.C. AndrewsK.S. BrawleyO.W. BrooksD. FedewaS.A. Manassaram-BaptisteD. SiegelR.L. WenderR.C. SmithR.A. Colorectal cancer screening for average‐risk adults: 2018 guideline update from the American Cancer Society.CA Cancer J. Clin.201868425028110.3322/caac.2145729846947
    [Google Scholar]
  74. BrandsH.J. Van DijkB. BrohetR.M. van WestreenenH.L. de GrootJ.W.B. MoonsL.M.G. de Vos tot CappelN.W.H. Possible value of faecal immunochemical test (FIT) when added in symptomatic patients referred for colonoscopy: A systematic review.Cancers2023157201110.3390/cancers1507201137046672
    [Google Scholar]
  75. VirdeeP.S. PatnickJ. WatkinsonP. BirksJ. HoltT.A. Trends in the full blood count blood test and colorectal cancer detection: A longitudinal, case-control study of UK primary care patient data.NIHR Open Research202223210.3310/nihropenres.13266.237056715
    [Google Scholar]
  76. BresalierR.S. SenoreC. YoungG.P. AllisonJ. BenamouzigR. BentonS. BossuytP.M.M. CaroL. CarvalhoB. ChiuH.M. CoupéV.M.H. de KlaverW. de KlerkC.M. DekkerE. DolwaniS. FraserC.G. GradyW. GuittetL. GuptaS. HalloranS.P. HaugU. HoffG. ItzkowitzS. KortleverT. KoulaouzidisA. LadabaumU. SecretanL.B. LejaM. LevinB. LevinT.R. MacraeF. MeijerG.A. MelsonJ. O’MorainC. ParryS. RabeneckL. RansohoffD.F. SáenzR. SaitoH. DascalescuS.S. SchoenR.E. SelbyK. SinghH. SteeleR.J.C. SungJ.J.Y. SymondsE.L. WinawerS.J. An efficient strategy for evaluating new non-invasive screening tests for colorectal cancer: The guiding principles.Gut202372101904191810.1136/gutjnl‑2023‑32970137463757
    [Google Scholar]
  77. SokoroA. SinghH. Fecal occult blood test for evaluation of symptoms or for diagnostic testing.Am. J. Gastroenterol.2020115567968010.14309/ajg.000000000000056032058343
    [Google Scholar]
  78. BuskermolenM. CeninD.R. HelsingenL.M. GuyattG. VandvikP.O. HaugU. BretthauerM. VogelaarL.I. Colorectal cancer screening with faecal immunochemical testing, sigmoidoscopy or colonoscopy: A microsimulation modelling study.BMJ2019367l538310.1136/bmj.l538331578177
    [Google Scholar]
  79. PengL. WeiglK. BoakyeD. BrennerH. Risk scores for predicting advanced colorectal neoplasia in the average-risk population: A systematic review and meta-analysis.Am. J. Gastroenterol.2018113121788180010.1038/s41395‑018‑0209‑230315282
    [Google Scholar]
  80. BoschL.J.W. MelotteV. MongeraS. DaenenK.L.J. CoupéV.M.H. van TurenhoutS.T. StoopE.M. de WijkersloothT.R. MulderC.J.J. RauschC. KuipersE.J. DekkerE. DomanicoM.J. LidgardG.P. BergerB.M. van EngelandM. CarvalhoB. MeijerG.A. Multitarget stool DNA test performance in an average-risk colorectal cancer screening population.Am. J. Gastroenterol.2019114121909191810.14309/ajg.000000000000044531764091
    [Google Scholar]
  81. ShapiroJ.A. BoboJ.K. ChurchT.R. RexD.K. ChovnickG. ThompsonT.D. ZauberA.G. LiebermanD. LevinT.R. JosephD.A. NadelM.R. A comparison of fecal immunochemical and high-sensitivity guaiac tests for colorectal cancer screening.Am. J. Gastroenterol.2017112111728173510.1038/ajg.2017.28529016558
    [Google Scholar]
  82. JiangH.H. XingS.W. TangX. ChenY. LinK. HeL.W. LinM.B. TangE.J. Novel multiplex stool-based assay for the detection of early-stage colon cancer in a Chinese population.World J. Gastroenterol.202228242705273210.3748/wjg.v28.i24.270535979157
    [Google Scholar]
  83. FendrickA.M. VahdatV. ChenJ.V. LiebermanD. LimburgP.J. OzbayA.B. KisielJ.B. Comparison of simulated outcomes between stool- and blood-based colorectal cancer screening tests.Popul. Health Manag.202326423924510.1089/pop.2023.003737466476
    [Google Scholar]
  84. SharmaT. Analysis of the effectiveness of two noninvasive fecal tests used to screen for colorectal cancer in average-risk adults.Public Health2020182707610.1016/j.puhe.2020.01.02132179290
    [Google Scholar]
  85. ZhengK. DaiL. ZhaoY. LiL. LiW. ZhangX. SuQ. WuR. JiangY. ChenY. RanJ. Methylated SEPT9 combined with AFP and PIVKA-II is effective for the detection of HCC in high-risk population.BMC Gastroenterol.202323126010.1186/s12876‑023‑02900‑637525116
    [Google Scholar]
  86. SunJ. FeiF. ZhangM. LiY. ZhangX. ZhuS. ZhangS. The role of mSEPT9 in screening, diagnosis, and recurrence monitoring of colorectal cancer.BMC Cancer201919145010.1186/s12885‑019‑5663‑831088406
    [Google Scholar]
  87. BaraultL. AmatuA. SiravegnaG. PonzettiA. MoranS. CassingenaA. MussolinB. FalcomatàC. BinderA.M. CristianoC. OddoD. GuarreraS. CancelliereC. BustreoS. BencardinoK. MadenS. VanzatiA. ZavattariP. MatulloG. TruiniM. GradyW.M. RaccaP. MichelsK.B. SienaS. EstellerM. BardelliA. BianchiS.A. NicolantonioD.F. Discovery of methylated circulating DNA biomarkers for comprehensive non-invasive monitoring of treatment response in metastatic colorectal cancer.Gut201867111995200510.1136/gutjnl‑2016‑31337228982739
    [Google Scholar]
  88. ShegekarT. VodithalaS. JuganavarA. The emerging role of liquid biopsies in revolutionising cancer diagnosis and therapy.Cureus2023158e4365010.7759/cureus.4365037719630
    [Google Scholar]
  89. DaoJ. ConwayP.J. SubramaniB. MeyyappanD. RussellS. MahadevanD. Using cfDNA and ctDNA as oncologic markers: A path to clinical validation.Int. J. Mol. Sci.202324171321910.3390/ijms24171321937686024
    [Google Scholar]
  90. WangB. PeiJ. WangS. ChengK. YuJ. LiuJ. Prognostic potential of circulating tumor DNA detection at different time periods in resectable non-small cell lung cancer: Evidence from a meta-analysis.Crit. Rev. Oncol. Hematol.202217710377110.1016/j.critrevonc.2022.10377135905822
    [Google Scholar]
  91. HuW. GuanL. LiM. Prediction of DNA methylation based on multi-dimensional feature encoding and double convolutional fully connected convolutional neural network.PLOS Comput. Biol.2023198e101137010.1371/journal.pcbi.101137037639434
    [Google Scholar]
  92. FennellL. DumenilT. WocknerL. HartelG. NonesK. BondC. BorowskyJ. LiuC. McKeoneD. BowdlerL. MontgomeryG. KleinK. HoffmannI. PatchA.M. KazakoffS. PearsonJ. WaddellN. WirapatiP. LochheadP. ImamuraY. OginoS. ShaoR. TejparS. LeggettB. WhitehallV. Integrative genome-scale DNA methylation analysis of a large and unselected cohort reveals 5 distinct subtypes of colorectal adenocarcinomas.Cell. Mol. Gastroenterol. Hepatol.20198226929010.1016/j.jcmgh.2019.04.00230954552
    [Google Scholar]
  93. ZhangS. HeS. ZhuX. WangY. XieQ. SongX. XuC. WangW. XingL. XiaC. WangQ. LiW. ZhangX. YuJ. MaS. ShiJ. GuH. DNA methylation profiling to determine the primary sites of metastatic cancers using formalin-fixed paraffin-embedded tissues.Nat. Commun.2023141568610.1038/s41467‑023‑41015‑037709764
    [Google Scholar]
  94. LiuT. WangJ. XiuY. WuY. XuD. DNA methylation age drift is associated with poor outcomes and de-differentiation in papillary and follicular thyroid carcinomas.Cancers20211319482710.3390/cancers1319482734638311
    [Google Scholar]
  95. KamelF. EltarhoniK. NisarP. SolovievM. Colorectal cancer diagnosis: The obstacles we face in determining a non-invasive test and current advances in biomarker detection.Cancers2022148188910.3390/cancers1408188935454792
    [Google Scholar]
  96. TostJ. Current and emerging technologies for the analysis of the genome-wide and locus-specific dna methylation patterns.Adv Exp Med Biol20221389395469
    [Google Scholar]
  97. WaddellN.J. LiuY. ChitamanJ.M. KaplanG.J. WangZ. FengJ. Transcription and DNA methylation signatures of paternal behavior in hippocampal dentate gyrus of prairie voles.Sci. Rep.20231311102010.1038/s41598‑023‑37521‑237419920
    [Google Scholar]
  98. CoppedèF. BhaduriU. StoccoroA. NicolìV. Di VenereE. MerlaG. DNA methylation in the fields of prenatal diagnosis and early detection of cancers.Int. J. Mol. Sci.202324141171510.3390/ijms24141171537511475
    [Google Scholar]
  99. TrangleS.S. RosenbergT. ParnasH. LevyG. BarE. MarcoA. BarakB. In individuals with Williams syndrome, dysregulation of methylation in non-coding regions of neuronal and oligodendrocyte DNA is associated with pathology and cortical development.Mol. Psychiatry20232831112112710.1038/s41380‑022‑01921‑z36577841
    [Google Scholar]
  100. LiS. WangL. ZhaoQ. WangZ. LuS. KangY. JinG. TianJ. Genome-wide analysis of cell-free DNA methylation profiling for the early diagnosis of pancreatic cancer.Front. Genet.20201159607810.3389/fgene.2020.59607833424927
    [Google Scholar]
  101. BuchmullerB.C. DrödenJ. SinghH. PaleiS. DrescherM. LinserR. SummererD. Evolved DNA duplex readers for strand-asymmetrically modified 5-hydroxymethylcytosine/5-methylcytosine CpG dyads.J. Am. Chem. Soc.202214472987299310.1021/jacs.1c1067835157801
    [Google Scholar]
  102. ShenS.Y. BurgenerJ.M. BratmanS.V. De CarvalhoD.D. Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA.Nat. Protoc.201914102749278010.1038/s41596‑019‑0202‑231471598
    [Google Scholar]
  103. KwonH.J. ShinS.H. KimH.H. MinN.Y. LimY. JooT. LeeK.J. JeongM.S. KimH. YunS. KimY. ParkD. JooJ. BaeJ.S. LeeS. JeongB.H. LeeK. LeeH. KimH.K. KimK. UmS.W. AnC. LeeM.S. Advances in methylation analysis of liquid biopsy in early cancer detection of colorectal and lung cancer.Sci. Rep.20231311350210.1038/s41598‑023‑40611‑w37598236
    [Google Scholar]
  104. WangY. DouvilleC. CohenJ.D. MattoxA. CurtisS. SillimanN. PopoliM. PtakJ. DobbynL. NehmeN. DudleyJ.C. SummersM. ZhangM. Ho-PhamL.T. TranB.N.H. TranT.S. NguyenT.V. BettegowdaC. PapadopoulosN. KinzlerK.W. VogelsteinB. Detection of rare mutations, copy number alterations, and methylation in the same template DNA molecules.Proc. Natl. Acad. Sci.202312015e222070412010.1073/pnas.222070412037014860
    [Google Scholar]
  105. YuQ. XiaN. ZhaoY. JinH. ChenR. YeF. ChenL. XieY. WanK. ZhouJ. ZhouD. LvX. Genome-wide methylation profiling identify hypermethylated HOXL subclass genes as potential markers for esophageal squamous cell carcinoma detection.BMC Med. Genomics202215124710.1186/s12920‑022‑01401‑x36447287
    [Google Scholar]
  106. LiuF. WangY. GuH. WangX. Technologies and applications of single-cell DNA methylation sequencing.Theranostics20231382439245410.7150/thno.8258237215576
    [Google Scholar]
  107. LiangN. LiB. JiaZ. WangC. WuP. ZhengT. WangY. QiuF. WuY. SuJ. XuJ. XuF. ChuH. FangS. YangX. WuC. CaoZ. CaoL. BingZ. LiuH. LiL. HuangC. QinY. CuiY. Han-ZhangH. XiangJ. LiuH. GuoX. LiS. ZhaoH. ZhangZ. Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning.Nat. Biomed. Eng.20215658659910.1038/s41551‑021‑00746‑534131323
    [Google Scholar]
  108. HaoJ. LiuT. XiuY. YuanH. XuD. High DNA methylation age deceleration defines an aggressive phenotype with immunoexclusion environments in endometrial carcinoma.Front. Immunol.202314120822310.3389/fimmu.2023.120822337388735
    [Google Scholar]
  109. ChenX. GoleJ. GoreA. HeQ. LuM. MinJ. YuanZ. YangX. JiangY. ZhangT. SuoC. LiX. ChengL. ZhangZ. NiuH. LiZ. XieZ. ShiH. ZhangX. FanM. WangX. YangY. DangJ. McConnellC. ZhangJ. WangJ. YuS. YeW. GaoY. ZhangK. LiuR. JinL. Non-invasive early detection of cancer four years before conventional diagnosis using a blood test.Nat. Commun.2020111347510.1038/s41467‑020‑17316‑z32694610
    [Google Scholar]
  110. JungS.H. LeeC. KwonW.S. YunS. JungM. KimH.S. ChungH.C. ChungY.J. RhaS.Y. Monitoring the outcomes of systemic chemotherapy including immune checkpoint inhibitor for HER2-positive metastatic gastric cancer by liquid biopsy.Yonsei Med. J.202364953154010.3349/ymj.2023.009637634629
    [Google Scholar]
  111. JammulaS. Katz-SummercornA.C. LiX. LinossiC. SmythE. KillcoyneS. BiasciD. SubashV.V. AbbasS. BlaskoA. DevonshireG. GranthamA. WronowskiF. O’DonovanM. GrehanN. EldridgeM.D. TavaréS. FitzgeraldR.C. FitzgeraldR.C. NooraniA. EdwardsP.A.W. GrehanN. NutzingerB. HughesC. FidziukiewiczE. BornscheinJ. MacRaeS. CrawteJ. NorthropA. ContinoG. LiX. de la RueR. O’DonovanM. MiremadiA. MalhotraS. TripathiM. TavaréS. LynchA.G. EldridgeM. SecrierM. BowerL. DevonshireG. PernerJ. JammulaS. DaviesJ. CrichtonC. CarrollN. SafranekP. HindmarshA. SujendranV. HayesS.J. AngY. PrestonS.R. OakesS. BagwanI. SaveV. SkipworthR.J.E. HuppT.R. O’NeillJ.R. TuckerO. BeggsA. TaniereP. PuigS. UnderwoodT.J. NobleF. OwsleyJ. BarrH. ShepherdN. OldO. LagergrenJ. GossageJ. DaviesA. ChangF. ZylstraJ. MahadevaU. GohV. CiccarelliF.D. SandersG. BerrisfordR. HardenC. LewisM. CheongE. KumarB. ParsonsS.L. SoomroI. KayeP. SaundersJ. LovatL. HaidryR. IgaliL. ScottM. SothiS. SuortamoS. LishmanS. HannaG.B. MoorthyK. PetersC.J. GrabowskaA. TurkingtonR. Identification of subtypes of barrett’s esophagus and esophageal adenocarcinoma based on DNA methylation profiles and integration of transcriptome and genome data.Gastroenterology2020158616821697.e110.1053/j.gastro.2020.01.04432032585
    [Google Scholar]
  112. HahnO. GrönkeS. StubbsT.M. FiczG. HendrichO. KruegerF. AndrewsS. ZhangQ. WakelamM.J. BeyerA. ReikW. PartridgeL. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism.Genome Biol.20171815610.1186/s13059‑017‑1187‑128351387
    [Google Scholar]
  113. GrodzkaA. Knopik-SkrockaA. KowalskaK. KurzawaP. KrzyzaniakM. StencelK. BrylM. Molecular alterations of driver genes in non-small cell lung cancer: From diagnostics to targeted therapy.EXCLI J.20232241543237346803
    [Google Scholar]
  114. LenaertsL. TuveriS. JatsenkoT. AmantF. VermeeschJ.R. Detection of incipient tumours by screening of circulating plasma DNA: Hype or hope?Acta Clin. Belg.202075191810.1080/17843286.2019.167165331578135
    [Google Scholar]
  115. MedinaJ.E. DracopoliN.C. BachP.B. LauA. ScharpfR.B. MeijerG.A. AndersenC.L. VelculescuV.E. Cell-free DNA approaches for cancer early detection and interception.J. Immunother. Cancer2023119e00601310.1136/jitc‑2022‑00601337696619
    [Google Scholar]
  116. WenX. PuH. LiuQ. GuoZ. LuoD. Circulating tumor DNA—A novel biomarker of tumor progression and its favorable detection techniques.Cancers20221424602510.3390/cancers1424602536551512
    [Google Scholar]
  117. SunX LiuX ZhaoY TianG WangW. Detection of circulating tumor dNA in plasma using targeted sequencing.Methods Mol Biol202326952746
    [Google Scholar]
  118. YuL. LopezG. RassaJ. WangY. BasavanhallyT. BrowneA. HuangC.P. DorseyL. JenJ. HerseyS. Direct comparison of circulating tumor DNA sequencing assays with targeted large gene panels.PLoS One2022174e026688910.1371/journal.pone.026688935482763
    [Google Scholar]
  119. GaleD. LawsonA.R.J. HowarthK. MadiM. DurhamB. SmalleyS. CalawayJ. BlaisS. JonesG. ClarkJ. DimitrovP. PughM. WoodhouseS. EpsteinM. GonzalezF.A. WhaleA.S. HuggettJ.F. FoyC.A. JonesG.M. AmitR.H. SchmittK. DevonshireA. GreenE. ForshewT. PlagnolV. RosenfeldN. Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA.PLoS One2018133e019463010.1371/journal.pone.019463029547634
    [Google Scholar]
  120. TranL.S. PhamH.A.T. TranV.U. TranT.T. DangA.T.H. LeD.T. NguyenS.L. NguyenN.V. NguyenT.V. VoB.T. DaoH.T.T. NguyenN.H. TranT.H. NguyenC.V. PhamP.C. Dang-MaiA.T. NguyenD.T.K. PhanV.H. DoT.T.T. DinhT.K. DoH.N. PhanM.D. GiangH. NguyenH.N. Ultra-deep massively parallel sequencing with unique molecular identifier tagging achieves comparable performance to droplet digital PCR for detection and quantification of circulating tumor DNA from lung cancer patients.PLoS One20191412e022619310.1371/journal.pone.022619331841547
    [Google Scholar]
  121. PengX. DormanK.S. Accurate estimation of molecular counts from amplicon sequence data with unique molecular identifiers.Bioinformatics2023391btad00210.1093/bioinformatics/btad00236610988
    [Google Scholar]
  122. ZhuL. XuR. YangL. ShiW. ZhangY. LiuJ. LiX. ZhouJ. BingP. Minimal residual disease (MRD) detection in solid tumors using circulating tumor DNA: A systematic review.Front. Genet.202314117210810.3389/fgene.2023.117210837636270
    [Google Scholar]
  123. RolnikD.L. YongY. LeeT.J. TseC. McLennanA.C. da CostaS.F. Influence of body mass index on fetal fraction increase with gestation and cell-free DNA test failure.Obstet. Gynecol.2018132243644310.1097/AOG.000000000000275229995742
    [Google Scholar]
  124. KolarovaT.R. GammillH.S. NelsonJ.L. LockwoodC.M. ShreeR. At preeclampsia diagnosis, total cell‐free DNA concentration is elevated and correlates with disease severity.J. Am. Heart Assoc.20211015e02147710.1161/JAHA.121.02147734310191
    [Google Scholar]
  125. ShiJ. WangZ. ZhangJ. XuY. XiaoX. QuanX. BaiY. YangX. MingZ. GuoX. FengH. YangX. ZhuangX. HanF. WangK. ShiY. LeiY. BaiJ. YangS. Genomic landscape and tumor mutational burden determination of circulating tumor DNA in over 5,000 chinese patients with lung cancer.Clin. Cancer Res.202127226184619610.1158/1078‑0432.CCR‑21‑153734446541
    [Google Scholar]
  126. CaoM. ZhangC. ZhouL. DNA methylation detection technology and plasma-based methylation biomarkers in screening of gastrointestinal carcinoma.Epigenomics202113161329134210.2217/epi‑2021‑011834369810
    [Google Scholar]
  127. ZhaoJ. ReutherJ. ScozzaroK. HawleyM. MetzgerE. EmeryM. ChenI. BarbosaM. JohnsonL. O’ConnorA. WashburnM. HartjeL. ReckaseE. JohnsonV. ZhangY. WestheimerE. O’CallaghanW. MalaniN. CheshA. MoreauM. DaberR. Personalized cancer monitoring assay for the detection of ctDNA in patients with solid tumors.Mol. Diagn. Ther.202327675376810.1007/s40291‑023‑00670‑137632661
    [Google Scholar]
  128. ChinY.M. TakahashiY. ChanH.T. OtakiM. FujishimaM. ShibayamaT. MikiY. UenoT. NakamuraY. LowS.K. Ultradeep targeted sequencing of circulating tumor DNA in plasma of early and advanced breast cancer.Cancer Sci.2021112145446410.1111/cas.1469733075187
    [Google Scholar]
  129. StastnyI. ZuborP. KajoK. KubatkaP. GolubnitschajaO. DankovaZ. Aberrantly methylated cfDNA in body fluids as a promising diagnostic tool for early detection of breast cancer.Clin. Breast Cancer2020206e711e72210.1016/j.clbc.2020.05.00932792225
    [Google Scholar]
  130. ChabonJ.J. HamiltonE.G. KurtzD.M. EsfahaniM.S. ModingE.J. StehrH. MartinS.J. NabetB.Y. ChenB. ChaudhuriA.A. LiuC.L. HuiA.B. JinM.C. AzadT.D. AlmanzaD. JeonY.J. NesselbushM.C. Co Ting KehL. BonillaR.F. YooC.H. KoR.B. ChenE.L. MerriottD.J. MassionP.P. MansfieldA.S. JenJ. RenH.Z. LinS.H. CostantinoC.L. BurrR. TibshiraniR. GambhirS.S. BerryG.J. JensenK.C. WestR.B. NealJ.W. WakeleeH.A. LooB.W.Jr KunderC.A. LeungA.N. LuiN.S. BerryM.F. ShragerJ.B. NairV.S. HaberD.A. SequistL.V. AlizadehA.A. DiehnM. Integrating genomic features for non-invasive early lung cancer detection.Nature2020580780224525110.1038/s41586‑020‑2140‑032269342
    [Google Scholar]
  131. UddinM.M. SaadatagahS. NiroulaA. Long-term longitudinal analysis of 4,187 participants reveals new insights into determinants of incident clonal hematopoiesis.medRxiv202310.1101/2023.09.05.23295093
    [Google Scholar]
  132. FengY. YuanQ. NewsomeR.C. RobinsonT. BowmanR.L. ZunigaA.N. HallK.N. BernstenC.M. ShabashviliD.E. KrajcikK.I. GunaratneC. ZaroogianZ.J. VenugopalK. RomanC.H.L. LevineR.L. ChatilaW.K. YaegerR. RivaA. JobinC. KopinkeD. AvramD. GuryanovaO.A. Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer.J. Exp. Med.202322011e2023001110.1084/jem.2023001137615936
    [Google Scholar]
  133. van der PolY. MouliereF. Toward the early detection of cancer by decoding the epigenetic and environmental fingerprints of cell-free DNA.Cancer Cell201936435036810.1016/j.ccell.2019.09.00331614115
    [Google Scholar]
  134. ZhangY. YaoY. XuY. LiL. GongY. ZhangK. ZhangM. GuanY. ChangL. XiaX. LiL. JiaS. ZengQ. Pan-cancer circulating tumor DNA detection in over 10,000 Chinese patients.Nat. Commun.20211211110.1038/s41467‑020‑20162‑833397889
    [Google Scholar]
  135. HenikoffS. HenikoffJ.G. Kaya-OkurH.S. AhmadK. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation.eLife20209e6327410.7554/eLife.6327433191916
    [Google Scholar]
  136. MaoL. WuJ. ZhangZ. MaoL. DongY. HeZ. WangH. ChiK. JiangY. LinD. Prognostic value of chromatin structure typing in early-stage non-small cell lung cancer.Cancers20231512317110.3390/cancers1512317137370781
    [Google Scholar]
  137. ShtumpfM. PiroevaK.V. AgrawalS.P. JacobD.R. TeifV.B. NucPosDB: A database of nucleosome positioning in vivo and nucleosomics of cell-free DNA.Chromosoma20221311-2192810.1007/s00412‑021‑00766‑935061087
    [Google Scholar]
  138. WhalleyJ.P. BuchhalterI. RheinbayE. RaineK.M. StobbeM.D. KleinheinzK. WernerJ. BeltranS. GutM. HübschmannD. HutterB. LivitzD. PerryM.D. RosenbergM. SaksenaG. TrottaJ.R. EilsR. GerhardD.S. CampbellP.J. SchlesnerM. GutI.G. Framework for quality assessment of whole genome cancer sequences.Nat. Commun.2020111504010.1038/s41467‑020‑18688‑y33028839
    [Google Scholar]
  139. PascaS. GuoM.Z. WangS. StokvisK. ShedeckA. PallavajjalaA. ShamsC. PallavajjalaR. DeZernA.E. VaradhanR. GockeC.D. JonesR.J. GondekL.P. Cell-free DNA measurable residual disease as a predictor of postallogeneic hematopoietic cell transplant outcomes.Blood Adv.20237164660467010.1182/bloodadvances.202301041637276081
    [Google Scholar]
  140. StejskalP. GoodarziH. SrovnalJ. HajdúchM. van ’t VeerL.J. MagbanuaM.J.M. Circulating tumor nucleic acids: Biology, release mechanisms, and clinical relevance.Mol. Cancer20232211510.1186/s12943‑022‑01710‑w36681803
    [Google Scholar]
  141. QiuB. GuoW. ZhangF. LvF. JiY. PengY. ChenX. BaoH. XuY. ShaoY. TanF. XueQ. GaoS. HeJ. Dynamic recurrence risk and adjuvant chemotherapy benefit prediction by ctDNA in resected NSCLC.Nat. Commun.2021121677010.1038/s41467‑021‑27022‑z34799585
    [Google Scholar]
  142. RobertoT.M. JorgeM.A. FranciscoG.V. NoeliaT. PilarR.G. AndrésC. Strategies for improving detection of circulating tumor DNA using next generation sequencing.Cancer Treat. Rev.202311910259510.1016/j.ctrv.2023.10259537390697
    [Google Scholar]
  143. AlcaideM. CheungM. HillmanJ. RassekhS.R. DeyellR.J. BatistG. KarsanA. WyattA.W. JohnsonN. ScottD.W. MorinR.D. Evaluating the quantity, quality and size distribution of cell-free DNA by multiplex droplet digital PCR.Sci. Rep.20201011256410.1038/s41598‑020‑69432‑x32724107
    [Google Scholar]
  144. AzadT.D. ChaudhuriA.A. FangP. QiaoY. EsfahaniM.S. ChabonJ.J. HamiltonE.G. YangY.D. LovejoyA. NewmanA.M. KurtzD.M. JinM. MartinS.J. StehrH. LiuC.L. HuiA.B.Y. PatelV. MaruD. LinS.H. AlizadehA.A. DiehnM. Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer.Gastroenterology20201583494505.e610.1053/j.gastro.2019.10.03931711920
    [Google Scholar]
  145. PhelpsR. GallonR. HayesC. GloverE. GibsonP. EdidiI. LeeT. MillsS. ShawA. HeerR. RalteA. McAnultyC. KorefS.M. BurnJ. JacksonM.S. Detection of microsatellite instability in colonoscopic biopsies and postal urine samples from lynch syndrome cancer patients using a multiplex PCR assay.Cancers20221415383810.3390/cancers1415383835954501
    [Google Scholar]
  146. TieJ. WangY. CohenJ. LiL. HongW. ChristieM. WongH.L. KosmiderS. WongR. ThomsonB. ChoiJ. FoxA. FieldK. BurgeM. ShannonJ. KotasekD. TebbuttN.C. KarapetisC. UnderhillC. HaydonA. SchaefferJ. PtakJ. TomasettiC. PapadopoulosN. KinzlerK.W. VogelsteinB. GibbsP. Circulating tumor DNA dynamics and recurrence risk in patients undergoing curative intent resection of colorectal cancer liver metastases: A prospective cohort study.PLoS Med.2021185e100362010.1371/journal.pmed.100362033939694
    [Google Scholar]
  147. TieJ. CohenJ.D. WangY. ChristieM. SimonsK. LeeM. WongR. KosmiderS. AnandaS. McKendrickJ. LeeB. ChoJ.H. FaragherI. JonesI.T. PtakJ. SchaefferM.J. SillimanN. DobbynL. LiL. TomasettiC. PapadopoulosN. KinzlerK.W. VogelsteinB. GibbsP. Circulating tumor DNA analyses as markers of recurrence risk and benefit of adjuvant therapy for stage III colon cancer.JAMA Oncol.20195121710171710.1001/jamaoncol.2019.361631621801
    [Google Scholar]
  148. BianchiS.A. PietrantonioF. LonardiS. MussolinB. RuaF. CrisafulliG. BartoliniA. FenocchioE. AmatuA. MancaP. BergamoF. TosiF. MauriG. AmbrosiniM. DanielF. TorriV. VanzulliA. ReggeD. CappelloG. MarchiòC. BerrinoE. SapinoA. MarsoniS. SienaS. BardelliA. Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: The phase 2 CHRONOS trial.Nat. Med.20222881612161810.1038/s41591‑022‑01886‑035915157
    [Google Scholar]
  149. WangF. HuangY.S. WuH.X. WangZ.X. JinY. YaoY.C. ChenY.X. ZhaoQ. ChenS. HeM.M. LuoH.Y. QiuM.Z. WangD. WangF.H. XuM. LiY.H. XuR.H. Genomic temporal heterogeneity of circulating tumour DNA in unresectable metastatic colorectal cancer under first-line treatment.Gut20227171340134910.1136/gutjnl‑2021‑32485234489309
    [Google Scholar]
  150. TaiebJ. TalyV. HenriquesJ. BourreauC. MineurL. BennounaJ. DesrameJ. LouvetC. LepereC. MabroM. EgreteauJ. BoucheO. MulotC. HormigosK. ChabaK. MazardT. de GramontA. VernereyD. AndréT. PuigL.P. Prognostic value and relation with adjuvant treatment duration of ctDNA in stage III colon cancer: A post hoc analysis of the PRODIGE-GERCOR IDEA-France trial.Clin. Cancer Res.202127205638564610.1158/1078‑0432.CCR‑21‑027134083233
    [Google Scholar]
  151. FolprechtG. SchickR.A. WeitzJ. LugnierC. KraeftA.L. WisserS. AustD.E. WeissL. von BubnoffN. KramerM. ThiedeC. TannapfelA. The CIRCULATE trial: Circulating tumor DNA based decision for adjuvant treatment in colon cancer stage II evaluation (aio-KRK-0217).Clin. Colorectal Cancer202221217017410.1016/j.clcc.2021.09.00534772609
    [Google Scholar]
  152. TaniguchiH. NakamuraY. KotaniD. YukamiH. MishimaS. SawadaK. ShirasuH. EbiH. YamanakaT. AleshinA. BillingsP.R. RabinowitzM. OkiE. TakemasaI. KatoT. MoriM. YoshinoT. CIRCULATE‐Japan: Circulating tumor DNA–guided adaptive platform trials to refine adjuvant therapy for colorectal cancer.Cancer Sci.202111272915292010.1111/cas.1492633931919
    [Google Scholar]
  153. Max MaX. BendellJ.C. HurwitzH.I. JuC. LeeJ.J. LovejoyA. MancaoC. NicholasA. PriceR. SommerN. TikooN. YaoL. YaungS.J. PalmaJ.F. Disease monitoring using post-induction circulating tumor DNA analysis following first-line therapy in patients with metastatic colorectal cancer.Clin. Cancer Res.202026154010401710.1158/1078‑0432.CCR‑19‑120932220893
    [Google Scholar]
  154. YaoJ. ZangW. GeY. WeygantN. YuP. LiL. RaoG. JiangZ. YanR. HeL. YuY. JinM. ChengG. AnG. RAS/BRAF circulating tumor DNA mutations as a predictor of response to first-line chemotherapy in metastatic colorectal cancer patients.Can. J. Gastroenterol. Hepatol.2018201811010.1155/2018/424897129707525
    [Google Scholar]
  155. LucchesiN. AllyJ.M. ReilleyM.J. Complete response to immunotherapy in a patient with high-risk stage III colorectal cancer after ctDNA-guided detection of early adjuvant treatment failure.J. Immunother. Cancer2023119e00743410.1136/jitc‑2023‑00743437714563
    [Google Scholar]
  156. LiY. MoS. ZhangL. MaX. HuX. HuangD. LuB. LuoC. PengH. CaiS. ShengW. PengJ. Postoperative circulating tumor DNA combined with consensus molecular subtypes can better predict outcomes in stage III colon cancers: A prospective cohort study.Eur. J. Cancer202216919820910.1016/j.ejca.2022.04.01035636041
    [Google Scholar]
  157. BachetJ.B. Laurent-PuigP. MeurisseA. BouchéO. MasL. TalyV. CohenR. GornetJ.M. ArtruP. LouafiS. BidaultT.A. BaumgaertnerI. CoriatR. TougeronD. LecomteT. MaryF. AparicioT. MartheyL. BlonsH. VernereyD. TaiebJ. Circulating tumour DNA at baseline for individualised prognostication in patients with chemotherapy-naïve metastatic colorectal cancer. An AGEO prospective study.Eur. J. Cancer202318911293410.1016/j.ejca.2023.05.02237390800
    [Google Scholar]
  158. HofsteL.S.M. GeerlingsM.J. von RheinD. RüttenH. WestenbergA.H. WeissM.M. GilissenC. HofsteT. van der PostR.S. KlarenbeekB.R. de WiltJ.H.W. LigtenbergM.J.L. GarmsL. LiemM. RozemaT. WasowiczD. BurgerP. PolatF. ReijndersK. de RoosM. SietsesC. Circulating tumor DNA detection after neoadjuvant treatment and surgery predicts recurrence in patients with early-stage and locally advanced rectal cancer.Eur. J. Surg. Oncol.20234971283129010.1016/j.ejso.2023.01.02636740555
    [Google Scholar]
  159. TieJ. CohenJ.D. WangY. LiL. ChristieM. SimonsK. ElsalehH. KosmiderS. WongR. YipD. LeeM. TranB. RangiahD. BurgeM. GoldsteinD. SinghM. SkinnerI. FaragherI. CroxfordM. BamptonC. HaydonA. JonesI.T. S KarapetisC. PriceT. SchaeferM.J. PtakJ. DobbynL. SillimanN. KindeI. TomasettiC. PapadopoulosN. KinzlerK. VolgesteinB. GibbsP. Serial circulating tumour DNA analysis during multimodality treatment of locally advanced rectal cancer: A prospective biomarker study.Gut201968466367110.1136/gutjnl‑2017‑31585229420226
    [Google Scholar]
  160. MurahashiS. AkiyoshiT. SanoT. FukunagaY. NodaT. UenoM. ZembutsuH. Serial circulating tumour DNA analysis for locally advanced rectal cancer treated with preoperative therapy: Prediction of pathological response and postoperative recurrence.Br. J. Cancer2020123580381010.1038/s41416‑020‑0941‑432565539
    [Google Scholar]
  161. TarazonaN. ValienteG.F. GambardellaV. HuertaM. RosellóS. ZunigaS. CalonA. AsinsC.J.A. FontanaE. CiarpagliniM.C. EasonK. GarridoR.P. FleitasT. PapaccioF. ValdezateM.D. NyamundandaG. CastilloJ. EspíA. SadanandamA. RodaD. CervantesA. Detection of postoperative plasma circulating tumour DNA and lack of CDX2 expression as markers of recurrence in patients with localised colon cancer.ESMO Open202055e00084710.1136/esmoopen‑2020‑00084732967918
    [Google Scholar]
  162. HolmM. AnderssonE. OsterlundE. OvissiA. SoveriL.M. AnttonenA.K. KytöläS. AittomäkiK. OsterlundP. RistimäkiA. Detection of KRAS mutations in liquid biopsies from metastatic colorectal cancer patients using droplet digital PCR, Idylla, and next generation sequencing.PLoS One20201511e023981910.1371/journal.pone.023981933237900
    [Google Scholar]
  163. JiaN. ChangL. GaoX. ShiX. DouX. GuanM. ShaoY. LiN. ChengY. YingH. SunZ. ZhouY. ZhaoL. ZhouJ. BaiC. Association of emergence of new mutations in circulating tumuor DNA during chemotherapy with clinical outcome in metastatic colorectal cancer.BMC Cancer202121184510.1186/s12885‑021‑08309‑234294055
    [Google Scholar]
  164. BachetJ.B. BouchéO. TaiebJ. DubreuilO. GarciaM.L. MeurisseA. NormandC. GornetJ.M. ArtruP. LouafiS. BonnetainF. BidaultT.A. BaumgaertnerI. CoriatR. TougeronD. LecomteT. MaryF. AparicioT. MartheyL. TalyV. BlonsH. VernereyD. Laurent-PuigP. RAS mutation analysis in circulating tumor DNA from patients with metastatic colorectal cancer: The AGEO RASANC prospective multicenter study.Ann. Oncol.20182951211121910.1093/annonc/mdy06129438522
    [Google Scholar]
  165. VidalJ. MuineloL. DalmasesA. JonesF. EdelsteinD. IglesiasM. OrrilloM. AbaloA. RodríguezC. BrozosE. VidalY. CandamioS. VázquezF. RuizJ. GuixM. VisaL. SikriV. AlbanellJ. BellosilloB. LópezR. MontagutC. Plasma ctDNA RAS mutation analysis for the diagnosis and treatment monitoring of metastatic colorectal cancer patients.Ann. Oncol.20172861325133210.1093/annonc/mdx12528419195
    [Google Scholar]
  166. LueongS.S. HerbstA. LiffersS.T. BielefeldN. HornP.A. TannapfelA. Reinacher-SchickA. HinkeA. BeckerH.S. KolligsF.T. SivekeJ.T. Serial circulating tumor DNA mutational status in patients with KRAS -mutant metastatic colorectal cancer from the phase 3 AIO KRK0207 trial.Clin. Chem.202066121510152010.1093/clinchem/hvaa22333257977
    [Google Scholar]
  167. CremoliniC. RossiniD. Dell’AquilaE. LonardiS. ConcaE. Del ReM. BusicoA. PietrantonioF. DanesiR. AprileG. TamburiniE. BaroneC. MasiG. PantanoF. PucciF. CorsiD.C. PellaN. BergamoF. RofiE. BarbaraC. FalconeA. SantiniD. Rechallenge for patients with RAS and BRAF wild-type metastatic colorectal cancer with acquired resistance to first-line cetuximab and irinotecan.JAMA Oncol.20195334335010.1001/jamaoncol.2018.508030476968
    [Google Scholar]
  168. ThierryA.R. El MessaoudiS. MolleviC. RaoulJ.L. GuimbaudR. PezetD. ArtruP. AssenatE. BorgC. MathonnetM. De La FouchardièreC. BouchéO. GavoilleC. FiessC. AuzemeryB. MeddebR. Lopez-CrapezE. SanchezC. PastorB. YchouM. Clinical utility of circulating DNA analysis for rapid detection of actionable mutations to select metastatic colorectal patients for anti-EGFR treatment.Ann. Oncol.20172892149215910.1093/annonc/mdx33028911069
    [Google Scholar]
  169. TougeronD. LecomteT. PagèsJ.C. VillalvaC. CollinC. FerruA. TouraniJ.M. SilvainC. LevillainP. TaponK.L. Effect of low-frequency KRAS mutations on the response to anti-EGFR therapy in metastatic colorectal cancer.Ann. Oncol.20132451267127310.1093/annonc/mds62023293113
    [Google Scholar]
  170. OhtaR. YamadaT. SonodaH. MatsudaA. ShinjiS. TakahashiG. IwaiT. TakedaK. UedaK. KuriyamaS. MiyasakaT. YokoyamaY. HaraK. YoshidaH. Detection of KRAS mutations in circulating tumour DNA from plasma and urine of patients with colorectal cancer.Eur. J. Surg. Oncol.202147123151315610.1016/j.ejso.2021.07.01734315643
    [Google Scholar]
  171. HariharanR. JenkinsM. Utility of the methylated SEPT9 test for the early detection of colorectal cancer: A systematic review and meta-analysis of diagnostic test accuracy.BMJ Open Gastroenterol.202071e00035510.1136/bmjgast‑2019‑00035532128229
    [Google Scholar]
  172. HerrgottG.A. SnyderJ.M. SheR. MaltaT.M. SabedotT.S. LeeI.Y. PawloskiJ. GondimP.G.G. AsmaroK.P. ZhangJ. CannellaC.E. NelsonK. ThomasB. deCarvalhoA.C. HasselbachL.A. TundoK.M. NewazR. TransouA. MorosiniN. FranciscoV. PoissonL.M. ChitaleD. MukherjeeA. MosellaM.S. RobinA.M. WalbertT. RosenblumM. MikkelsenT. KalkanisS. TirapelliD.P.C. WeisenbergerD.J. CarlottiC.G.Jr RockJ. CastroA.V. NoushmehrH. Detection of diagnostic and prognostic methylation-based signatures in liquid biopsy specimens from patients with meningiomas.Nat. Commun.2023141566910.1038/s41467‑023‑41434‑z37704607
    [Google Scholar]
  173. CherubaE. ViswanathanR. WongP.M. WomersleyH.J. HanS. TayB. LauY. GanA. PoonP.S.Y. SkanderupA. NgS.B. ChokA.Y. ChongD.Q. TanI.B. CheowL.F. Heat selection enables highly scalable methylome profiling in cell-free DNA for noninvasive monitoring of cancer patients.Sci. Adv.2022836eabn403010.1126/sciadv.abn403036083902
    [Google Scholar]
  174. GaoQ. LinY.P. LiB.S. WangG.Q. DongL.Q. ShenB.Y. LouW.H. WuW.C. GeD. ZhuQ.L. XuY. XuJ.M. ChangW.J. LanP. ZhouP.H. HeM.J. QiaoG.B. ChuaiS.K. ZangR.Y. ShiT.Y. TanL.J. YinJ. ZengQ. SuX.F. WangZ.D. ZhaoX.Q. NianW.Q. ZhangS. ZhouJ. CaiS.L. ZhangZ.H. FanJ. Unintrusive multi-cancer detection by circulating cell-free DNA methylation sequencing (THUNDER): Development and independent validation studies.Ann. Oncol.202334548649510.1016/j.annonc.2023.02.01036849097
    [Google Scholar]
  175. LiuX. RenJ. LuoN. GuoH. ZhengY. LiJ. TangF. WenL. PengJ. Comprehensive DNA methylation analysis of tissue of origin of plasma cell-free DNA by methylated CpG tandem amplification and sequencing (MCTA-Seq).Clin. Epigenetics20191119310.1186/s13148‑019‑0689‑y31234922
    [Google Scholar]
  176. GydushG. NguyenE. BaeJ.H. BlewettT. RhoadesJ. ReedS.C. SheaD. XiongK. LiuR. YuF. LeongK.W. ChoudhuryA.D. StoverD.G. TolaneyS.M. KropI.E. Christopher LoveJ. ParsonsH.A. MakrigiorgosM.G. GolubT.R. AdalsteinssonV.A. Massively parallel enrichment of low-frequency alleles enables duplex sequencing at low depth.Nat. Biomed. Eng.20226325726610.1038/s41551‑022‑00855‑935301450
    [Google Scholar]
  177. ChidharlaA. RapoportE. AgarwalK. MadalaS. LinaresB. SunW. ChakrabartiS. KasiA. Circulating tumor DNA as a minimal residual disease assessment and recurrence risk in patients undergoing curative-intent resection with or without adjuvant chemotherapy in colorectal cancer: A systematic review and meta-analysis.Int. J. Mol. Sci.202324121023010.3390/ijms24121023037373376
    [Google Scholar]
  178. GaoZ. HuangD. ChenH. YangY. AnK. DingC. YuanZ. ZhaiZ. NiuP. GaoQ. CaiJ. ZengQ. WangY. HongY. RongW. HuangW. LeiF. WangX. ChenS. ZhaoX. BaiY. GuJ. Development and validation of postoperative circulating tumor DNA combined with clinicopathological risk factors for recurrence prediction in patients with stage I-III colorectal cancer.J. Transl. Med.20232116310.1186/s12967‑023‑03884‑336717891
    [Google Scholar]
  179. de BoerE.N. JohanssonL.F. de LangeK. BrouwerB.A.G. van den BergE. RaddatzS.B. van DiemenC.C. Detection of fusion genes to determine minimal residual disease in leukemia using next-generation sequencing.Clin. Chem.20206681084109210.1093/clinchem/hvaa11932613252
    [Google Scholar]
  180. WangY. LiuY. ChenL. ChenZ. WangX. JiangR. ZhaoK. HeX. T cell receptor beta-chain profiling of tumor tissue, peripheral blood and regional lymph nodes from patients with papillary thyroid carcinoma.Front. Immunol.20211259535510.3389/fimmu.2021.59535533679738
    [Google Scholar]
  181. KukitaY. OhkawaK. TakadaR. UeharaH. KatayamaK. KatoK. Selective identification of somatic mutations in pancreatic cancer cells through a combination of next-generation sequencing of plasma DNA using molecular barcodes and a bioinformatic variant filter.PLoS One2018132e019261110.1371/journal.pone.019261129451897
    [Google Scholar]
  182. KatoK. OkamiJ. NakamuraH. HonmaK. SatoY. NakamuraS. KukitaY. NakatsukaS. HigashiyamaM. Analytical performance of a highly sensitive system to detect gene variants using next-generation sequencing for lung cancer companion diagnostics.Diagnostics2023138147610.3390/diagnostics1308147637189577
    [Google Scholar]
  183. HagiT. KurokawaY. TakahashiT. SaitoT. YamashitaK. TanakaK. MakinoT. YamasakiM. NakajimaK. MoriM. DokiY. Molecular barcode sequencing for highly sensitive detection of circulating tumor DNA in patients with esophageal squamous cell carcinoma.Oncology202098422222910.1159/00050480831846968
    [Google Scholar]
  184. DunwellT.L. DaileyS.C. OttestadA.L. YuJ. BeckerP.W. ScaifeS. RichmanS.D. WoodH.M. SlaneyH. BottomleyD. YangX. XiaoH. WahlS.G.F. GrønbergB.H. DaiH. FuG. Adaptor template oligo-mediated sequencing (ATOM-Seq) is a new ultra-sensitive UMI-based NGS library preparation technology for use with cfDNA and cfRNA.Sci. Rep.2021111313810.1038/s41598‑021‑82737‑933542447
    [Google Scholar]
  185. DaiP. WuL.R. ChenS.X. WangM.X. ChengL.Y. ZhangJ.X. HaoP. YaoW. ZarkaJ. IssaG.C. KwongL. ZhangD.Y. Calibration-free NGS quantitation of mutations below 0.01% VAF.Nat. Commun.2021121612310.1038/s41467‑021‑26308‑634675197
    [Google Scholar]
  186. NguyenH.T. TranD.H. NgoQ.D. PhamH.A.T. TranT.T. TranV.U. PhamT.V.N. LeT.K. LeN.A.T. NguyenN.M. VoB.T. NguyenL.T. NguyenT.C.V. BuiQ.T.N. NguyenH.N. LuongB.A. LeL.G.H. DoD.M. DoT.T.T. HoangA.V. DinhK.T. PhanM.D. TranL.S. GiangH. NguyenH.N. Evaluation of a liquid biopsy protocol using ultra-deep massive parallel sequencing for detecting and quantifying circulation tumor DNA in colorectal cancer patients.Cancer Invest.2020382859310.1080/07357907.2020.171335031939681
    [Google Scholar]
  187. KangS.Y. KimD.G. KimH. ChoY.A. HaS.Y. KwonG.Y. JangK.T. KimK.M. Direct comparison of the next-generation sequencing and iTERT PCR methods for the diagnosis of TERT hotspot mutations in advanced solid cancers.BMC Med. Genomics20221512510.1186/s12920‑022‑01175‑235135543
    [Google Scholar]
  188. PengR. ZhangR. HoranM.P. ZhouL. ChaiS.Y. PillayN. TayK.H. BadrickT. LiJ. From somatic variants toward precision oncology: An investigation of reporting practice for next-generation sequencing-based circulating tumor DNA analysis.Oncologist202025321822810.1634/theoncologist.2019‑023932162803
    [Google Scholar]
  189. VermaS. MooreM.W. RinglerR. GhosalA. HorvathK. NaefT. AnvariS. CotterP.D. GunnS. Analytical performance evaluation of a commercial next generation sequencing liquid biopsy platform using plasma ctDNA, reference standards, and synthetic serial dilution samples derived from normal plasma.BMC Cancer202020194510.1186/s12885‑020‑07445‑533004033
    [Google Scholar]
  190. SmithT. HegerA. SudberyI. UMI-tools: Modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy.Genome Res.201727349149910.1101/gr.209601.11628100584
    [Google Scholar]
  191. XuC. GuX. PadmanabhanR. WuZ. PengQ. DiCarloJ. WangY. smCounter2: An accurate low-frequency variant caller for targeted sequencing data with unique molecular identifiers.Bioinformatics20193581299130910.1093/bioinformatics/bty79030192920
    [Google Scholar]
  192. SaterV ViaillyP-J LecroqT UMI-varcal: A low-frequency variant caller for UMI-tagged paired-end sequencing data.Methods Mol Biol20222493235245
    [Google Scholar]
  193. ChenS. ZhouY. ChenY. HuangT. LiaoW. XuY. LiZ. GuJ. Gencore: An efficient tool to generate consensus reads for error suppressing and duplicate removing of NGS data.BMC Bioinformatics201920S2360610.1186/s12859‑019‑3280‑931881822
    [Google Scholar]
  194. TsagiopoulouM. ManiouM.C. PechlivanisN. TogkousidisA. KotrováM. HutzenlaubT. KappasI. ChatzidimitriouA. PsomopoulosF. UMIc: A preprocessing method for UMI deduplication and reads correction.Front. Genet.20211266036610.3389/fgene.2021.66036634122513
    [Google Scholar]
  195. LyuJ. ChenC. LAST-seq: Single-cell RNA sequencing by direct amplification of single-stranded RNA without prior reverse transcription and second-strand synthesis.Genome Biol.202324118410.1186/s13059‑023‑03025‑537559123
    [Google Scholar]
  196. SteinC.M. WeiskirchenR. DammF. StrzeleckaP.M. Single‐cell omics: Overview, analysis, and application in biomedical science.J. Cell. Biochem.2021122111571157810.1002/jcb.3013434459502
    [Google Scholar]
  197. PflugF.G. von HaeselerA. TRUmiCount: Correctly counting absolute numbers of molecules using unique molecular identifiers.Bioinformatics201834183137314410.1093/bioinformatics/bty28329672674
    [Google Scholar]
  198. LiuM.H. CostaB. ChoiU. Single-strand mismatch and damage patterns revealed by single-molecule DNA sequencing.bioRxiv202310.1101/2023.02.19.526140
    [Google Scholar]
  199. PageK MartinsonLJ GarciaF.D Circulating tumor DNA profiling from breast cancer screening through to metastatic disease.JCO Precis Oncol.20215PO.20.0052210.1200/PO.20.00522
    [Google Scholar]
  200. LennonAM BuchananAH KindeI Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention.Science20203696499eabb9601
    [Google Scholar]
  201. SwierczekS. PrchalJ.T. Clonal hematopoiesis in hematological disorders: Three different scenarios.Exp. Hematol.202083576510.1016/j.exphem.2020.01.01332007480
    [Google Scholar]
  202. KamphuisP. van ZeventerI.A. de GraafA.O. GenoveseG. SalzbrunnJ.B. DinmohamedA.G. van der ReijdenB.A. SchuringaJ.J. JansenJ.H. HulsG. Clonal hematopoiesis defined by somatic mutations infrequently co-occurs with mosaic loss of the Y chromosome in a population-based cohort.HemaSphere2023710e95610.1097/HS9.000000000000095637720253
    [Google Scholar]
  203. MendezL.M. PatnaikM.M. Clonal hematopoiesis: Origins and determinants of evolution.Leuk. Res.202312910707610.1016/j.leukres.2023.10707637075557
    [Google Scholar]
  204. JoveletC. IleanaE. Le DeleyM.C. MottéN. RoselliniS. RomeroA. LefebvreC. PedreroM. Pata-MerciN. DroinN. DelogerM. MassardC. HollebecqueA. FertéC. BoichardA. Postel-VinayS. Ngo-CamusM. De BaereT. VielhP. ScoazecJ.Y. VassalG. EggermontA. AndréF. SoriaJ.C. LacroixL. Circulating cell-free tumor DNA analysis of 50 genes by next-generation sequencing in the prospective MOSCATO trial.Clin. Cancer Res.201622122960296810.1158/1078‑0432.CCR‑15‑247026758560
    [Google Scholar]
  205. RazaviP. LiB.T. BrownD.N. JungB. HubbellE. ShenR. AbidaW. JuluruK. De BruijnI. HouC. VennO. LimR. AnandA. MaddalaT. GnerreS. Vijaya SatyaR. LiuQ. ShenL. EattockN. YueJ. BlockerA.W. LeeM. SehnertA. XuH. HallM.P. Santiago-ZayasA. NovotnyW.F. IsbellJ.M. RuschV.W. PlitasG. HeerdtA.S. LadanyiM. HymanD.M. JonesD.R. MorrowM. RielyG.J. ScherH.I. RudinC.M. RobsonM.E. DiazL.A.Jr SolitD.B. AravanisA.M. FilhoR.J.S. High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants.Nat. Med.201925121928193710.1038/s41591‑019‑0652‑731768066
    [Google Scholar]
  206. LiuW. LiY. TangY. SongQ. WangJ. LiN. ChenS. ShiJ. WangS. LiY. JiaoY. ZengY. JinJ. Response prediction and risk stratification of patients with rectal cancer after neoadjuvant therapy through an analysis of circulating tumour DNA.EBioMedicine20227810394510.1016/j.ebiom.2022.10394535306340
    [Google Scholar]
  207. VerhoevenR.L.J. KopsS.E.P. WijmaI.N. ter WoerdsD.K.M. van der HeijdenE.H.F.M. Cone-beam CT in lung biopsy: A clinical practice review on lessons learned and future perspectives.Ann. Transl. Med.2023111036136110.21037/atm‑22‑284537675336
    [Google Scholar]
  208. SoidanG.D. SanchezC.N.M. ManteigaF.D. GonzálezC.J.I. BarreiroB.V. MartínG.C. Cone-beam CT-guided lung biopsies: Results in 94 patients.Diagnostics20201012106810.3390/diagnostics1012106833321706
    [Google Scholar]
  209. de Melo-SilvaA.J. LucenaJ.P. HueneburgT. The evolution of molecular diagnosis using digital polymerase chain reaction to detect cancer via cell‐free DNA and circulating tumor cells.Cell Biol. Int.202044373574310.1002/cbin.1128631829466
    [Google Scholar]
  210. PatilD. AkolkarD. NagarkarR. SrivastavaN. DattaV. PatilS. ApurwaS. SrinivasanA. DatarR. Multi-analyte liquid biopsies for molecular pathway guided personalized treatment selection in advanced refractory cancers: A clinical utility pilot study.Front. Oncol.20221297232210.3389/fonc.2022.97232236620556
    [Google Scholar]
  211. FerlizzaE. RomanielloD. BorrelliF. PaganoF. GironeC. GelfoV. KuhreR.S. MorselliA. MazzeschiM. SgarziM. FilippiniD.M. D’UvaG. LauriolaM. Extracellular vesicles and epidermal growth factor receptor activation: Interplay of drivers in cancer progression.Cancers20231511297010.3390/cancers1511297037296932
    [Google Scholar]
  212. YouD. WangY. XuJ. YangR. WangW. WangX. CaoX. LiY. YuL. WangW. ShiY. ZhangC. YangH. HeY. BianL. MiR-3529-3p from PDGF-BB-induced cancer-associated fibroblast-derived exosomes promotes the malignancy of oral squamous cell carcinoma.Discover Oncology202314116610.1007/s12672‑023‑00753‑937668846
    [Google Scholar]
  213. RaoD.Y. HuangD.F. SiM.Y. LuH. TangZ.X. ZhangZ.X. Role of exosomes in non-small cell lung cancer and EGFR-mutated lung cancer.Front. Immunol.202314114253910.3389/fimmu.2023.114253937122754
    [Google Scholar]
  214. ChengB. HuangH. Expanding horizons in overcoming therapeutic resistance in castration-resistant prostate cancer: Targeting the androgen receptor-regulated tumor immune microenvironment.Cancer Biol. Med.20232081710.20892/j.issn.2095‑3941.2023.025637646236
    [Google Scholar]
  215. RameshD. BakkannavarS. BhatV.R. SharanK. Extracellular vesicles as novel drug delivery systems to target cancer and other diseases: Recent advancements and future perspectives.F1000 Res.20231232910.12688/f1000research.132186.137868300
    [Google Scholar]
  216. GluthL. OchsenfarthC. PhamP.N.V. WischermannJ.M. KomanekT. RoghmannF. FreyU.H. Influence of the anesthetic technique on circulating extracellular vesicles in bladder cancer patients undergoing radical cystectomy: A prospective, randomized trial.Cells20231220250310.3390/cells1220250337887347
    [Google Scholar]
  217. WuX. GuoH. ZhaoJ. WeiY. LiY.X. PangH.B. Identification of an ALK-2 inhibitor as an agonist for intercellular exchange and tumor delivery of nanomaterial.Adv. Ther.202362220017310.1002/adtp.20220017336818419
    [Google Scholar]
  218. JimenezL. BarmanB. JungY.J. CocozzaL. KrystofiakE. SaffoldC. VickersK.C. WilsonJ.T. DawsonT.R. WeaverA.M. Culture conditions greatly impact the levels of vesicular and extravesicular Ago2 and RNA in extracellular vesicle preparations.J. Extracell. Vesicles202312111236610.1002/jev2.1236637885043
    [Google Scholar]
  219. ShangA. GuC. ZhouC. YangY. ChenC. ZengB. WuJ. LuW. WangW. SunZ. LiD. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression.Cell Commun. Signal.20201815210.1186/s12964‑020‑0517‑132228650
    [Google Scholar]
  220. KumarS. DharR. KumarL.B.S.S. ShivjiG.G. JayarajR. DeviA. Theranostic signature of tumor-derived exosomes in cancer.Med. Oncol.2023401132110.1007/s12032‑023‑02176‑637798480
    [Google Scholar]
  221. LeeY.J. ChaeS. ChoiD. Monitoring of single extracellular vesicle heterogeneity in cancer progression and therapy.Front. Oncol.202313125658510.3389/fonc.2023.125658537823055
    [Google Scholar]
  222. JeongM.H. ImH. DahlJ.B. Non-contact microfluidic analysis of the stiffness of single large extracellular vesicles from IDH1-mutated glioblastoma cells.Adv. Mater. Technol.202387220141210.1002/admt.20220141237649709
    [Google Scholar]
  223. KimJ. HongS.P. LeeS. LeeW. LeeD. KimR. ParkY.J. MoonS. ParkK. ChaB. KimJ.I. Multidimensional fragmentomic profiling of cell-free DNA released from patient-derived organoids.Hum. Genomics20231719610.1186/s40246‑023‑00533‑037898819
    [Google Scholar]
  224. VikramdeoK.S. AnandS. SudanS.K. PramanikP. SinghS. GodwinA.K. SinghA.P. DasguptaS. Profiling mitochondrial DNA mutations in tumors and circulating extracellular vesicles of triple‐negative breast cancer patients for potential biomarker development.FASEB Bioadv.202351041242610.1096/fba.2023‑0007037810173
    [Google Scholar]
  225. WandreyM. JablonskaJ. StauberR.H. GülD. Exosomes in cancer progression and therapy resistance: Molecular insights and therapeutic opportunities.Life20231310203310.3390/life1310203337895415
    [Google Scholar]
  226. WangH.C. YinW.X. JiangM. HanJ.Y. KuaiX.W. SunR. SunY.F. JiJ.L. Function and biomedical implications of exosomal microRNAs delivered by parenchymal and nonparenchymal cells in hepatocellular carcinoma.World J. Gastroenterol.202329395435545110.3748/wjg.v29.i39.543537900996
    [Google Scholar]
  227. LeiY. FeiX. DingY. ZhangJ. ZhangG. DongL. SongJ. ZhuoY. XueW. ZhangP. YangC. Simultaneous subset tracing and miRNA profiling of tumor-derived exosomes via dual-surface-protein orthogonal barcoding.Sci. Adv.2023940eadi155610.1126/sciadv.adi155637792944
    [Google Scholar]
  228. FujiT. UmedaY. NyuyaA. TaniguchiF. KawaiT. YasuiK. ToshimaT. YoshidaK. FujiwaraT. GoelA. NagasakaT. Detection of circulating microRNAs with Ago2 complexes to monitor the tumor dynamics of colorectal cancer patients during chemotherapy.Int. J. Cancer201914492169218010.1002/ijc.3196030381824
    [Google Scholar]
  229. ZhuK.G. YangJ. ZhuY. ZhuQ. PanW. DengS. HeY. ZuoD. WangP. HanY. ZhangH.Y. The microprotein encoded by exosomal lncAKR1C2 promotes gastric cancer lymph node metastasis by regulating fatty acid metabolism.Cell Death Dis.2023141070810.1038/s41419‑023‑06220‑137903800
    [Google Scholar]
  230. SharmaM. ShethM. PolingH.M. KuhnellD. LangevinS.M. EsfandiariL. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device.Sci. Rep.20231311829310.1038/s41598‑023‑45409‑437880299
    [Google Scholar]
  231. GiriB.R. LiS. ChengG. Exogenous modification of EL-4 T cell extracellular vesicles with miR-155 induce macrophage into M1-type polarization.Drug Deliv. Transl. Res.202314493494437817019
    [Google Scholar]
  232. ProestlerE. DonzelliJ. NevermannS. BreitwieserK. KochL.F. BestT. FauthM. WickströmM. HarterP.N. KognerP. LavieuG. LarssonK. SaulM.J. The multiple functions of miR-574-5p in the neuroblastoma tumor microenvironment.Front. Pharmacol.202314118372010.3389/fphar.2023.118372037731742
    [Google Scholar]
  233. Murillo CarrascoA.G. OtakeA.H. da-SilvaM.J. SantiagoF.V. PalmisanoG. AndradeL.N.S. ChammasR. Deciphering the functional status of breast cancers through the analysis of their extracellular vesicles.Int. J. Mol. Sci.202324161302210.3390/ijms24161302237629204
    [Google Scholar]
  234. KatoT. KawakamiK. MizutaniK. AndoT. SakaiY. SakuraiK. ToyotaS. EharaH. ItoH. ItoM. H19 in serum extracellular vesicles reflects resistance to AR axis-targeted therapy among CRPC patients.Cancer Genomics Proteomics202320545646810.21873/cgp.2039737643783
    [Google Scholar]
  235. TaoW. WangB.Y. LuoL. LiQ. MengZ.A. XiaT.L. DengW.M. YangM. ZhouJ. ZhangX. GaoX. LiL.Y. HeY.D. A urine extracellular vesicle lncRNA classifier for high-grade prostate cancer and increased risk of progression: A multi-center study.Cell Rep. Med.202341010124010.1016/j.xcrm.2023.10124037852185
    [Google Scholar]
  236. LuS. LuC. XiaoY. ZhuW. HeQ. XieB. ZhouJ. TaoY. LiuS. XiaoD. Comparison of EML4-ALK fusion gene positive rate in different detection methods and samples of non-small cell lung cancer.J. Cancer20201161525153110.7150/jca.3658032047559
    [Google Scholar]
  237. RodosthenousR.S. HutchinsE. ReimanR. YeriA.S. SrinivasanS. WhitsettT.G. GhiranI. SilvermanM.G. LaurentL.C. Van JensenK.K. DasS. Profiling extracellular long RNA transcriptome in human plasma and extracellular vesicles for biomarker discovery.iScience202023610118210.1016/j.isci.2020.10118232512385
    [Google Scholar]
  238. WardZ. SchmeierS. PearsonJ. CameronV.A. FramptonC.M. TroughtonR.W. DoughtyR.N. RichardsA.M. PilbrowA.P. Identifying candidate circulating RNA markers for coronary artery disease by deep rna-sequencing in human plasma.Cells20221120319110.3390/cells1120319136291058
    [Google Scholar]
  239. PadillaJ.C.A. BarutcuS. MaletL. FrancoeurD.G. CalderonV. KwonE. LécuyerE. Profiling the polyadenylated transcriptome of extracellular vesicles with long-read nanopore sequencing.BMC Genomics202324156410.1186/s12864‑023‑09552‑637736705
    [Google Scholar]
  240. Van MorckhovenD. DuboisN. BronD. MeulemanN. LagneauxL. StamatopoulosB. Extracellular vesicles in hematological malignancies: EV-dence for reshaping the tumoral microenvironment.Front. Immunol.202314126596910.3389/fimmu.2023.126596937822925
    [Google Scholar]
  241. BarreiroK. DwivediO.P. RannikkoA. HolthöferH. TuomiT. GroopP.H. PuhkaM. Capturing the kidney transcriptome by urinary extracellular vesicles—from pre-analytical obstacles to biomarker research.Genes2023147141510.3390/genes1407141537510317
    [Google Scholar]
  242. WanowskaE. SamorowskaK. SzcześniakM.W. Emerging roles of long noncoding RNAs in breast cancer epigenetics and epitranscriptomics.Front. Cell Dev. Biol.20221092235110.3389/fcell.2022.92235135865634
    [Google Scholar]
  243. WuM. YuanH. ZouW. XuS. LiuS. GaoQ. GuoQ. HanY. AnX. Circular RNAs: Characteristics, functions, mechanisms, and potential applications in thyroid cancer.Clin. Transl. Oncol.2023202310.1007/s12094‑023‑03324‑037864677
    [Google Scholar]
  244. SonbhadraS. Mehak PandeyL.M. Biogenesis, isolation, and detection of exosomes and their potential in therapeutics and diagnostics.Biosensors202313880210.3390/bios1308080237622888
    [Google Scholar]
  245. GillS. AhmedS. AndersonB. BerryS. LimH. PhangT. SharmaA. Solar VasconcelosJ.P. GillK. IqbalM. TankelK. ChanT. RecskyM. NukJ. PaulJ. MahmoodS. Report from the 24th annual western canadian gastrointestinal cancer consensus conference on colorectal cancer, Richmond, British Columbia, 28-29, October 2022.Curr. Oncol.20233097964798310.3390/curroncol3009057937754494
    [Google Scholar]
  246. Moutinho-RibeiroP. BatistaI.A. QuintasS.T. AdemB. SilvaM. MoraisR. PeixotoA. CoelhoR. MoreiraC.P. MedasR. LopesS. Vilas-BoasF. BaptistaM. SilvaD.D. EstevesA.L. MartinsF. LopesJ. BarrocaH. CarneiroF. MacedoG. MeloS.A. Exosomal glypican-1 is elevated in pancreatic cancer precursors and can signal genetic predisposition in the absence of endoscopic ultrasound abnormalities.World J. Gastroenterol.202228314310432710.3748/wjg.v28.i31.431036159010
    [Google Scholar]
  247. XuK. YuA.R. PanS.B. HeJ. Diagnostic value of methylated branched chain amino acid transaminase 1/IKAROS family zinc finger 1 for colorectal cancer.World J. Gastroenterol.202329365240525310.3748/wjg.v29.i36.524037901447
    [Google Scholar]
  248. KhanN.A. AsimM. BiswasK.H. AlansariA.N. SamanH. SarwarM.Z. OsmonalievK. UddinS. Exosome nanovesicles as potential biomarkers and immune checkpoint signaling modulators in lung cancer microenvironment: Recent advances and emerging concepts.J. Exp. Clin. Cancer Res.202342122110.1186/s13046‑023‑02753‑737641132
    [Google Scholar]
  249. HuoF. MaY. LiS. XueY. ShangY. DongL. LiY. PangY. Specific gyrA gene mutations correlate with high prevalence of discordant levofloxacin resistance in mycobacterium tuberculosis isolates from Beijing, China.J. Mol. Diagn.20202291199120410.1016/j.jmoldx.2020.06.01032619641
    [Google Scholar]
  250. BamoduO.A. ChungC.C. PisanicT.R.II Harnessing liquid biopsies: Exosomes and ctDNA as minimally invasive biomarkers for precision cancer medicine.J. Liq. Biop.2023210012610.1016/j.jlb.2023.100126
    [Google Scholar]
  251. AlfonsoG.P. CarboneroR.G. FoncillasG.J. SeguraP.P. SalazarR. VeraR. y CajalR.S. LosaH.J. LandolfiS. MusulénE. CuatrecasasM. NavarroS. Update of the recommendations for the determination of biomarkers in colorectal carcinoma: National consensus of the Spanish society of medical oncology and the Spanish society of pathology.Clin. Transl. Oncol.202022111976199110.1007/s12094‑020‑02357‑z32418154
    [Google Scholar]
  252. FramptonA.E. PradoM.M. JiménezL.E. PuertaF.A.B. JawadZ.A.R. LawtonP. GiovannettiE. HabibN.A. CastellanoL. StebbingJ. KrellJ. JiaoL.R. Glypican-1 is enriched in circulating-exosomes in pancreatic cancer and correlates with tumor burden.Oncotarget2018927190061901310.18632/oncotarget.2487329721179
    [Google Scholar]
  253. AfridiW.A. StrachanS. KasetsirikulS. PannuA.S. SodaN. GoughD. NguyenN.T. ShiddikyM.J.A. Potential avenues for exosomal isolation and detection methods to enhance small-cell lung cancer analysis.ACS Measur. Sci. Au20233314316110.1021/acsmeasuresciau.2c0006837360040
    [Google Scholar]
  254. LiS. XinK. PanS. WangY. ZhengJ. LiZ. LiuX. LiuB. XuZ. ChenX. Blood-based liquid biopsy: Insights into early detection, prediction, and treatment monitoring of bladder cancer.Cell. Mol. Biol. Lett.20232812810.1186/s11658‑023‑00442‑z37016296
    [Google Scholar]
  255. HayashiT. OzakiH. SasagawaY. UmedaM. DannoH. NikaidoI. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs.Nat. Commun.20189161910.1038/s41467‑018‑02866‑029434199
    [Google Scholar]
  256. YuD. LiY. WangM. GuJ. XuW. CaiH. FangX. ZhangX. Exosomes as a new frontier of cancer liquid biopsy.Mol. Cancer20222115610.1186/s12943‑022‑01509‑935180868
    [Google Scholar]
  257. RazaA. KhanA.Q. InchakalodyV.P. MestiriS. YoosufZ.S.K.M. BedhiafiT. El-EllaD.M.A. TaibN. HydroseS. AkbarS. FernandesQ. ZaidanA.L. KrishnankuttyR. MerhiM. UddinS. DermimeS. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer.J. Exp. Clin. Cancer Res.20224119910.1186/s13046‑022‑02318‑035292091
    [Google Scholar]
  258. BaassiriA. NassarF. MukherjiD. ShamseddineA. NasrR. TemrazS. Exosomal non coding RNA in LIQUID biopsies as a promising biomarker for colorectal cancer.Int. J. Mol. Sci.2020214139810.3390/ijms2104139832092975
    [Google Scholar]
  259. VidlarovaM. RehulkovaA. StejskalP. ProkopovaA. SlavikH. HajduchM. SrovnalJ. Recent advances in methods for circulating tumor cell detection.Int. J. Mol. Sci.2023244390210.3390/ijms2404390236835311
    [Google Scholar]
  260. MuZ. WangC. YeZ. AustinL. CivanJ. HyslopT. PalazzoJ.P. JaslowR. LiB. MyersR.E. JiangJ. XingJ. YangH. CristofanilliM. Prospective assessment of the prognostic value of circulating tumor cells and their clusters in patients with advanced-stage breast cancer.Breast Cancer Res. Treat.2015154356357110.1007/s10549‑015‑3636‑426573830
    [Google Scholar]
  261. TrivediR. BhatK.P. Liquid biopsy: Creating opportunities in brain space.Br. J. Cancer2023129111727174610.1038/s41416‑023‑02446‑037752289
    [Google Scholar]
  262. NicolazzoC GazzanigaP. A fast and furious liquid biopsy assay to monitor targeted therapy resistance.Methods Mol Biol2022253593104
    [Google Scholar]
  263. CohenS.J. PuntC.J.A. IannottiN. SaidmanB.H. SabbathK.D. GabrailN.Y. PicusJ. MorseM. MitchellE. MillerM.C. DoyleG.V. TissingH. TerstappenL.W.M.M. MeropolN.J. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer.J. Clin. Oncol.200826193213322110.1200/JCO.2007.15.892318591556
    [Google Scholar]
  264. KamalM. WangY.J. PlummerS. DickersonA. YuM. An image-based identification of aggressive breast cancer circulating tumor cell subtypes.Cancers20231510266910.3390/cancers1510266937345005
    [Google Scholar]
  265. VardasV. ToliosA. ChristopoulouA. GeorgouliasV. XagaraA. KoinisF. KotsakisA. KallergiG. Immune checkpoint and emt-related molecules in circulating tumor cells (CTCs) from triple negative breast cancer patients and their clinical impact.Cancers2023157197410.3390/cancers1507197437046635
    [Google Scholar]
  266. Banys-PaluchowskiM. KrawczykN. StiegenM.F. FehmT. Circulating tumor cells in breast cancer—current status and perspectives.Crit. Rev. Oncol. Hematol.201697222910.1016/j.critrevonc.2015.10.01026563820
    [Google Scholar]
  267. ChenH. ZhangY. MaX. ZhouB. LiuZ. Chemically-modified sepharose 6b beads for collection of circulating tumor cells.Biomolecules2023137107110.3390/biom1307107137509107
    [Google Scholar]
  268. JuS. ChenC. ZhangJ. XuL. ZhangX. LiZ. ChenY. ZhouJ. JiF. WangL. Detection of circulating tumor cells: Opportunities and challenges.Biomark. Res.20221015810.1186/s40364‑022‑00403‑235962400
    [Google Scholar]
  269. AcheampongE. MoriciM. AbedA. BowyerS. AsanteD.B. LinW. MillwardM. GrayE.S. BeasleyA.B. Powering single-cell genomics to unravel circulating tumour cell subpopulations in non-small cell lung cancer patients.J. Cancer Res. Clin. Oncol.202314951941195010.1007/s00432‑022‑04202‑y35896898
    [Google Scholar]
  270. Kasimir-BauerS. HoffmannO. WallwienerD. KimmigR. FehmT. Expression of stem cell and epithelial-mesenchymal transition markers in primary breast cancer patients with circulating tumor cells.Breast Cancer Res.2012141R1510.1186/bcr309922264265
    [Google Scholar]
  271. LoN. HeH.H. ChenS. Genome-wide studies in prostate cancer poised liquid biopsy as a molecular discovery tool.Front. Oncol.202313118501310.3389/fonc.2023.118501337692852
    [Google Scholar]
  272. ZivanovicA MillerJT MunroSA Co-evolution of AR gene copy number and structural complexity in endocrine therapy resistant prostate cancer.NAR Cancer202353zcad045
    [Google Scholar]
  273. WignarajahS. ChianellaI. TothillI.E. Development of electrochemical immunosensors for HER-1 and HER-2 analysis in serum for breast cancer patients.Biosensors202313335510.3390/bios1303035536979567
    [Google Scholar]
  274. NicolòE. SerafiniM.S. Munoz-ArcosL. PontolilloL. MolteniE. BayouN. AndreopoulouE. CuriglianoG. ReduzziC. CristofanilliM. Real-time assessment of HER2 status in circulating tumor cells of breast cancer patients: Methods of detection and clinical implications.J. Liq. Biop.2023210011710.1016/j.jlb.2023.100117
    [Google Scholar]
  275. NicolòE. BieloB.L. CuriglianoG. TarantinoP. The HER2-low revolution in breast oncology: Steps forward and emerging challenges.Ther. Adv. Med. Oncol.20231510.1177/1758835923115284236844387
    [Google Scholar]
  276. KönigT. DoganS. HöhnA.K. WeydandtL. AktasB. NelI. Multi-parameter analysis of disseminated tumor cells (DTCs) in early breast cancer patients with hormone-receptor-positive tumors.Cancers202315356810.3390/cancers1503056836765527
    [Google Scholar]
  277. GarciaJ. WoznyA.S. GeiguerF. DelhermeA. BarthelemyD. MerleP. TissotC. JonesF.S. JohnsonC. XingX. XuZ. EdelsteinD.L. BrevetM. SouquetP.J. LafrasseR.C. PayenL. CouraudS. Profiling of circulating tumor DNA in plasma of non‐small cell lung cancer patients, monitoring of epidermal growth factor receptor p.T790M mutated allelic fraction using beads, emulsion, amplification, and magnetics companion assay and evaluation in future application in mimicking circulating tumor cells.Cancer Med.2019883685369710.1002/cam4.224431112372
    [Google Scholar]
  278. NomuraM. MiyakeY. InoueA. YokoyamaY. NodaN. KoudaS. HataT. OginoT. MiyoshiN. TakahashiH. UemuraM. MizushimaT. DokiY. EguchiH. YamamotoH. Single-cell analysis of circulating tumor cells from patients with colorectal cancer captured with a dielectrophoresis-based micropore system.Biomedicines202311120310.3390/biomedicines1101020336672711
    [Google Scholar]
  279. WorrollD. GallettiG. GjyreziA. NanusD.M. TagawaS.T. GiannakakouP. Androgen receptor nuclear localization correlates with AR-V7 mRNA expression in circulating tumor cells (CTCs) from metastatic castration resistance prostate cancer patients.Phys. Biol.201916303600310.1088/1478‑3975/ab073a30763921
    [Google Scholar]
  280. RapanottiM.C. CuginiE. CampioneE. Di RaimondoC. CostanzaG. RossiP. FerlosioA. BernardiniS. OrlandiA. De LucaA. BianchiL. Epithelial-to-mesenchymal transition gene signature in circulating melanoma cells: Biological and clinical relevance.Int. J. Mol. Sci.202324141179210.3390/ijms24141179237511550
    [Google Scholar]
  281. LeeY. NiJ. BeretovJ. WasingerV.C. GrahamP. LiY. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis.Mol. Cancer20232213310.1186/s12943‑023‑01741‑x36797736
    [Google Scholar]
  282. Fernandez-PerezM.P. Perez-NavarroE. Alonso-GordoaT. ConteducaV. FontA. Vázquez-EstévezS. González-del-AlbaA. WetterskogD. AntonarakisE.S. MelladoB. CalvoF.O. VidalM.M.J. ClimentM.A. DuranI. GallardoE. SanchezR.A. SantanderC. SáezM.I. PuenteJ. TudelaJ. MartínezA. AndreoL.M.J. PadillaJ. LozanoR. HervasD. LuoJ. de GiorgiU. CastellanoD. AttardG. GrandeE. BillalabeitiaG.E. A correlative biomarker study and integrative prognostic model in chemotherapy‐naïve metastatic castration‐resistant prostate cancer treated with enzalutamide.Prostate202383437638410.1002/pros.2446936564933
    [Google Scholar]
  283. GuoH. VuilleJ.A. WittnerB.S. LachtaraE.M. HouY. LinM. ZhaoT. RamanA.T. RussellH.C. ReevesB.A. PleskowH.M. WuC.L. GnirkeA. MeissnerA. EfstathiouJ.A. LeeR.J. TonerM. AryeeM.J. LawrenceM.S. MiyamotoD.T. MaheswaranS. HaberD.A. DNA hypomethylation silences anti-tumor immune genes in early prostate cancer and CTCs.Cell20231861327652782.e2810.1016/j.cell.2023.05.02837327786
    [Google Scholar]
  284. Sen-DoganB. DemirM.A. SahinB. YildirimE. KarayalcinG. SahinS. MutluE. ToralT.B. OzgurE. ZorluO. KulahH. Analytical validation of a spiral microfluidic chip with hydrofoil-shaped pillars for the enrichment of circulating tumor cells.Biosensors2023131093810.3390/bios1310093837887131
    [Google Scholar]
  285. FongW. LiQ. YuJ. Gut microbiota modulation: A novel strategy for prevention and treatment of colorectal cancer.Oncogene202039264925494310.1038/s41388‑020‑1341‑132514151
    [Google Scholar]
  286. HuM. WangZ. WuZ. DingP. PeiR. WangQ. XingC. Circulating tumor cells in colorectal cancer in the era of precision medicine.J. Mol. Med.2022100219721310.1007/s00109‑021‑02162‑334802071
    [Google Scholar]
/content/journals/ccdt/10.2174/0115680096295070240318075023
Loading
/content/journals/ccdt/10.2174/0115680096295070240318075023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test